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DEFORMATIONS OF CIRCLE-VALUED MORSE FUNCTIONS

ON SURFACES*

ДЕФОРМАЦIЇ ВIДОБРАЖЕНЬ МОРСА ПОВЕРХОНЬ У КОЛО

Let M be a smooth connected orientable compact surface. Denote by Fcov(M,S1) the space of all Morse

functions f : M → S1 having no critical points on ∂M and such that for every connected component V

of ∂M, the restriction f : V → S1 is either a constant map or a covering map. Endow Fcov(M,S1) with

C∞-topology. In this paper the connected components of Fcov(M,S1) are classified. This result extends the

results of S. V. Matveev, V. V. Sharko, and the author for the case of Morse functions being locally constant

on ∂M.

Нехай M — гладка зв’язна орiєнтовна компактна поверхня. Позначимо через Fcov(M,S1) простiр усiх

вiдображень Морса f : M → S1, якi не мають критичних точок на ∂M, а для кожної компоненти

зв’язностi V межi ∂M обмеження f : V → S1 є або постiйним або накриваючим вiдображенням.

Надiлимо Fcov(M,S1) топологiєю C∞. У статтi наведено класифiкацiю компонент зв’язностi простору

Fcov(M,S1). Цей результат узагальнює результати С. В. Матвєєва, В. В. Шарка та автора про функцiї

Морса, що є локально постiйними на ∂M.

1. Introduction. Let M be a compact surface and P be either the real line R or the

circle S1. Denote by F ′(M,P ) the subset of C∞(M,S1) consisting of maps f : M → P

such that

(1) all critical points of f are non-degenerate and belongs to the interior of M, so f

is a Morse function.

Let also Fl.c.(M,P ) be the subset of F ′(M,P ) consisting of maps f : M → P

such that

(2) f |∂M is a locally constant map, that is for every connected component W of

∂M the restriction of f to W is a constant map.

Moreover, for the case P = S1 let Fcov(M,S1) be another subset of F ′(M,S1)

consisting of maps f : M → S1 such that

(2′) for every connected component W of ∂M the restriction of f to W is either a

constant map or a covering map.

Thus

Fl.c.(M,S1) ⊂ Fcov(M,S1).

Endow all these spaces F ′(M,P ), Fl.c.(M,P ), and Fcov(M,S1) with the correspond-

ing C∞-topologies. The connected components of the spaces Fl.c.(M,P ) were de-

scribed in [1 – 4]. The aim of this note is to describe the connected components of the

space Fcov(M,S1) for the case when M is orientable.

To formulate the result fix an orientation of P and let f ∈ F ′(M,P ). Then for

each (non-degenerate) critical point of f we can define its index with respect to a given

orientation of S1. Denote by ci = ci(f), i = 0, 1, 2, the total number of critical points

of f of index i.

Moreover, suppose W is a connected component of ∂M such that the restriction of

f to W is a constant map. Then we associate to W the number εW (f) := +1 (resp.
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εk(f) := −1) whenever the value f(W ) is a local maximum (resp. minimum) with

respect to the orientation of P. If f |W is non-constant, then we put εW (f) = 0.

The following theorem describes the connected components of Fl.c.(M,P ).

Theorem 1 [1 – 4]. Let f, g ∈ Fl.c.(M,P ). Then they belong to the same path

component of Fl.c.(M,P ) iff the following three conditions hold true:

(i) f and g are homotopic as continuous maps ( for the case P = R this condition

is, of course, trivial );

(ii) ci(f) = ci(g) for i = 0, 1, 2;

(iii) εW (f) = εW (g) for every connected component W of ∂M.

If P = R and f = g on some neighbourhood of ∂M, then one can choose a homotopy

between f and g fixed near ∂M.

The case P = R was independently established by V. V. Sharko [1] and S. V. Matveev.

Matveev’s proof was generalized to the case of height functions and published in the

paper [2] by E. Kudryavtseva. The case P = S1 was proven by the author in [3].

