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DEFORMATIONS OF CIRCLE-VALUED MORSE FUNCTIONS
ON SURFACES*

JE®OPMAILI BITOBPA’KEHb MOPCA MOBEPXOHbB Y KOJIO

Let M be a smooth connected orientable compact surface. Denote by Feov (M, S 1) the space of all Morse
functions f : M — S! having no critical points on &M and such that for every connected component V'
of OM, the restriction f : V — S is either a constant map or a covering map. Endow Feoy (M, S1) with
C*°-topology. In this paper the connected components of Feoy (M, S1) are classified. This result extends the
results of S. V. Matveev, V. V. Sharko, and the author for the case of Morse functions being locally constant
on OM.

Hexait M — miajika 3B’s13Ha OpIiEHTOBHA KOMIMAKTHA MoBepxHsl. [Toznaunmo uepes Feov (M, S1) mpocTip yeix
Bino6pakens Mopca f : M — ST, ki He MalOTh KPUTHUYHMX TOUOK Ha OM, a JUIs KOXKHOI KOMIIOHEHTH
3’m3m0CTi V' Mexi OM obmexenns f : V. — S! € abo mocTitHUM a60 HAKPUBAIOUNM BiTOOPAKEHHSM.
Haninumo Feov (M, S 1 ) Tononoriero C'°°. 'V crarTi HaBeeHO KiIacH(iKalilo KOMIOHEHT 3B’ I3HOCTI IIPOCTOPY
Feov(M, S1). Ileit pesynsrar ysaranshioe pesyisratu C. B. Marseesa, B. B. Illapka Ta aBropa npo dyHxkuii
Mopca, 110 € JIOKaJIbHO TOCTIHHUMH Ha OM.

1. Introduction. Let M be a compact surface and P be either the real line R or the
circle S*. Denote by F’(M, P) the subset of C*°(M, S') consisting of maps f: M — P
such that
(1) all critical points of f are non-degenerate and belongs to the interior of M, so f
is a Morse function.
Let also Fj...(M, P) be the subset of F'(M, P) consisting of maps f: M — P
such that
(2) floam is a locally constant map, that is for every connected component W of
OM the restriction of f to W is a constant map.
Moreover, for the case P = S let Feo, (M, St) be another subset of F'(M, St)
consisting of maps f: M — S! such that
(2') for every connected component W of OM the restriction of f to W is either a
constant map or a covering map.
Thus
Fre. (M, 5") C Feor (M, "),

Endow all these spaces F'(M, P), Fy...(M, P), and Feo, (M, St) with the correspond-
ing C°°-topologies. The connected components of the spaces Fj. (M, P) were de-
scribed in [1—4]. The aim of this note is to describe the connected components of the
space Feoy (M, S1) for the case when M is orientable.

To formulate the result fix an orientation of P and let f € F'(M, P). Then for
each (non-degenerate) critical point of f we can define its index with respect to a given
orientation of S*. Denote by ¢; = ¢;(f), i = 0, 1,2, the total number of critical points
of f of index 3.

Moreover, suppose W is a connected component of M such that the restriction of
f to W is a constant map. Then we associate to W the number ey (f) := +1 (resp.

*This research is partially supported by grant of Ministry of Science and Education of Ukraine, No. M/150-
2009.

© S. I. MAKSYMENKO, 2010
1360 ISSN 1027-3190. Vip. mam. xcypn., 2010, m. 62, Ne 10



DEFORMATIONS OF CIRCLE-VALUED MORSE FUNCTIONS ON SURFACES 1361

ex(f) := —1) whenever the value f(W) is a local maximum (resp. minimum) with
respect to the orientation of P. If f|y is non-constant, then we put ey (f) = 0.

The following theorem describes the connected components of F; . (M, P).

Theorem 1 [1-4]. Let f,g € Fi...(M,P). Then they belong to the same path
component of Fi...(M, P) iff the following three conditions hold true:

(i) f and g are homotopic as continuous maps (for the case P = R this condition
is, of course, trivial );

(i) ci(f) =ci(g) fori=0,1,2;

(ii)) ew (f) = ew(g) for every connected component W of OM.
If P=R and f = g on some neighbourhood of M, then one can choose a homotopy
between f and g fixed near OM.

