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LINEARLY CONTAINED IN BOUNDARY CONDITIONS

ON IMPULSIVE STURM -LIOUVILLE OPERATORS
WITH COULOMB POTENTIAL AND SPECTRAL PARAMETER
LINEARLY CONTAINED IN BOUNDARY CONDITIONS

The Sturm - Liouville problem with linear discontinuities is investigated in the case where an eigenparameter
appears not only in the differential equation but also in the boundary conditions. Properties and asymptotic
behaviours of spectral characteristic are studied for the Sturm — Liouville operators with the Coulomb potential
which have discontinuity conditions inside a finite interval. Moreover, the Weyl function for this problem under
consideration is defined and uniqueness theorems for solution of inverse problem according to this function
are proved.

In this study, Sturm—Liouville problem with discontinuities linearly is investigated when an eigenparameter
appears not only in the differential equation but it also appears in the boundary conditions. Properties and
asymptotic behaviours of spectral characteristic are studied for Sturm-Liouville operators with Coulomb
potential which have discontinuity conditions inside a finite interval. Also Weyl function for this problem
under consideration has been defined and uniqueness theorems for solution of inverse problem according to
this function have been proved.

1. Introduction. In spectral theory, the inverse problem is the usual name for any
problem in which it is required to ascertain the spectral data that will determine a
differential operator uniquely and a method of construction of this operator from the
data. This kind of problem was first formulated and investigated by Ambartsumyan in
1929 [7]. Since 1946, various forms of the inverse problem have been considered by
numerous authors — G. Borg [15], N. Levinson [8], B. M. Levitan [9], etc. and now
there exists an extensive literature on the [10—-14]. Later, the inverse problems having
specified singularities were considered by a number of authors [18—20].
We consider the boundary-value problem L for the equation:

C
() =—y"+ —y+a@y =Ky (1.1)
on the interval 0 < & < 7 with the boundary conditions
U(y) :==y(0) =0,V (y) := (a1k® + a2) y () + (B1k* + B2) y' (1) =0 (1.2)
and with the jump conditions
(1.3)
Yy (d+0)=a"ly' (d-0),

where k is spectral parameter; C, «, oy, as, B1, B2 € R, asf1 — foaq > 0, a # 1,
a>0,de (g, 7r), q(x) is a real valued bounded function and g(x) € Lo(0, 7).
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In case of ¢(x) = 0, since this operator is the singular Sturm — Liouville operator with
Coulomb potential, linearly independent solutions of this kind of differential equation
could be given with hypergeometric functions and this integral representation is also a
representation for hypergeometric functions.

The boundary-value problems that contain the spectral parameter in boundary conditi-
ons linearly were investigated in [30—32]. In [30, 41], an operator-theoretic formulation
of the problems of the form (1.1)-(1.3) has been given. Oscillation and comparison
results have been obtained in [33 —35]. In case of «; # 0, problem (1.1)—(1.3) is associ-
ated with the physical problem of cooling a thin solid bar one end of which is placed in
contact with a finite amount of liquid at time zero (see [30] and also [37] in it). Assuming
that heat flows only into the liquid which has un-uniform density p(z) and is convected
only form the liquid into the surrounding medium, the initial boundary-value problem
for a bar of length one takes the form

ug = p(T)Uga, (1.4)
u, (0,¢) =0, (1.5)
—kAu, (77, t) = qM (dv/dt) + k1B (t) forall ¢, (1.6)
u(z,0) =ug(z) for €0, (1.7)
v(0) = vy

after factoring out the steady-state solution, where

1, 0<zx<d,

a®, d<z<m.

Assuming that the rate of heat transfer across the liquid-solid interface is proportional
to the difference in temperature between the end of the bar and the liquid with which it
is in contract (Newton’s law of cooling), and applying Fourier’s law of heat conduction
at x = m, we get

v (t) =u(mt)+ke tuy (n71t) for >0,

where ¢ > 0 is the coefficient of heat transfer for the liquid. If we put u(z,t) =
= y(x) exp (—At) then the problem (1.1)—(1.3) will appear to be consequence of the

above problem. Indeed, the condition (1.2) is obtained from (1.5) and the condition (1.3)

A+ kB k1B
is obtained from (1.6) easily. Here a; = g, P2 = *Cq# and ap; = 7&\4;'

Finally, if we put

z, 0<x<d,
t:
ar, d<zx<m,

then the discontinuity conditions (1.3) and a particular case of (1.1) will appear. This
corresponds to the case of nonperfect thermal contact. Since, the density is changed at
one point in interval, both of the intensity and the instant velocity of heat change at this
point. Hence, (1.1)—(1.3) will appear to be consequence of the above problem.
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Boundary-value problems with discontinuities inside the interval often appear in
mathematics, mechanics, physics, geophysics and other branches of natural properties.
The inverse problem of reconstructing the material properties of a medium from data
collected outside of the medium is of central importance in disiplines ranging from
engineering to the geo-sciences.

