UDC 512.5

M. R. Darafsheh (School Math., College Sci., Univ. Tehran, Iran), M. Davoudi Monfared (Islamic Azad Univ., Tafresh, Iran)

СНАRACTERIZATION OF \mathbb{A}_{16} BY NON-COMMUTING GRAPH ХАРАКТЕРИЗАЦІЯ \mathbb{A}_{16} НЕПЕРЕСТАВНИМ ГРАФОМ

Let G be a finite non-Abelian group. We define a graph Γ_G , called the non-commuting graph of G, with vertex set G - Z(G) such that two vertices x and y are adjacent if and only if $xy \neq yx$. A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture, the AAM's Conjecture as follows: If S is a finite non-Abelian simple group and G is a group such that $\Gamma_S \cong \Gamma_G$, then $S \cong G$. It is still unknown if this conjecture holds for all simple finite groups with connected prime graph except \mathbb{A}_{10} , $L_4(8)$, $L_4(4)$ and $U_4(4)$. In this paper we prove that if \mathbb{A}_{16} denotes the alternating group of degree 16, then for any finite group G, the graph isomorphism $\Gamma_{\mathbb{A}_{16}} \cong \Gamma_G$ implies $\mathbb{A}_{16} \cong G$.

Нехай G — скінченна неабелівська група. Граф Γ_G , який називається непереставним графом групи G, визначено за допомогою множини вершин G - Z(G) таких, що дві вершини x та $y \in суміжними тоді і тільки тоді, коли <math>xy \neq yx$. А. Абдоллахі, С. Акбарі та Г. Р. Маймані висунули наступну гіпотезу — ААМ гіпотезу: якщо $S \in$ скінченною неабелевою простою групою і $G \in$ групою такою, що $\Gamma_S \cong \Gamma_G$, то $S \cong G$. Досі залишається невідомим, чи справджується ця гіпотеза для всіх простих скінченних груп зі зв'язними простими графами, окрім \mathbb{A}_{10} , $L_4(8)$, $L_4(4)$ та $U_4(4)$. У статті доведено, що якщо \mathbb{A}_{16} позначає знакозмінну групу степеня 16, то для будь-якої скінченної групи G з ізоморфізму графів $\Gamma_{\mathbb{A}_{16}} \cong \Gamma_G$ випливає $\mathbb{A}_{16} \cong G$.

1. Introduction. The study of relation between groups and graphs is one of the main research topic in group theory. There are several ways to associate a graph to a group G. The graph we will consider in this paper is denoted by Γ_G and is called the non-commuting graph of G. The vertex set of Γ_G is $V(\Gamma_G) = G - Z(G)$ where Z(G) is the center of G and two distinct vertices x and y are joined whenever $xy \neq yx$. It is clear that if G is abelian, then Γ_G is the null graph. Hence in what follows we will assume that G is a non-Abelian group. Another graph associated to a finite group G is the prime graph GK(G) introduced by Gruenberg–Kegel. The vertex set of GK(G) is $\pi(G)$, the set of all the prime divisors of the order of G. Two distinct primes p and q are adjacent if and only if G contains an element of order pq.

For a graph X, we denote the set of vertices and edges of X by V(X) and E(X) respectively. Two graphs X and Y are isomorphic and we denote it by $X \cong Y$, if there exists a bijective map $\phi: V(X) \longrightarrow V(Y)$ such that if x and y are adjacent in X, then $\phi(x)$ and $\phi(y)$ are adjacent in Y and vice-versa. For a group G, we denote by k(G) the number of conjugacy classes of G and $N(G) = \{n \in \mathbb{N} | G \text{ has a conjugacy class } C$ such that $|C| = n\}$. Also $\operatorname{Cl}_G(g)$ denotes the conjugacy class containing $g \in G$.

In [1] relation between some graph theoretical properties of Γ_G and the group theory properties of the group G are studied. In particular the following two conjectures are raised.

Conjecture 1. Let G be a finite non-Abelian group. If there is a group such that $\Gamma_G \cong \Gamma_H$, then |G| = |H|.

© М. R. DARAFSHEH, М. DAVOUDI MONFARED, 2010 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 **Conjecture 2.** Let S be a finite non-Abelian simple group. If G is a group such that $\Gamma_G \cong \Gamma_S$, then $G \cong S$.