The case P = R was independently established by V. V. Sharko [1] and S. V. Matveev.
Matveev’s proof was generalized to the case of height functions and published in the
paper [2] by E. Kudryavtseva. The case P = S! was proven by the author in [3].
Moreover, in [4] Theorem 1 was reproved by another methods.

The present notes establishes the following result.

Theorem 2. Suppose M is orientable. Let f, g € Feoy(M,S"Y). Then they belong
to the same path component of Feoy (M, SY) iff the following three conditions hold true:

(1) f and g are homotopic as continuous maps,

(i) i) = cilg) for i =0,1,2;
(iii) ew (f) = ew(g) for every connected component W of OM such that f|w is a
constant map.

Notice that the formulations of both Theorems 1 and 2 look the same. The difference
is that in Theorem 1 every f € Fj. (M, P) takes constant values of connected com-
ponents of W, while in Theorem 2 the restrictions of f € Feoy (M, S?) to boundary
components W of M may also be covering maps and the degrees of such restrictions
f: W — St are encoded by homotopy condition (i).

I would like to thank A. Pajitnov for posing me question about connected compo-
nents of F.o, (M, S') and useful discussions.

The proof of Theorem 2 follows the line of [3, 4]. First we prove R-variant of
Theorem 2 similarly to [4], see Theorem 3 below, and then deduce Theorem 2 from
Theorem 3 similarly to [3]. Therefore we mostly sketch the proofs indicating only the
principal differences.

2. R-variant of Theorem 2 for surfaces with corners. Let f € Foo, (M, S 1). Say
that v € S is an exceptional value of f, if v is either a critical value of f or there exists
a connected component W of M such that f(W) = v.

Let v € S* be a non-exceptional value of f. Then its inverse image f~'(v) is
a proper 1-submanifold of M which does not contain connected components of M.
Thus f~1(v) is a disjoint union of circles and arcs with ends on M and transversal to
OM at these points. Let M be a surface obtained by cutting M along f~(v).

Then M can be regarded as a surface with corners and f induces a function f: M —
— [0, 1] such that

(a) ﬂlm 17 1s Morse and has no critical points on OM: ;

(b) let W be a connected component of OM ; then either ﬂw is constant, or there
are 4kyy points on W for some ky > 1 dividing W into 4kyy arcs

A1, B1,C1, Dy, ..., Ay s Bry, Cryyr Diey

ISSN 1027-3190. Vip. mam. xcypu., 2010, m. 62, Ne 10



1362 S. I. MAKSYMENKO

such that fstrictly decreases on A;, strictly increases on Cj, f(Bl) =1, and f(Dl) =0
foreacht=1,..., kw.

We will now define the space of all such functions and describe its connected com-
ponents.

2.1. Space F¢(M,I). Let M be a compact, possibly non-connected, surface. For
every connected component W of QM fix an orientation and a number kyy > 0, and
divide W into 4ky, consecutive arcs

A1, B1,C1, D1, ..., Ay s Bry, Cryyr Diyys

directed along the orientation of W. If kyy = 0 then we do not divide W at all.

Denote this subdivision of 9M by & and the set of ends of these arcs by K = K (£).
We will regard K as ,corners” of M.

Let also Ty (resp. 11, 17—, and Tp) be the union of all closed arcs A; (resp. B;, C;,
D;) over all boundary components of M.

Let F¢ (M, I) be the space of all continuous functions f: M — I = [0, 1] satisfying
the following three conditions.

(a) The restriction of f to M\ K is C°°, and all partial derivatives of f of all orders
continuously extend to all of M.

(b) All critical points of f are non-degenerate and belong to Int M,

ftM)  (0,1), f7H(0) =T, [f7'(1)=T,

and f|r, (resp. f|r_) has strictly positive (resp. negative) derivative.

(c) Let W be a connected component of M such that ky = 0. Then f|y is
constant and f(W) € (0,1).