For example, discontinuous inverse problems appear in electronics for constructi-
ng parameters of heterogeneous electronic lines with desirable technical characteristics
[21, 22]. After reducing corresponding mathematical model we come to boundary-value
problem L where ¢(z) must be constructed from the given spectral information which
describes desirable amplitude and phase characteristics. Spectral information can be used
to reconstruct the permittivity and conductivity profiles of a one-dimensional disconti-
nuous medium [23, 24]. Boundary-value problems with discontinuties in an interiorpoint
also appear in geophysical models for oscillations of the Earth [25, 26]. Here, the main
disconutinuity is cased by reflection of the shear waves at the base of the crust. Further,
it is known that inverse spectral problems play an important role for investigating some
nonlinear evolution equations of mathematical physics. Discontinuous inverse problems
help to study the blow-up behaviour of solutions for such nonlinear equations. We
also note that inverse problem considered here appears in mathematics for investigati-
ng spectral properties of some classes of differential, integrodifferential and integral
operators.

It must be noted that some special cases of the considered problem (1.1)—(1.3) arise
after an application of the method of seperation of variables to the varied assortment
of physical problems. For example, some boundary-value problems with transmission
condition arise in heat and mass transfer problems (see, for example, [40]), in vibrati-
ng string problems when the string loaded additionally with point masses (see, for
example, [37]) and in diffraction problems (see, for example, [39]). Moreover, some of
the problems with boundary conditions depend on the spectral parameter occur in the
theory of small vibrations of a damped string and freezing of the liquid (see, for example,
[36-38]).

In the study of [29], there isn’t existed spectral parameter in boundary conditions in
the point x = 7. However some certain physical problems are reduced to boundary-value
problems which contain spectral parameter in boundary conditions, so they are reduced
to investigate the type of problems (1.1)—(1.3).

In this study, representation with transformation operator has been obtained as in
[28, 29].

Moreover, properties of characteristic function of Ly and asymptotic behaviours of
spectral characteristics of considering operator have been given such that the remaining
parts are in the space /5 as in [29].

2. Representation for the solution. We define y;(z) = y(z), y2(z) = (Ty)(x) =
=y'(z) — u(z)y(z), u(r) = C'lnx and let’s write the expression of left-hand side of
equation (1.1) as follows

U(y) =~ [(Ty) ()] — u(z)(Ty)(z) — u®(x)y + q(x)y = kY 2.1
then equation (1.1) reduces to the system;
Y1 — Y2 = u(@)ys,

/ 2 2 (2.2)
Yo + kY1 = —u(w)y2 — v (z)y1 + q(@)y
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with the boundary conditions
y1(0) =0, (1 k® + a2) y1 () + (B1k* + B2) y2 (1) =0 (2.3)
and with the jump conditions
Y1 (d+ 0) = QY1 (d* O)7
(2.4)
Yo (d+0) = a tys (d — 0).

Matrix form of system (2.2)

) u L\ [lefeya
= (2.5)
Y2 -k —utt+q  —u Y2

u(x) 1 Y1
or ' = Ay such that A = < ), (

k2 — (@) +a(0)  —u(@)) \p

x = 0 is a regular-singular end point for equation (2.5) and Theorem 2 in [1, p. 56]
(see Remark 1-2) extends to interval [0, ] . For this reason, by [1], there exists only one
solution of the system (2.2) which satisfies the initial conditions y; (§) = v1, y2 (§) = v
for each £ € [0, 7], v = (v1,v2)" € C2, especially the initial conditions y; (0) = 1,
y2(0) = ik.

Definition 2.1. The first component of the solution of system (2.2) which satisfies
the initial condititons y1 (§) = v1, y2 (&) = (Ly) (§) = we is called the solution of
equation (1.1) which satisfies these same initial conditions.

It was showed in [29] by the successive approximations method that (see [16]) the
following theorem is true.