There are many articles dealing with the characterization of simple groups by its non-commuting graph. In [3], M. R. Darafsheh proved Conjecture 1 for any simple group G. Also if GK(G) is a non-connected graph, Conjecture 2 is verified for many simple groups. In [6], A. Iranmanesh and J. Jafarzadeh verified Conjecture 2 when G and S are both simple groups. In [10], L. Wang and W. Shi verified Conjecture 2 for $S \cong L_2(q)$. But if GK(G) is a connected graph the structure theorem for the group G does not work in the general case and the problem of characterizing the group G via its non-commuting graph becomes difficult. In the case that GK(G) is a connected graph, the following partial results have been obtained so far. In [11], L. Wang and W. Shi verified Conjecture 2 For $S \cong \mathbb{A}_{10}$. In [12], L. Zhang and W. Shi proved that Conjecture 2 is true for $L_4(8)$. In [4], Conjecture 2 is verified for the groups $L_4(4)$ and $U_4(4)$. The groups \mathbb{A}_{10} , $L_4(8)$, $L_4(4)$ and $U_4(4)$ have connected prime graphs. Our aim in this paper is to verify the above Conjecture for the alternating group of degree 16, \mathbb{A}_{16} , that has connected prime graph. In fact, we will prove the following theorem.

Theorem 1. Let G be a finite group such that $\Gamma_G \cong \Gamma_{\mathbb{A}_{16}}$, then $G \cong \mathbb{A}_{16}$.

2. Preliminaries. In this section we list some basic and known results which will be used in proving Theorem 1.

Lemma 1 [7, p. 98]. If |G| = pqr, where p, q and r are distinct primes, then G is not simple.

Lemma 2 (Lemma 3.27 of [1]). If G is a finite group, then $2|E(\Gamma_G)| = |G|(|G| - k(G))$.

Theorem 2 (P. Hall [8, p. 108]). If G is a solvable group of order mn where (m, n) = 1, then G contains a subgroup of order m. Moreover any two subgroup of order m are conjugate.

Denote by t(G) the maximal number of primes in $\pi(G)$ which are pairwise nonadjacent in GK(G). Also we denote by t(2, G) the maximal number of vertices containing 2 but pairwise nonadjacent in GK(G). t(G) is called the independence number of GK(G)and t(2, G) is called the 2-independence number of the graph GK(G).

Theorem 3 [9]. Let G be a finite group satisfying the two conditions:

(a) there exist three primes in $\pi(G)$ pairwise nonadjacent in GK(G), i.e., $t(G) \ge 3$;

(b) there exist an odd prime in $\pi(G)$ nonadjacent to 2 in GK(G), i.e., $t(2,G) \ge 2$.

Then there is a finite non-Abelian simple group S such that $S \leq \overline{G} = G/K \leq$

 $\leq \operatorname{Aut}(S)$ for the maximal normal solvable subgroup K of G. Furthermore, $t(S) \geq t(G) - 1$ and one of the following statements holds:

(1) $S \cong \mathbb{A}_7$ or PSL(2,q) for some odd q, and t(S) = t(2,S) = 3;

(2) for every prime $p \in \pi(G)$ nonadjacent to 2 in GK(G) a Sylow p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular, $t(2, S) \ge t(2, G)$.

3. Characterization of \mathbb{A}_{16} by non-commuting graph. We know that $|\mathbb{A}_{16}| = 10461394944000 = 2^{14} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13$ and by [5] it has 123 conjugacy classes. For proving Theorem 1, we need the size of conjugacy classes, centralizer orders, order of elements and the number of conjugacy classes in \mathbb{A}_{16} . We omit the details of these items and refer to [5] for some of them in the following.

Lemma 3. Let G be a finite group such that $\Gamma_G \cong \Gamma_{\mathbb{A}_{16}}$, then

- (1) $|G| = |\mathbb{A}_{16}|,$
- (2) $k(G) = k(\mathbb{A}_{16}),$

(3) if $\phi \colon \Gamma_G \longrightarrow \Gamma_{\mathbb{A}_{16}}$ is a graph isomorphism, then $|C_G(g)| = |C_{\mathbb{A}_{16}}(\phi(g))|$ and $|\operatorname{Cl}_G(g)| = |\operatorname{Cl}_{\mathbb{A}_{16}}(\phi(g))|$ for all $g \in G - Z(G)$. In particular $N(G) = N(\mathbb{A}_{16})$.