Notice that condition (a) means that f is a C°°-function on a surface with corners
and condition (b) implies that f strictly increases (decreases) on each arc A; (C;),

Again we associate to every f € F¢(M, I) the total number ¢;(f) of critical points
at each index i = 0,1,2. Moreover, to every connected component W of 9M with
kw = 0 we associate the number ey (f) = £1 as above.

The following theorem extends R-case of Theorem 1 to orientable surfaces with
corners.

Theorem 3. Suppose M is orientable and connected. Then f,g € Fe¢(M,I) be-
longs to the same path component of F¢(M, I) iff

(i) ei(f) = cilg) fori=0,1,2;

(i) ew (f) = ew(g) for every connected component W of OM with ky = 0.
Moreover, if f = g on some neighbourhood of Ty U T, then there exists a homotopy
relatively Ty U Ty between these functions in F¢(M,T).

The proof will be given in Section 4. Now we will deduce from this result Theo-
rem 2.

3. Proof of Theorem 2. Necessity is obvious, therefore we will prove only suffi-
ciency.

Let f,g € Feov(M, St). Consider the following conditions (P,), n > 0, (Q), and
(R) for f and g.

(P,) f (resp. g) is homotopic in Feoy (M, S*) to a map f (resp. §) such that for some
common non-exceptional value v € S* of f and § the intersection f~'(v) N g1 (v) is
transversal and consists of at most n points.
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(Q) f (resp. g) is homotopic in Feoy (M, ST) to a map f (resp. §) such that for some
common non-exceptional value v € S* of f and g,

@) fv) =g (v), i

(i) f = g on some neighbourhood of f~(v),

(iii) and for every connected component M7 of M \ f ~1(v) the restrictions f and ¢
onto M7 have the same numbers of critical points at each index.
(R) f is homotopic to g in Feoy (M, SY).

Notice that f and g always satisfy (P,) for some n > 0. We have to prove for
them condition (R). This is given by the following lemma, which completes the proof
of Theorem 2.

Lemma 1. Let f,g € Feoy(M,SY). Suppose that f,g € Feou(M,SY) satisfy
conditions (1) — (iii) of Theorem 2. Then the following implications hold:

(Pn) = (Pro1) = ... = (B) = (Q) = (R).

Proof. Implications (P,) = (P,—1) and (Py) = (Q) can be deduced from The-
orem 3 almost by the same arguments as [3] (Theorems 3, 4) were deduced from the
R-case of Theorem 1. The principal difference here is that one should work with 1-
submanifolds with boundary rather than with closed 1-submanifolds. The proof is left
for the reader.

(Q) = (R). Cut M along f~!(v) and denote the obtained surface with corners
by M. Then f (resp. g) induces on M a function f (resp. §) belonging to F¢(M',I).
Moreover, it follows from conditions (i) — (iii) of Theorem 1 for f and g and assumption
(iii) of (@) that for every connected component M; of M the restrictions of f and
g to M, satisfy conditions (i) and (ii) of Theorem 3. Hence they are homotopic in
Fe(M',I) relatively some neighbourhood of the set Ty U T corresponding to f~!(v).
This homotopy yields a desired homotopy between f and g in Feoy (M, S*).

Lemma 1 is proved.

4. Proof of Theorem 3. We will follow the line of the proof of Theorem 1, see [2, 4].
Suppose f,g € Fe(M,I) satisfy assumptions (i) and (ii) of Theorem 3. The idea is to
reduce the situation to the case when g = f o & for some diffeomorphism h of M fixed
near OM, and then show that f o h is homotopic in F¢ (M, I) to f, see Lemmas 4 -6.

4.1. KR-graph. For f € F¢(M,I) define the Kronrod—Reeb graph (or simply KR-
graph) 'y of f as a topological space obtained by shrinking to a point every connected
component of f~1(v) for each v € I. It easily follows from the assumptions on f that T’y
has a natural structure of a 1-dimensional CW-complex. The vertices of f corresponds
to the connected components of level sets f~*(v) containing critical points of f.