Theorem 2.1. For each solution of system (2.2) which satisfying the initial condi-

1
tions (y1> (0) = (k) and the jump conditions (2.4), the following expression is
Y2 ?
true:

y1 = e pint® Koy (x, t)e*dt,
; , ) , x <d,
y2 = ke’ +b(x)e™” +int” Ko (z, t)e™dt + ikint” , Kop (v, t)e™ dt,

y1 = at ettt 4 gtk (2dme) 4 int? K11 (x, t)e““tclt7
yo = ik (a-i-eikaa _ a—eik(2d—z)) +b(x) [a-i-eikz I a—eik(2d—z)}7 z>d,
+ int” , Ko (z,t)e tdt + ikint® | Koo (x, t)e™ dt,

where

1. e
b(lL’) = 7§int8 [uz (5) —q (S)] e*%lntsu(t)dtds’

Ki1 (z,2) = O%u(ac),

Ko (z,2) = b (2) — %int”o” [u” (s) — q(s)] K11 (s, 8)ds — %intgu (s) Ko1 (s,8)ds,

ot
Ko (z,2) = 5 [u(x) + 2b(z)],
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K1 (z,2d —x 4+ 0) — Kq1 (2,2d — 2z — 0) = %u(m),

GKU (I’,) 8[(1] (I,)
or ot

€ Ly(0,7), 4,j=1,2.

3. Properties of the spectrum. In this section, properties of the spectrum of problem
L will be learned. Let us denote problem L as Ly in the case of C' = 0 and ¢(x) = 0.

When C = 0 and ¢(x) = 0, it is easily shown that solution ¢ (z, k) satisfying the
initial conditions (0, k) = 0, (T'wg)(0, k) = k and the jump conditions (2.4) is shown
as

sin kx, for z < d,
QOO(xv k) =
atsinkz + o~ sink(2d — z), for x> d,
G.1)
kcoskzx, for =z < d,
(Tpo)(z, k) =

ka™ coskx — ka™ cosk(2d — z), for z > d.

We denote characteristic function, eigenvalues sequence and normalizing constant
sequence by A(k), {k,} and {a,} respectively. Denote

A(k) = <1/}(£C, k)?@(xv k)> ’ (3.2)

where

(y(@), 2(2)) := y(2)(T2)(x) — (Ty)(2)2(z).

Also we defined normalizing constants by
1
ay = intd o? (z, ky,) da + ;[Oq(p(ﬂ', kn) + (L) (m, k:n)} 2, (3.3)

where p = a1 — S2c1. According to the Liouville formula, ((x, k), p(x, k)) is not
depend on x.

We shall assume that o(z, k) and ¢(z, k) are solutions of equation (1.1) under the
following initial conditions:

@(Oa k) = 07 (F@)(Oa k) = ka ¢(7T, k) = (Ble + 52) ) (FW (7'[', k) = —(041]62 +
+ ag).
Clearly, for each x, functions (¢(x, k), p(z, k)) are entire in k and

Alk)=V(p)=U ) =
= (a1k® + az) o(m, k) + (B1k* + B2) (. k) = (0, k). (3.4)

By using the representation of the function y(z, k) for the solution (x, k):
oz, k) = pola, k) + intT Kqy (7, t) sin ktdt (3.5)

is obtained.
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Lemma 3.1 (Lagrange’s fomula). Let y,z € D (L§). Then

(Lyy, 2) = int§ ¢ (y) Zdz = (y, Liz) + [v.2] (1§7° + [540),

where [y, 2] (|37 + [5.0) = |(T2) (@)y(@) — (Cy)(@)2@)] (167 + o).
Proof. We have

(Liy, 2) = —int] (v — uy) Zdo — intJu (v — u y) Zdz — int] (u? — q(x)) yZdz =
= intg (y' —uy) (2' — uz) do — intg (u? - g(@)) yzde — (Ty)()z(z) (1§70 + [710)
= intgyt (2) dz + [y, 2] (I§7° + 17s0) = (¥ Lo2) + [1.2) (157° + |40 -

Lemma 3.1 is proved.