Proof. By [3] we have $|G| = |\mathbb{A}_{16}|$ and proof of (1) is immediate. Also from Lemma 2 we know that $2|E(\Gamma_G)| = |G|(|G| - k(G))$ and by $\Gamma_G \cong \Gamma_{\mathbb{A}_{16}}$ and (1) we obtain (2). It is clear that $\deg(g) = |G| - |C_G(g)|$ for every $g \in G - Z(G)$ where $\deg(g)$ denotes the degree of g in the graph Γ_G . From the graph isomorphism, we have $\deg(g) = \deg(\phi(g))$ and so $|G| - |C_G(g)| = |\mathbb{A}_{16}| - |C_{\mathbb{A}_{16}}(\phi(g))|$. Hence from (1) we have $|C_G(g)| = |C_{\mathbb{A}_{16}}(\phi(g))|$ and $|\operatorname{Cl}_G(g)| = |\operatorname{Cl}_{\mathbb{A}_{16}}(\phi(g))|$ where $\operatorname{Cl}_G(g)$ denotes the conjugacy class containing g. Finally from the equality of sizes of conjugacy classes, we obtain $N(G) = N(\mathbb{A}_{16})$.

Lemma 3 is proved.

In $GK(\mathbb{A}_{16})$, from the set of orders of elements, we know that 2, 3, 5 and 7 are adjacent to each other, 11 is adjacent to 2, 3 and 5 and finally 13 is adjacent to 3. In the following we draw $GK(\mathbb{A}_{16})$ (Fig. 1).

In the next lemma, we show that if the non-commuting graphs of G and \mathbb{A}_{16} are isomorphic, then their prime graphs are equal.

Lemma 4. Let G be a finite group such that $\Gamma_G \cong \Gamma_{\mathbb{A}_{16}}$, then $GK(G) = GK(\mathbb{A}_{16})$.

Proof. By Lemma 3, G and A₁₆ have the same set of centralizer orders and $\pi(G) = \pi(\mathbb{A}_{16}) = \{2, 3, 5, 7, 11, 13\}$. By [5] we know that A₁₆ has a centralizer order $|C_{\mathbb{A}_{16}}(a)| = 2^4 \cdot 3^3$ for $a \in \mathbb{A}_{16}$. So G has a centralizer order $|C_G(g)| = 2^4 \cdot 3^3$ where $\phi(g) = a$ in the graph isomorphism $\phi: \Gamma_G \to \Gamma_{\mathbb{A}_{16}}$. If $o(g) = 2^{\alpha}$, $1 \le \alpha \le 4$, then g commutes with an element of order 3 and so G has an element of order 6. If $o(g) = 2^{\alpha} \cdot 3^{\beta}$, $1 \le \alpha \le 4$ and $1 \le \beta \le 3$, then G has an element of order 6. If $o(g) = 3^{\beta}$, $1 \le \beta \le 3$, then g commutes with an element of order 6 has an element of order 6. If $o(g) = 3^{\beta}$, $1 \le \beta \le 3$, then g commutes with an element of order 6 has an element of order 6. If $o(g) = 3^{\beta}$, $1 \le \beta \le 3$, then g commutes with an element of order 6 has an element of order 6. If $o(g) = 3^{\beta}$, $1 \le \beta \le 3$, then g commutes with an element of order 6 has an element of order 6. If $o(g) = 3^{\beta}$, $1 \le \beta \le 3$, then g commutes with an element of order 6 has an element of order 6. Thus in any case G has an element of order 6 and 2 is adjacent to 3 in GK(G). By [5] and using similar argument we obtain G has elements $g_1, g_2, g_3, g_4, g_5, g_6, g_7$ and g_8 with $|C_G(g_1)| = 3 \cdot 5$, $|C_G(g_2)| = 2 \cdot 7$, $|C_G(g_3)| = 3 \cdot 13$, $C_G(g_4) = 3 \cdot 11$, $|C_G(g_5)| = 5 \cdot 11$, $|C_G(g_6)| = 2^2 \cdot 11$, $|C_G(g_7)| = 2^3 \cdot 5$ and $|C_G(g_8)| = 3^2 \cdot 7 \cdot 50 \cdot 2, 3$ and 5 are adjacent to each other, 7 is adjacent to 2 and 3, 11 is adjacent to 2, 3, 5 and 13 is adjacent to 3. Next we show that 5 is adjacent to 7. From centralizer orders of A₁₆

and by Lemma 3, we deduce that G has a centralizer order $|C_G(g)| = 3 \cdot 5 \cdot 7$. Now by Lemma 1 and Theorem 2, G has a subgroup K with $|K| = 5 \cdot 7 = 35$. But every group of order 35 is Abelian (and cyclic). So G has an element h with o(h) = 35. Thus 5 is adjacent to 7 in GK(G).