Notice that f can be represented as the following composite of maps:

f=fkropys: Mp—f>l—‘f &I,
where py is a factor map and fxr is the induced function on I'y which we will call the
KR-function of f.

Say that f is generic if it takes distinct values at distinct critical points and connected
components W of M with kyw = 0. It is easy to show that every f € F¢(M,I) is
homotopic in F¢ (M, I) to a generic function.

Notice that for each non-exceptional value v of f every connected component P of
f~1(v) is either an arc or a circle. We will distinguish the corresponding points on I'¢
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as follows: if P is an arc, then we denote the corresponding point on I'; in bold. Thus
on the KR-graph of f we will have two types of edges bold and thin.

Moreover, every vertex w of degree 1 of I'y corresponds either to a local extreme
of f or to a boundary component W of OM with ky = 0. In the first case w will be
called an e-vertex, and a d-vertex otherwise. 0-vertexes will be denoted in bold.

Possible types of vertexes of I'y corresponding to saddle critical points together with
the corresponding critical level sets are shown in Fig. 1.

ROV G Y

Fig. 1. Structure of f near saddle critical points.

Definition 1. Let f,g € Fe(M,I). Say that KR-functions of f and g are equiv-
alent if there exist a homeomorphism H:T'y — T’y between their KR-graphs and a
homeomorphism ®: I — I which preserves orientation such that ggr = ® ‘o fxroH
and H maps bold edges (resp. thin edges, O-vertexes) of I'y to bold edges (resp. thin
edges, O-vertexes) of I'y.

We will always draw a KR-graph so that the corresponding KR-function will be the
projection to the vertical line. This determines KR-function up to equivalence in the
sense of Definition 1.

The following statement can be proved similarly to [5, 6].

Lemma 2. Suppose M is orientable, and let f,g € F¢(M,I) be two generic
functions such that their KR-functions are KR-equivalent. Then there exist a diffeomor-
phism h: M — M and a preserving orientation diffeomorphism ¢: I — I such that
g=¢ lofoh.

Since ¢ is isotopic to idy, it follows that g is homotopic in F¢(M,I) to f o h.

4.2. Canonical KR-graph. Consider the graphs shown in Fig. 2.

The graph X°(k), k > 1, consists of a bold line “intersected” by another & — 1 bold
lines, the graph X * (k) is obtained from X°(k) by adding a thin edge directed either up
or down. The vertex of degree 1 on that thin edge can be either e- or 0-one.

The graph Y is determined by five numbers: z,b_,b,,e_, e;, where z is the total
number of cycles in Y, b_ (resp. e_) is the total number of J-vertexes (resp. e-vertexes)
being local minimums for the KR-function, and b, and ey correspond to local maxi-
mums.

We will assume that KR-function surjectively maps X*(k) onto [0, 1], while Y is
mapped into interval (0, 1).

Definition 2. Let f € F¢(M,I). Say that f is canonical if it is generic and its
KR-graph Ty has one of the following forms:

(1) coincides either with one of X*(k) for some k > 1, or with Y for some ey, by,
and z;

(2) is a union of X~ (k) with X+ (1) with common thin edge for some k,l > 1, see
Fig. 3, a;
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Fig. 2. Elementary blocks of canonical KR-graphs.

X)Xt X)X, | Y

g

Fig. 3. Canonical KR-graph I'y.

(3) is a union of some X (k;), i =1,...,n, connected along their thin edges with
Y, see Fig. 3, b.

Every maximal bold connected subgraph of Iy will be called an X-block. Evidently,
such a block is isomorphic with X°(k) for some k.

Lemma 3. Let f € F¢(M,I) be a canonical function. Then the numbers c;(f),
kw, and ew (f) are completely determined by its KR-graph T'y and wise verse. More-
over, every X-block of I'y corresponds to a unique boundary component of M. In
particular, the collection of X-blocks in Iy is determined (up to order) by the partition
& of OM, and therefore does not depend on a canonical function f.

Proof. Since f is generic, co(f) (resp. ca(f)) is equal to the total number of vertexes
of degree 1 being local minimums (resp. local maximums) of the restriction of fx g to
Y, while ¢;(f) is equal to the total number of vertexes of I'; of degrees 3 and 4.