Lemma 3.2. The zeros {k,} of the characteristic function coincide with the eigen-
values of the boundary-value problem L. The functions ¢ (v, k,) and ¢ (z,k,) are
eigenfunctions and there exists a sequence {~, } such that

w(ﬂi, kn) = T (x7kn)a Yn # 0. (3.6)

Proof. 1) Let kg be a zero of the function A(k). Then by virtue of equation (3.2) and
(3.4), ¢ (x, ko) = o (x, ko) and the functions ¥ (z, ko) , ¢ (x, ko) satisfy the boundary
conditions (1.2). Hence kg is an eigenvalue and ¢ (z, ko) , ¢ (x, ko) are eigenfunctions
related to k.

2) Let kg be an eigenvalue of L, y, be a corresponding eigenfunctions. Then U (y) =
= V(yo) = 0. Clearly yo(0) = 0. Without loss of generality we put (I'yg)(0) =
= ik. Hence yo(z) = ¢ (x, ko) . Thus, from equation (3.4), A (ko) = V (¢ (z, ko)) =
=V (yo(x)) = 0 is obtained.

Lemma 3.2 is proved.

Lemma 3.3. Eigenvalues of the problem L are simple and separated.

Proof. Since p(x, k) and ¥ (z, k) are solutions of equation (1.1),

— " (2, k) + [u'(z) + q(x)] Y (x, k) = kp(z, k)~
—" (@, kn) + [u' () + q(@)] ¢ (2, kn) = knip (2, kn).

If first equation is multiplied by ¢ (x, k), second equation is multiplied by ¢ (z, k) and
substracting them side by side and finally integrating over the interval [0, 7], the equality

(W k), @ (k) [0 + [Tao) = (k — ko) intGob(a, b (e, k) dz - (3.7)

is obtained.
If jump conditions (1.3) and equation (3.3) are considered, then

intd ¢ (z, kn) @ (z, ky) de+
o) + B (D) ()] [ ) + A1 () )] = = ()
as k — k, is obtained. From Lemma 3.2, we get that
ann = —A (kn) . (3.8)
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It is obvious that A (k) # 0.

Since the function A(k) is an entire function of k, the zeros of A(k) are separated.
Lemma 3.3 is proved.

Now, let problems be

=y + W' (@) + q(@)]y = Ay,

(T'y)(0) — hy(0) = 0,

L: § (BiA + B2) (Ty) (1) + (1A + az) y () = 0,
y(d+0)=ay(d—0),

(Ty) (d+0) =a~ " (I'y) (d - 0)

and

=y + [u'(x) + q(2)]y = py,

(I'y)(0) — hy(0) =0,

L: ¢ (Bid+ B2) (Ty) () + (@A + d2) y (r) = 0,
y(d+0)=ay(d-0),

(Ty) (d+0) =a~" (I'y) (d - 0),

where 0[151 = &252, a1§2 = &251, aggl = 62152. Let {)\n}nZO and {M"}nZO be the
eigenvalues of the problems L and L respectively. N
Lemma 3.4. The eigenvalues of the problems L and L are interlace, i.e.,

An < fin < Any1,  if asfy < dof,
(3.9)

P < Ap < fing1, I agfe > azfe, n>0.

where Ollag > &1042 and ﬂlgg > ElﬂQ.
Proof. As in the proof of Lemma 3, we get that

d

o @A), e (2, 1)) = (A= p) o, ) p(z, 1)

and from here

(A = p) intf oz, (@, p)de = (o(z, N), o(@, ) [|§° + [740] =
= @(m, (L) (m, ) = (Tp)(m, (7, ) =

= Q020102 () ol ) () () +
a2fl2 — a2 f2

+M (A = ) (T) (7, \)(T) (7, ) +
agfs — azfs
. N ~
———— |AMNA () — A () ANV
agfls — P2 [ A0 . (/\)}
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Hence

(A = p) intgp(z, N)p(z, p)de =
= D02 T (o, ) () ()t
22 — a2
a2ﬂ2 — 042ﬁ2
L [A(A):A(#)A(
Qafla — Q22 A= H

(A = p) (L) (m, \)(Tp) (r, 1)+

Asp— A

1

intg p?(z, \)de = —=———
Q22 — a2

X
x l(&w@ — 1) @2 (m,A) + (BB — B152) (D) (m, A)+

FAMNAN — AN AW

7 (3.10)

where A()\) = %A()\), A(N) = %Z(A) From equation (3.10), if A(X) # 0

! [intng(x, \)dz — (G102 = 1d2) ¢° (W’:\) i (Blﬁf = B18) (Cp)? (. )
A2(N) 032 — a2 B2
o 1 d <A (\)

~ NIV NN B - <A< ’
(&252 —Oé252) dA A()‘)> > >

is obtained.