Moreover, in [4] Theorem 1 was reproved by another methods.

The present notes establishes the following result.

Theorem 2. Suppose M is orientable. Let f, g ∈ Fcov(M,S1). Then they belong

to the same path component of Fcov(M,S1) iff the following three conditions hold true:

(i) f and g are homotopic as continuous maps;

(ii) ci(f) = ci(g) for i = 0, 1, 2;

(iii) εW (f) = εW (g) for every connected component W of ∂M such that f |W is a

constant map.

Notice that the formulations of both Theorems 1 and 2 look the same. The difference

is that in Theorem 1 every f ∈ Fl.c.(M,P ) takes constant values of connected com-

ponents of ∂W, while in Theorem 2 the restrictions of f ∈ Fcov(M,S1) to boundary

components W of M may also be covering maps and the degrees of such restrictions

f : W → S1 are encoded by homotopy condition (i).

I would like to thank A. Pajitnov for posing me question about connected compo-

nents of Fcov(M,S1) and useful discussions.

The proof of Theorem 2 follows the line of [3, 4]. First we prove R-variant of

Theorem 2 similarly to [4], see Theorem 3 below, and then deduce Theorem 2 from

Theorem 3 similarly to [3]. Therefore we mostly sketch the proofs indicating only the

principal differences.

2. R-variant of Theorem 2 for surfaces with corners. Let f ∈ Fcov(M,S1). Say

that v ∈ S1 is an exceptional value of f, if v is either a critical value of f or there exists

a connected component W of ∂M such that f(W ) = v.

Let v ∈ S1 be a non-exceptional value of f. Then its inverse image f−1(v) is

a proper 1-submanifold of M which does not contain connected components of ∂M.

Thus f−1(v) is a disjoint union of circles and arcs with ends on ∂M and transversal to

∂M at these points. Let M̂ be a surface obtained by cutting M along f−1(v).

Then M̂ can be regarded as a surface with corners and f induces a function f̂ : M̂ →

→ [0, 1] such that

(a) f̂ |
IntM̂

is Morse and has no critical points on ∂M̂ ;

(b) let W be a connected component of ∂M̂ ; then either f̂ |W is constant, or there

are 4kW points on W for some kW ≥ 1 dividing W into 4kW arcs

A1, B1, C1, D1, . . . , AkW
, BkW

, CkW
, DkW
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such that f̂ strictly decreases on Ai, strictly increases on Ci, f̂(Bi) = 1, and f̂(Di) = 0

for each i = 1, . . . , kW .

We will now define the space of all such functions and describe its connected com-

ponents.

2.1. Space Fξ(M, I). Let M be a compact, possibly non-connected, surface. For

every connected component W of ∂M fix an orientation and a number kW ≥ 0, and

divide W into 4kW consecutive arcs

A1, B1, C1, D1, . . . , AkW
, BkW

, CkW
, DkW

directed along the orientation of W. If kW = 0 then we do not divide W at all.

Denote this subdivision of ∂M by ξ and the set of ends of these arcs by K = K(ξ).

We will regard K as
”
corners” of M.

Let also T+ (resp. T1, T−, and T0) be the union of all closed arcs Ai (resp. Bi, Ci,

Di) over all boundary components of M.

Let Fξ(M, I) be the space of all continuous functions f : M → I = [0, 1] satisfying

the following three conditions.

(a) The restriction of f to M \K is C∞, and all partial derivatives of f of all orders

continuously extend to all of M.

(b) All critical points of f are non-degenerate and belong to IntM,

f(IntM) ⊂ (0, 1), f−1(0) = T0, f−1(1) = T1,

and f |T+
(resp. f |T

−

) has strictly positive (resp. negative) derivative.

(c) Let W be a connected component of ∂M such that kW = 0. Then f |W is

constant and f̂(W ) ∈ (0, 1).