Next we prove that 2 is not adjacent to 13. If 2 is adjacent to 13, then G has an element g with o(g) = 26. It implies that $26||C_G(g)|$. From Lemma 3 and centralizer orders of \mathbb{A}_{16} taken from [5] we obtain $|C_G(g)| = 2^9 \cdot 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$. Now by o(g) = 26 and $|C_G(g)|$, G has elements of order 2, 3, 5, 7, and 11 such that both 2 and 13 divide centralizer order of these elements. So G has at least five conjugacy classes of elements with different orders where both 2 and 13 divide the centralizer order of each element. But by Lemma 3 and [5], G has only one conjugacy class of element with centralizer order divisible by 26, a contradiction. Similarly 13 is not adjacent to 5, 7, and 11. We will prove that 7 is not adjacent to 11 in GK(G). If this happens, then G has an element h with o(h) = 77. So $77||C_G(h)|$ and from Lemma 3 and centralizer orders of \mathbb{A}_{16} , we have $|C_G(h)| = 2^7 \cdot 3^4 \cdot 5 \cdot 7 \cdot 11, 2^9 \cdot 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$ or $2^{12} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11$. In these cases G has elements of order 2, 3, 5, 7 and 11 such that 77 divides centralizer order of these elements. But G has only three centralizer orders divisible by 77. This is a contradiction and 7 is not adjacent to 11 in GK(G). Therefore $GK(G) = GK(\mathbb{A}_{16})$ and the proof is completed.

Lemma 4 is proved.

Now by Theorem 3, there is a non-Abelian simple group S such that $S \leq G/K \leq \Delta ut(S)$ for the maximal normal solvable subgroup K of G. Furthermore, $t(S) \geq t(G) - 1$ and one of the following statements holds:

(1) $S \cong \mathbb{A}_7$ or PSL(2,q) for some odd q, and t(S) = t(2,S) = 3,

(2) for every prime $p \in \pi(G)$ nonadjacent to 2 in GK(G) a Sylow *p*-subgroup of *G* is isomorphic to a Sylow *p*-subgroup of *S*. In particular, $t(2, S) \ge t(2, G)$.

In the next lemma we will prove that condition (1) of Theorem 3 does not hold. So condition (2) holds.

Lemma 5. The non-Abelian simple group S in Theorem 5 has a Sylow 13subgroup of order 13.

Proof. We show that conclusion (1) of Theorem 5 does not hold. If $S \cong \mathbb{A}_7$, then |S| = 7!/2 and $|\operatorname{Aut}(S)| = 7!$. So $7!/2 \le |G/K| \le 7!$ and since |G| = 16!/2 we obtain $4151347200 \le |K| \le 8302694400$. So |K| = 4151347200 or 8302694400 and in any case $11 \cdot 13||K|$. Since K is solvable, by Theorem 2 K has a subgroup K_1 of order $11 \cdot 13$. By Sylow's theorems, every group of order $11 \cdot 13$ is cyclic. Hence G has an element of order 143 that implies 11 is adjacent to 13 in GK(G) which is a contradiction by Fig. 1. Therefore $S \ncong \mathbb{A}_7$.

If $S \cong PSL(2,q)$ for some odd q, then by $S \leq G/K$, $|PSL(2,q)| = \frac{1}{(n,q-1)}q(q^2-1)$ - 1) and comparing q in |G| and |PSL(2,q)|, the following cases are raised: $S \cong PSL(2,3^n)$, $2 \leq n \leq 6$, PSL(2,5), $PSL(2,5^2)$, $PSL(2,5^3)$, PSL(2,7), PSL(2,7), $PSL(2,7^2)$, PSL(2,11) or PSL(2,13).