~ A(N) . . .
If s B2 < @ia B2, then = ()\i is monotonically decreasing in the set of R\{p,,n > 0}.

Thus it is obvious that lim &

A—pE? A(N)
When a8 > aia 32, if we write the equality (3.10) as

, (Qrag — aran) @* (m, \) + (5132 - ﬂ1§2) (Tp)? (m, \)
int{ *(x, \)dx — =

1
AZ()\) 2fy — G2l -

< Bl~5)dd)\<28;>, —0 < A<o00, A(N)#0,

AN
we get that the function A(( )\)) is monotonically decreasing in R\ {\,, n > 0} and it
. . AN . .
is clear that lim,_, ,+o A o)~ +00. From here (3.9) is obtained.
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Theorem 3.1. The eigenvalues k., eigenfunctions ¢(x,k,) and the normalizing
numbers o, of problem L have the following asymptotic behaviour

dn  On

_ 1.0
kn*kn‘i’@‘i’ﬁa

(3.11)

Sn by

¢ (z,ky) = atsin (K +¢) z+ o sin (k) +¢) (2d—x)+k—0+k—0,

(3.12)

2 \2 ’]T—d d — fn
a, — [(a+) + (a )}( 5 )+2a+a cos?k2d+’yn+z, (3.13)

where 6y, Sn, En € la, by, dy, Yo € loo and kO are roots of Ag(k) := k3 [oﬁ‘ cos km —
—a~ cosk(2d — 77)] and k® =n + hy, hy, € loo.
Proof. Using (3.1), (3.2) and (3.5), we get

A(k) = (ak® + a2) @o(m, k) + (Bi1k* + B2) (Tpo) (7, k)+
+ (ark? + ag) int] K1y (7, t) sin ktdt+
+B1k + Bo [intg Koy (m,t) sin ktdt + intf Ko (7, t) cos ktdt} =
= (a1k® + a2) (ot sinkm + o~ sink (2d — 7)) +

exp | Imk;|7r> B
||

= B1Ao(k) + (a1k® + az) (ot sinkr + o~ sink (2d — 7)) +

exp|Imk|7r>
|| '

+ (,61k;2 + 62) (ka+ coskm — ka™ cosk (2d — 7r)) + k20 (

+B2k (at coskm — o cosk (2d — m)) + k*O (

Denote
G = {k:: k| = k0] + % n= o,il,ﬂ,...},

Gs={k:|k—k)|>6 n=0+£1,£2,....6 >0},

where § is sufficiently small positive number (5 < g)
Since |Ag(k)| > k3Csel™F ™ for k € G5 and k € G, |A(k) — Ao(k)| <

< 76|k|3e| Im k|7 for sufficiently large values of n , we get

|Ao(K)| > CskPel ™FI™ > |A (k) — Ag(K)|.

It follows from that for sufficiently large values of n, functions Ay (k) and Ag(k) +
+(A(k) — Ag(k)) = A(k) have the same number of zeros counting multiplicities inside
contour GG, according to Rouche’s theorem. That is, they have the (n + 1) number of
zeros: ko, ki, ..., kn.

Analogously, it is shown by Rouche’s theorem that for sufficiently large values of n,
function A(k) has a unique of zero inside each circle |k — k0| < 4.

Since d is sufficiently small number, representing of k,, = k + ¢, is acquired where

lim ¢, = 0.

n—o0
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Since numbers k,, are zeros of characteristic function A (k),
A(ky) = (a1k? + az) (ot sink,m + o sink, (2d — 7)) +
+ (B1k* + B2) (kna cosk,m — kna™ cosk, (2d — ) + O (k2).

From the last equality, we get

atcosk,m —a” cosk, (2d — ) + % [ sink, 7+ a” sink, (2d — 7) |+
1hn
+5a]i3 [ sink, 7+ a” sink, (2d — 7) |+
1hn
+ b2 [a+cosk T —a cosk (2d—7r)} +0 1 =0.
Piks ! ! ki