Notice that condition (a) means that f is a C∞-function on a surface with corners

and condition (b) implies that f strictly increases (decreases) on each arc Ai (Ci),

Again we associate to every f ∈ Fξ(M, I) the total number ci(f) of critical points

at each index i = 0, 1, 2. Moreover, to every connected component W of ∂M with

kW = 0 we associate the number εW (f) = ±1 as above.

The following theorem extends R-case of Theorem 1 to orientable surfaces with

corners.

Theorem 3. Suppose M is orientable and connected. Then f, g ∈ Fξ(M, I) be-

longs to the same path component of Fξ(M, I) iff

(i) ci(f) = ci(g) for i = 0, 1, 2;

(ii) εW (f) = εW (g) for every connected component W of ∂M with kW = 0.

Moreover, if f = g on some neighbourhood of T0 ∪ T1, then there exists a homotopy

relatively T0 ∪ T1 between these functions in Fξ(M, I).

The proof will be given in Section 4. Now we will deduce from this result Theo-

rem 2.

3. Proof of Theorem 2. Necessity is obvious, therefore we will prove only suffi-

ciency.

Let f, g ∈ Fcov(M,S1). Consider the following conditions (Pn), n ≥ 0, (Q), and

(R) for f and g.

(Pn) f (resp. g) is homotopic in Fcov(M,S1) to a map f̃ (resp. g̃) such that for some

common non-exceptional value v ∈ S1 of f̃ and g̃ the intersection f̃−1(v) ∩ g̃−1(v) is

transversal and consists of at most n points.
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(Q) f (resp. g) is homotopic in Fcov(M,S1) to a map f̃ (resp. g̃) such that for some

common non-exceptional value v ∈ S1 of f̃ and g̃,

(i) f̃−1(v) = g̃−1(v),

(ii) f̃ = g̃ on some neighbourhood of f̃−1(v),

(iii) and for every connected component M1 of M \ f̃−1(v) the restrictions f̃ and g̃

onto M1 have the same numbers of critical points at each index.

(R) f is homotopic to g in Fcov(M,S1).

Notice that f and g always satisfy (Pn) for some n ≥ 0. We have to prove for

them condition (R). This is given by the following lemma, which completes the proof

of Theorem 2.

Lemma 1. Let f, g ∈ Fcov(M,S1). Suppose that f, g ∈ Fcov(M,S1) satisfy

conditions (i) – (iii) of Theorem 2. Then the following implications hold:

(Pn) ⇒ (Pn−1) ⇒ . . . ⇒ (P0) ⇒ (Q) ⇒ (R).

Proof. Implications (Pn) ⇒ (Pn−1) and (P0) ⇒ (Q) can be deduced from The-

orem 3 almost by the same arguments as [3] (Theorems 3, 4) were deduced from the

R-case of Theorem 1. The principal difference here is that one should work with 1-

submanifolds with boundary rather than with closed 1-submanifolds. The proof is left

for the reader.

(Q) ⇒ (R). Cut M along f−1(v) and denote the obtained surface with corners

by M̂. Then f (resp. g) induces on M̂ a function f̂ (resp. ĝ) belonging to Fξ(M
′, I).

Moreover, it follows from conditions (i) – (iii) of Theorem 1 for f and g and assumption

(iii) of (Q) that for every connected component M1 of M̂ the restrictions of f̂ and

ĝ to M1 satisfy conditions (i) and (ii) of Theorem 3. Hence they are homotopic in

Fξ(M
′, I) relatively some neighbourhood of the set T0 ∪ T1 corresponding to f−1(v).

This homotopy yields a desired homotopy between f and g in Fcov(M,S1).

Lemma 1 is proved.

4. Proof of Theorem 3. We will follow the line of the proof of Theorem 1, see [2, 4].

Suppose f, g ∈ Fξ(M, I) satisfy assumptions (i) and (ii) of Theorem 3. The idea is to

reduce the situation to the case when g = f ◦ h for some diffeomorphism h of M fixed

near ∂M, and then show that f ◦ h is homotopic in Fξ(M, I) to f, see Lemmas 4 – 6.