Furthermore, it easily follows from Fig. 1, c, that every X-block N of I'; corre-
sponds to a collar of some boundary component W of M such that kyy is equal to the
total number of local minimums (= local maximums) of the restriction of fxr to V.

Finally, every connected component W of OM with ky, = 0 corresponds to a O-
vertex w on Y. Moreover, ey = —1 (resp. ey = +1) iff w is a local minimum (resp.
local maximum) of the restriction of fx g to Y.

Lemma 3 is proved.

Lemma 4. Let f € Fe(M,I). Then f is homotopic in F¢(M,I) to some canoni-
cal function.

Proof. Consider the following elementary surgeries of a KR-graph shown in Fig. 4.
It is easy to see that each of them can be realized by a deformation of f in F¢ (M, I).
Then similarly to [2] (Lemma 11) one can reduce any KR-graph of f € F¢(M,I) to a
canonical form using these surgeries. We leave the details for the reader.

Lemma 4 is proved.
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Fig. 4. Elementary surgeries of KR-graph.

Lemma 5. Let f,g € Fe(M,I) be two canonical functions satisfying assumptions
(i) and (ii) of Theorem 3. Then f (resp. g) is homotopic in F¢(M, I) to another canonical
function f (resp. g) such that g = f o h for some diffeomorphism h: M — M fixed
near OM.

Proof. 1t follows from Lemma 3 and assumptions on f and g that their KR-graphs
have the same Y -blocks and the same (up to order) X *(k)-blocks. Then, using surgeries
of Figure 4 applied to I';, we can reduce the situation to the case when KR-functions of
f of g are KR-equivalent. Whence by Lemma 2 we can also assume that there exists a
diffeomorphism h: M — M such that g = f o h. Moreover, changing g similarly to [2]
or [4] one can choose h so that it preserves orientation of M, maps every connected
component W of QM onto itself, and preserves subdivision £ on W. Then using the
assumptions on f and g near M, one can show that h is isotopic to the identity near
oM.

Lemma 5 is proved.

Lemma 6. Let h: M — M be a diffeomorphism fixed near OM and f €
€ Fe(M, 1) be a canonical function. Then foh is homotopic in F¢(M,I) to f relatively
some neighbourhood of OM.

Proof. Since every X-block of I'y corresponds to a collar NV (V) of some boundary
component W of 9M, we can assume that / is fixed on some neighbourhood of N (W).
Therefore we may cut off V(W) from M and assume that f takes constant values
at each boundary component of M. Then f is homotopic to f o h relatively some
neighbourhood of M by the arguments similar to the proof of Theorem 1, see [4].

Lemma 6 is proved.

Theorem 3 now follows from Lemmas 4 —6.

1. Sharko V. V. Functions on surfaces. I // Some Problems in Contemporary Mathematics (in Russian) //

Pr. Inst. Mat. Nats. Akad. Nauk Ukrajiny. Mat. Zastos. — 1998. — 25. — P. 408 —434.

2. Kudryavtseva E. A. Realization of smooth functions on surfaces as height functions // Mat. Sb. — 1999.

— 190, Ne 3. — P. 29-88.

3. Maksymenko S. I. Components of spaces of Morse mappings // Some Problems in Contemporary

Mathematics (in Russian) // Pr. Inst. Mat. Nats. Akad. Nauk Ukrajiny. Mat. Zastos. — 1998. — 25. —

P. 135-153.

4.  Maksymenko S. Path-components of Morse mappings spaces of surfaces // Comment. math. helv. — 2005.

— 80, Ne 3. — P. 655-690.

5. Kulinich E. V. On topologically equivalent Morse functions on surfaces / Meth. Funct. Anal. and Top.

—1998. -4, Ne 1. - P. 59-64.

6. Bolsinov A. V., Fomenko A. T. Introduction to the topology of integrable Hamiltonian systems (in

Russian). — Moskow: Nauka, 1997.

Received 08.06.10

ISSN 1027-3190. Vip. mam. xcypn., 2010, m. 62, Ne 10