If we write kO + ¢, instead of k,, and use A (kg + sn) = Ao (kg) en +0(en)
and also the study [5] ( see also [6]) is used then we get that k0 = n + h,, where
sup|hy,| < M. Therefore

an:d—"+6—", Op € Lo, dp € lso-
n n

Hence for the eigenvalues k,, of the problem L, asymptotic formula (3.10) is true. Now,
let’s try to find the asymptotic formula for the eigenfunction:

o (2, ky) =at sink,r 4+ a” sink,(2d — z) + intgf?n(x, t) sin k, tdt =

=atsin (k) +¢e,) z+a sin (k) +e,) (2d — 2) +

—mintgf(u(x, t)d (cos (ky +en)) tdt =

=atsinklz +a sink?(2d — z)—

1 N .
TR0 ¢ Ki1(z,t) cos kﬁt} ((2),1 04 2 ai0) +
+mint3fqu($,t) cos kOt dt.
Since
~ 0[+ _ N ~
K (z,2) = 7u(x), K1 (z,2d — x4+ 0) — K11 (2,2d —xz — 0) = 7u(x),
and

intg K, (z,t) cos kOtdt € £y
it is obtained that
o (x,k,) =aTsinkz + o~ sink?(2d — )+

~cosk?(2d — ) — at cos kY b
a~ coskp( x) —a™ cos o _|_7”_|_87"7 s € by by €l
n

2K9 () n
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Then we get the asymptotic formula (3.12). Finally, in order to show (3.13) is true,
using (3.1) and (3.5), we get

o 1
ap = int§? (z,ky) do + ’ [arp(m, kn) + B1 (L) (s k)] =
. 2
— intg {sin2 k,xdx + (inthH(x, t) sin kntdt) ] dx+
+21ntg sin knozintgf(n (x,t) sin kytdtdz+
- 2
+int] [(oﬁ)z sin® k,z + (04_)2 sin? &, (2d — x) + (intﬁKu(:c, t) sin kntdt) } dz+
+2ata”int] sin ky,x sin k, (2d — x)da+
+2atint? sin k,#int® Ky (x, t) sin k, tdtdz+
+2a7int7 sin kn, (2d — 2)int% K11 (2, t) sin ky tdtdz+
1
2 ol ka) + By (L) ()] =

_T ; d {(a+)2 + (a—)ﬂ + g —ata cos2k0d + v, + %‘

Theorem 3.1 is proved.

4. Inverse problem. In the present section, we study the inverse problems recovering
the boundary value problem L from the spectral data. We consider three statements of
the inverse problem of the reconstruction of the boundary-value problem L from the
Weyl function, from the spectral data {k,,, a,, }, -, and from two spectra {ky, tin },,~ -
These inverse problems are generalizations of the well-known inverse problems for
Sturm — Liouville operator [22, 42].

Let ®(z, k) be solution of (2.2) under the condititons U (®) = ®(0,k) = 1 and
V(®) = (a1k® + az) ®(m, k) + (B1k? + B2) (I'®) (7,k) = 0 and under the jump
condititons (2.4). Also C(z, k) be solution of (2.2) under the condititons C(0,k) = 1
and (I'C) (0, k) = 0 and under the jump condititons (2.4). Then function ¢ (x, k) can be
represented as follows:

9w K) = 1 () (0,K) ol K) + AR)C(a, B)

or
K k) = SR et + Ok @)
Denote
_ (') (0,k)
M(k) := T(k) 4.2)
It is clear that
O(z, k) = M(k)p(x, k) + C(z, k). (4.3)
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The function ®(z, k) is called the Weyl solution and the function M (k) is called the
Weyl function for the boundary-value problem L.

The Weyl solution and Weyl function are meromorphic functions with respect to &k
having poles in the spectrum of the problem L.

It follows from (4.1) and (4.2) that

_ Yl k) _ [TY)(0.k) _
O(z, k) = NG and (I'®)(0,k) = A M (k). 4.4
Note that, by virtue of equalities (C'(z, k), p(x, k)) = 1, (4.2) and (4.3) we have
(@(z, k), p(, k) =k, (b, k), p(x, k) = kA(K). (4.5)

Theorem 4.1. The following representation holds;