If $S \cong PSL(2, 3^2)$, then $|S| = 2^4 \cdot 3^2 \cdot 5$ and $|\operatorname{Aut}(S)| = 2^5 \cdot 3^2 \cdot 5$. So $2^4 \cdot 3^2 \cdot 5 \le |G/K| \le 2^5 \cdot 3^2 \cdot 5$. From |G| we deduce that $2^9 \cdot 3^4 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \le |K| \le 2^{10} \cdot 3^4 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$. Since |K| ||G| we obtain $|K| = 2^9 \cdot 3^4 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$ or $|K| = 2^{10} \cdot 3^4 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$. In any case by Theorem 2, K has a subgroup of order

 $11\cdot 13.$ Every group of order $11\cdot 13$ is Abelian (and cyclic) which implies that 11 is adjacent to 13 in GK(G) and this contradicts Lemma 4. If $S \cong PSL(2,3^3)$, then by similar argument we obtain 7 is adjacent to 11 in GK(G) and this is a contradiction. If $S \cong PSL(2, 3^4)$, then $|S| = 265680 = 2^4 \cdot 3^4 \cdot 5 \cdot 41$. By Theorem 3 we know that |S|||G|. So 41|G| and this contradicts $41 \nmid |G|$. If $S \cong PSL(2, 3^5)$, then 61||S|and this contradicts $61 \nmid |G|$. If $S \cong PSL(2,3^6)$, then 73||S| and this contradicts $73 \nmid |G|$. If $S \cong PSL(2,5)$, then similar to the case $S \cong PSL(2,3^2)$, we deduce that G has a subgroup of order $11 \cdot 13$. Thus 11 is adjacent to 13 in GK(G) and this contradicts $GK(G) = GK(\mathbb{A}_{16})$. If $S \cong PSL(2, 5^2)$, then $|S| = 2^3 \cdot 3 \cdot 5^2 \cdot 13$ and $|\operatorname{Aut}(S)| = 2^5 \cdot 3 \cdot 5^2 \cdot 13$. So $2^9 \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 11 \le |K| \le 2^{11} \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 11$ and possibilities for |K| are $|K| = 2^9 \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 11$, $2^{10} \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 11$, $2^9 \cdot 3^6 \cdot 5 \cdot 7^2 \cdot 11$ or $2^{11} \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 11$. In any case by Theorem 2, K has a subgroup K_1 with $|K_1| = 11 \cdot 7^2$. If P is an 11-Sylow subgroup of K_1 , then by Sylow's theorem P is normal in K_1 . If $t \in K_1$ with o(t) = 7, then P(t) is a subgroup of K_1 of order 77. Every group of order 77 is Abelian (and cyclic) implying that 7 is adjacent to 11 in GK(G) and this contradicts $GK(G) = GK(\mathbb{A}_{16})$. If $S \cong PSL(2, 5^3)$, then 31||S| and this contradicts $31 \nmid |G|$. If $S \cong PSL(2,7)$ or $PSL(2,7^2)$, then similar to the case $S \cong PSL(2,3^2)$ we have 11 is adjacent to 13 in GK(G) which is a contradiction. If $S \cong PSL(2, 11)$, then similar to the case $S \cong PSL(2,3^3)$, we obtain 7 is adjacent to 13 in GK(G), a contradiction. If $S \cong PSL(2, 13)$, then similarly we show that 7 is adjacent to 11 in GK(G) and this is a contradiction. Therefore conclusion (1) of Theorem 3 does not hold. So conclusion (2) of Theorem 3 holds and S has a 13-Sylow subgroup of order 13.

Lemma 5 is proved.

3.1. *Proof of the main theorem.* Now by [2] we consider each of the finite non-Abelian simple groups as a candidate for *S*.

(1) $S \cong \mathbb{A}_n$ for $n \ge 5$. By Lemma 5 we know that 13||S|, so $n \ge 13$. Therefore $S \cong \mathbb{A}_{13}$, \mathbb{A}_{14} , \mathbb{A}_{15} or \mathbb{A}_{16} . If $S \cong \mathbb{A}_{13}$, then by Theorem 3 we obtain $13!/2 \le G/K \le 13!$. Thus $3360 \le |K| \le 6720$ and $|K| = 3360 = 2^5 \cdot 3 \cdot 5 \cdot 7$ or $6720 = 2^6 \cdot 3 \cdot 5 \cdot 7$. On the other hand K is normal in G, so in any case K contains four distinct conjugacy classes of elements with orders 2, 3, 5 and 7. But the four smallest orders for conjugacy classes of G are 1120, 5460, 104832, 320320. Therefore K can not contain four conjugacy classes which is a contradiction. The cases $S \cong \mathbb{A}_{14}$ or \mathbb{A}_{15} similarly lead to contradiction. If $S \cong \mathbb{A}_{16}$, then from $S \le G/K$ we obtain |S| = |G| and |K| = 1. So S = G and in this case $S = G \cong \mathbb{A}_{16}$. Thus if $S \cong \mathbb{A}_n$ for $n \ge 5$, then $S \cong \mathbb{A}_{16}$ and in this case $S = G \cong \mathbb{A}_{16}$.