4.1. KR-graph. For f ∈ Fξ(M, I) define the Kronrod – Reeb graph (or simply KR-

graph) Γf of f as a topological space obtained by shrinking to a point every connected

component of f−1(v) for each v ∈ I. It easily follows from the assumptions on f that Γf

has a natural structure of a 1-dimensional CW-complex. The vertices of f corresponds

to the connected components of level sets f−1(v) containing critical points of f.

Notice that f can be represented as the following composite of maps:

f = fKR ◦ pf : M
pf

−−→ Γf
fKR

−−−−→ I,

where pf is a factor map and fKR is the induced function on Γf which we will call the

KR-function of f.

Say that f is generic if it takes distinct values at distinct critical points and connected

components W of ∂M with kW = 0. It is easy to show that every f ∈ Fξ(M, I) is

homotopic in Fξ(M, I) to a generic function.

Notice that for each non-exceptional value v of f every connected component P of

f−1(v) is either an arc or a circle. We will distinguish the corresponding points on Γf
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as follows: if P is an arc, then we denote the corresponding point on Γf in bold. Thus

on the KR-graph of f we will have two types of edges bold and thin.

Moreover, every vertex w of degree 1 of Γf corresponds either to a local extreme

of f or to a boundary component W of ∂M with kW = 0. In the first case w will be

called an e-vertex, and a ∂-vertex otherwise. ∂-vertexes will be denoted in bold.

Possible types of vertexes of Γf corresponding to saddle critical points together with

the corresponding critical level sets are shown in Fig. 1.

a b c

Fig. 1. Structure of f near saddle critical points.

Definition 1. Let f, g ∈ Fξ(M, I). Say that KR-functions of f and g are equiv-

alent if there exist a homeomorphism H : Γf → Γg between their KR-graphs and a

homeomorphism Φ: I → I which preserves orientation such that gKR = Φ−1◦fKR◦H

and H maps bold edges (resp. thin edges, ∂-vertexes) of Γg to bold edges (resp. thin

edges, ∂-vertexes) of Γf .

We will always draw a KR-graph so that the corresponding KR-function will be the

projection to the vertical line. This determines KR-function up to equivalence in the

sense of Definition 1.

The following statement can be proved similarly to [5, 6].

Lemma 2. Suppose M is orientable, and let f, g ∈ Fξ(M, I) be two generic

functions such that their KR-functions are KR-equivalent. Then there exist a diffeomor-

phism h : M → M and a preserving orientation diffeomorphism φ : I → I such that

g = φ−1 ◦ f ◦ h.

Since φ is isotopic to idI , it follows that g is homotopic in Fξ(M, I) to f ◦ h.

4.2. Canonical KR-graph. Consider the graphs shown in Fig. 2.

The graph X0(k), k ≥ 1, consists of a bold line “intersected” by another k− 1 bold

lines, the graph X±(k) is obtained from X0(k) by adding a thin edge directed either up

or down. The vertex of degree 1 on that thin edge can be either e- or ∂-one.

The graph Y is determined by five numbers: z, b−, b+, e−, e+, where z is the total

number of cycles in Y, b− (resp. e−) is the total number of ∂-vertexes (resp. e-vertexes)

being local minimums for the KR-function, and b+ and e+ correspond to local maxi-

mums.

We will assume that KR-function surjectively maps X∗(k) onto [0, 1], while Y is

mapped into interval (0, 1).

Definition 2. Let f ∈ Fξ(M, I). Say that f is canonical if it is generic and its

KR-graph Γf has one of the following forms:

(1) coincides either with one of X∗(k) for some k ≥ 1, or with Y for some e±, b±,

and z;

(2) is a union of X−(k) with X+(l) with common thin edge for some k, l ≥ 1, see

Fig. 3, a;
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} e+

}b+

}z
} e_

}
b_

}k

X k( ) 0

X 1( ) 0
X 1( ) +

X 1( ) 
_

X k( ) +
X k( ) 

_

Y

Fig. 2. Elementary blocks of canonical KR-graphs.