1 - 1 1
M(k)= ——— ! . 4.6
O a5 e aw) o
Proof. Let’s write a representation solution of v(x,k) = —(B1k? + [a) X

xC(z, k) + (a1k* 4+ az) S(x, k) as a representation solution of ¢(z, k):
forz >d

W(z, k) = — (B1k® + Bo) cosk (1 — z) + (a1k® + az) sink (7 — z) +
+int] "Ny (2, t) [ (Bik? + B2) coskt + (ark? + az) sin kt] dt,
(T) (x,k) = —k [(B1k* + B2) sink (7 — z) + (a1k® + a2) cosk (1 — z)] —
—b(x) [(B1k* + B2) cosk (m — x) — (a1k? + o) sink (m — z)| +
+ it T Ny (2, t) [~ (B1k? + Ba) cos kt + (ark? + as) sin kt] dt+
+ kint] " Nao(z,t) (6162 + B2) sinkt + (ark? + a) cos kt] dt;
forx <d
Y(x, k) = at [~ (B1k? + B2) cosk (1 — ) + (a1k? + ao) sink (7 — 2)] +
+ o [= (Bik* + B2) cosk (7 — 2d + x) + (cuk® + ag) sink (m — 2d + x)] +
+int] " Niy (2, t) [~ (Bik? + B2) coskt + (a1k? + az) sin kt] dt,
() (z, k) = —ka™™ [(B1k* + Bo) sink (7 — z) + (a1k® + az) cosk (1 — x)] +
+ ko [(Bik? + Bo) cosk (m — 2d + x) — (ank® + az) sink (7 — 2d + x)] +
+b(x)at [ (B1k* + B2) cosk (m — @) + (ark® + o) sink (7 — )] +
+b(x)a™ [(Bik? + B2) cosk (1 — 2d + x) — (ank® + az) sink (7 — 2d + z)] +
+int] " Nay (2, t) [~ (Bik? + B2) coskt + (ark? + o) sin kt] dt+
+ kint] " Noo (,t) [ (814 + B2) sin kt + (a1k? + as) cos kt] dt,

where ]\Nfij(m,t) = N;j (z,t) — Njj(x,—t), 4, 7 = 1,2. In the case of C' = 0 and
q(z) = 0, denote the solutions with o1 (z, k) and 1o2(x, k), so we have
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Yoz, k) = Yor(z, k) + f1,
(Tvo) (x, k) = Yoo (, k) + fa,
where
fi =it " Nig(z,t) [— (Bih? + B2) cos kit + (a1k? + az) sin kt] dt,
fo =b(z)a™ [~ (B1k® + B2) cosk (1 — ) + (a1 k? + ao) sink (7 — 2)] +
+b(z)a [— (B1k* + B2) cosk (m — 2d + x) + (a1k® + az) sink (1 — 2d + z)] +
+int] " Nog(z,t) [ (Bik? + B2) coskt + (a1k? + az) sin kt] dt+
+kint] =" Noo (2, t) [(B1k? + B2) sinkt + (a1k® + az) cos kt] dt.

On the other hand, we can write

TO08_ w08k f
Mk) = Molk) = S50 ™ Ty~ FAGY ~ A P*)

Since lkl‘im e T kIT| £(k)) = 0 and A(k) > Csel™FI™ for k € Gj, the equality
—00

P fi
kAR — Ak) Mo(k)
yields
limsup |M(k) — My(k)| = 0. 4.7
|k|—>ookeGs

Weyl function M (k) is meromorphic with respect to poles k,,. Using (3.4), (4.1) and
Lemma 3.2, we calculate that

Resarqhy - T Ok) 1

h=n kA (k) an’
(4.8)
r 1
k%( n) n
Consider the contour integral
1 M — M,
I,(k) = —intp, Mdu, k € intT,.

2mi k—p

By virtue of (4.7) , we have li_>m I, (k) = 0. On the other hand, the residue theorem
and (4.8) yield

1 1
I =-M M, — N 0 (L _ 0\
WB)==MB)+ M)+ 3 s = Y e
k., Eintl, k9O €intTy, n n

Therefore as n — oo we get

400 1 +oo 1
M) = MoK+ D iyt 2wy

ISSN 1027-3190. Vip. mam. scypn., 2010, m. 62, Ne 9



1168 R. KH. AMIROV, N. TOPSAKAL, Y. GULDU

It follows from the form of the function M (k) that

1 X1 1 1
W=t X w (mm ta)-

From the last two equalities yield (4.6).

Theorem 4.6 is proved.

Let us formulate a theorem on the uniqueness of a solution of the inverse problem
with the use of the Weyl function. For this purpose, parallel with L, we consider the
boundary-value problem L of the same form but with different potential g(x). It is
asumed in what follows that if a certain symbol « denotes an object related to the
problem L, then o denotes the corresponding object related to the problem L.

Theorem 4.2. [If M(k) = M(k) then L = L. Thus the specification of the Weyl
function uniquely determines the operator.