Fig. 3. Canonical KR-graph Γf .

(3) is a union of some X+(ki), i = 1, . . . , n, connected along their thin edges with

Y, see Fig. 3, b.

Every maximal bold connected subgraph of Γf will be called an X-block. Evidently,

such a block is isomorphic with X0(k) for some k.

Lemma 3. Let f ∈ Fξ(M, I) be a canonical function. Then the numbers ci(f),

kW , and εW (f) are completely determined by its KR-graph Γf and wise verse. More-

over, every X-block of Γf corresponds to a unique boundary component of M. In

particular, the collection of X-blocks in Γf is determined (up to order) by the partition

ξ of ∂M, and therefore does not depend on a canonical function f.

Proof. Since f is generic, c0(f) (resp. c2(f)) is equal to the total number of vertexes

of degree 1 being local minimums (resp. local maximums) of the restriction of fKR to

Y, while c1(f) is equal to the total number of vertexes of Γf of degrees 3 and 4.

Furthermore, it easily follows from Fig. 1, c, that every X-block N of Γf corre-

sponds to a collar of some boundary component W of M such that kW is equal to the

total number of local minimums (= local maximums) of the restriction of fKR to N.

Finally, every connected component W of ∂M with kW = 0 corresponds to a ∂-

vertex w on Y. Moreover, εW = −1 (resp. εW = +1) iff w is a local minimum (resp.

local maximum) of the restriction of fKR to Y.

Lemma 3 is proved.

Lemma 4. Let f ∈ Fξ(M, I). Then f is homotopic in Fξ(M, I) to some canoni-

cal function.

Proof. Consider the following elementary surgeries of a KR-graph shown in Fig. 4.

It is easy to see that each of them can be realized by a deformation of f in Fξ(M, I).

Then similarly to [2] (Lemma 11) one can reduce any KR-graph of f ∈ Fξ(M, I) to a

canonical form using these surgeries. We leave the details for the reader.

Lemma 4 is proved.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 10



1366 S. I. MAKSYMENKO

Fig. 4. Elementary surgeries of KR-graph.

Lemma 5. Let f, g ∈ Fξ(M, I) be two canonical functions satisfying assumptions

(i) and (ii) of Theorem 3. Then f (resp. g) is homotopic in Fξ(M, I) to another canonical

function f̃ (resp. g̃) such that g̃ = f̃ ◦ h for some diffeomorphism h : M → M fixed

near ∂M.

Proof. It follows from Lemma 3 and assumptions on f and g that their KR-graphs

have the same Y -blocks and the same (up to order) X±(k)-blocks. Then, using surgeries

of Figure 4 applied to Γg, we can reduce the situation to the case when KR-functions of

f of g are KR-equivalent. Whence by Lemma 2 we can also assume that there exists a

diffeomorphism h : M → M such that g = f ◦h. Moreover, changing g similarly to [2]

or [4] one can choose h so that it preserves orientation of M, maps every connected

component W of ∂M onto itself, and preserves subdivision ξ on W. Then using the

assumptions on f and g near ∂M, one can show that h is isotopic to the identity near

∂M.

Lemma 5 is proved.

Lemma 6. Let h : M → M be a diffeomorphism fixed near ∂M and f ∈

∈ Fξ(M, I) be a canonical function. Then f ◦h is homotopic in Fξ(M, I) to f relatively

some neighbourhood of ∂M.

Proof. Since every X-block of Γf corresponds to a collar N(W ) of some boundary

component W of ∂M, we can assume that h is fixed on some neighbourhood of N(W ).

Therefore we may cut off N(W ) from M and assume that f takes constant values

at each boundary component of ∂M. Then f is homotopic to f ◦ h relatively some

neighbourhood of ∂M by the arguments similar to the proof of Theorem 1, see [4].

Lemma 6 is proved.

Theorem 3 now follows from Lemmas 4 – 6.
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