Proof. Let us define the matrix P(z, k) = [Pjk(z, k)], ,_, , by the formula

7 @ ®
P(s. k) (ﬁ ) _ (%@ ) @9)
g TIo e TI'®

Using (4.9) and (4.5) we calculate

Pue,K) = 1 [ola.b) (rci) (2, K) — B, K) (TF) (. b))
Pis(z, k) % {(P gp(x,k:)@(m,k)},
X (4.10)
Por(a.k) = = [(09) (2, k) (0D) (2.k) = (0F) (2, k) (D) (z, K) .
Pos(a, k) % { Pz, k) — (Fap)(m,k);f)(x,kz)}
and
(P(xﬂ k) = Pll(xv k)(ﬁ(x’ k) + Pl?(xﬂ k) (FSE) (‘T7 k)v
(Lp)(z, k) = Par(x, k)p(x, k) + Pz, k) (DY) (2, k),
4.11)

®(z,k) = Pii(z,k)®(z, k) + Pro(z, k) (0D) (z, k),
(P®) (z,k) = Por(z,k)®(z, k) + Pas(z, k) (0D) (2, k).
It follows from (4.10), (4.2) and (4.5)

+ k%%) [w(x, k) ((TU) (2, k) — (TW) (2, k) —

~ Wz, k) ((03) (2, k) = (T) (@, k) .

Pll('rv k) =1

Pia(e.b) = 30 (¥ REw. ) — oo b (b))
Py (k) = % (T@)(@, k) (TF) (2, k) = (D) (2,k) (DF) (. k)|,
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Pua(r.b) =1+ 0 [ () () (B K) = ol )

~ (T¢) (@, k) (U, k) = W(a, )) .

According to (4.10) and (4.2), for each fixed , the functions Pjy, (z, k) are meromor-
phic in k with poles in the points k,, and k,,. It follows from the representations of the
solutions ¥ (z, k) and ¢(z, k) that

lim max |Pyy(z,k) — 1| = lim max |Pa(z, k)| =
k—oo 0<z<m k—oo 0<z<m
kEGy kedy

— —1] = = .
= lim Oglxax | Poo(z, k) — 1] = 1;120 0r<nax | Poy(z, k)| = 0. (4.12)
keG keds

According to (4.2) and (4.3) we have
Pu(a, k) = —% [gp(% 1) (TC) (2, k) — C(a, k) (TF) (x, k)+
(k) (. k) () (2. k)|,
Pio(a, k)

[ — C(x, k)o(z, k)+

— MK)) (e, k)@ (a, ).
(4.13)

(M (k) = M(K)) () (1) () (. ).

ngxk

+ (M
1
kL7
+(M
Poy (2, k) %[ (T¢) (z, k) (TC) (z, k) — (FC)(m,k)(F@)(mk)}—
1
ok
%[ (2, k) — C(z, k) (D) (z, k)+
+ (M

M(k»(rw)(:c,mamm]

Thus if M (k) = M(k) then the functions Pj(x, k) are entire in k for each fixed x.
Together with (4.12) we get that

Pii(z, k) =1, Pyy(z,k) =0, Py (z,k) =0, Py (z, k) = 1.
Substituting into (4.11) we get
oz, k) =@, k), (To)(x, k) = (Tp) (z, k),

Oz, k) = d(z,k), (0D (z,k) = (r&») (z, k)

for all x and k. Consequently L = L.
Theorem 4.2 is proved.
Theorem 4.3. Ifk, =k,, a, = a,, n > 0 then L = L. Thus, the specification of

the spectral data {kn, an} uniquely determines the operator.

n>0
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Proof. We have

(4.14)

T (F-Fo) o | (F-Fi) a2

Under the hypothesis of the theorem and in view of (4.13), we get that M (k) = M (k)
and consequently by Theorem 3.1, L = L. N
Theorem 4.4. Ifk, =k,, i, = fin,n >0, then L = L.

Proof. From these properties of functions A(k) and A(k), it is clear that
A(k)

lim —— = 1, k,, = kn, and functions of A(k), A(k) are analytic functions. From

the uniqueness theorem of analytic functions, A(k) = K(li) From Lemma 3.2, we
have w(m, kn) =Yno(z, kn) = Yno(x, k) and \I/(x, kn) =U(z, kn) = @z, ky). It
follows that ~,, = ¥,, and so a,, = a,,. Consequently by Theorem 4.1, L = L.
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