(2) If S is isomorphic to one of the sporadic simple groups, then by Lemma 5 we have 13||S|. Also the possible prime divisors of |S| are 2, 3, 5, 7, 11 or 13, hence we obtain $S \cong Suz$ or Fi_{22} . If $S \cong Suz$, then $|S| = 2^{13} \cdot 3^7 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$. So $3^7||S|$ implying that $3^7||G|$ and this is a contradiction. If $S \cong Fi_{22}$, then $|S| = 2^{17} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$. So $2^{17}||S|$ implying that $2^{17}||G|$, a contradiction. Therefore S is not one of the sporadic simple groups.

(3) S is one of the classical groups PSL(n,q) for $n \in \mathbb{N}$ and prime power q. Since $|PSL(n,q)| = \frac{1}{(n,q-1)}q^{n(n-1)/2}\prod_{i=2}^{n}(q^{i}-1)$ and $S \leq G/K$ and $|G| = 2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$, q must be a power of 2, 3, 5, 7, 11 or 13. In Lemma 5 we showed that S is not one of the classical groups PSL(2,q) for odd q. So S may be isomorphic to one of the following cases: $PSL(2, 2^n)$, $2 \le n \le 14$, $PSL(3, 2^n)$, $1 \le n \le 4$, PSL(3,3), $PSL(3,3^2)$, PSL(3,5), PSL(4,2), $PSL(4,2^2)$ or PSL(5,2). If $S \cong PSL(2,2^n)$, $2 \le n \le 14$ and $n \ne 6, 12$, PSL(3,2), $PSL(3,2^2)$, $PSL(3,2^3)$, PSL(3,5), PSL(4,2), PSL(4,4) or PSL(5,2), then $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong PSL(2,2^6)$, PSL(3,3) or $PSL(3,3^2)$ then similar to the Lemma 5, the case $S \cong PSL(2,3^2)$, we deduce that 7 is adjacent to 11 in GK(G) and this is a contradiction. If $S \cong PSL(2,2^{12})$ or $PSL(3,2^4)$, then 17||S| and this contradicts $17 \nmid |G|$. So S is not one of the classical groups PSL(n,q).

(4) S is one of the classical groups $PSU(n, q^2)$ for $n \in \mathbb{N}$ and prime power q. Similar to the case (3) we obtain that $S \cong PSU(2, 2^{2n}), 2 \le n \le 7$, $PSU(2, 3^2)$, $PSU(2, 3^4)$, $PSU(2, 3^6)$, $PSU(2, 5^2)$, $PSU(2, 2^{2n})$, $2 \le n \le 7$, $PSU(2, 2^2)$, $PSU(2, 3^2)$, $PSU(2, 3^4)$ or $PSU(2, 3^4)$ or $PSU(2, 3^2)$. If $S \cong PSU(2, 2^4)$, $PSU(2, 2^8)$, $PSU(2, 2^{10})$, $PSU(2, 2^{14})$, $PSU(2, 3^2)$, $PSU(2, 3^4)$ or $PSU(2, 7^2)$, then $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong PSU(2, 2^6)$, then $|S| = 2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$ and $|\operatorname{Aut}(S)| = 2^7 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13$. So $2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13 \le |G/K| \le 2^7 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13$ and by |G| we have $2^7 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11 \le |K| \le 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11$. Then the possibilities for |K| are $2^7 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11$, $2^8 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11$, $2^7 \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 11$, $2^7 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11$ or $2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11$. By Theorem 2, in any case K has a subgroup K_1 of order 77. But every group of order 77 is Abelian (and cyclic) which means that 7 is adjacent to 11 in GK(G) and this is a contradiction. Similar to this argument S can not be isomorphic to either $PSU(2, 5^2)$ or $PSU(3, 2^2)$. If $S \cong PSU(2, 2^{12})$ or $PSU(3, 2^4)$, then 17||S| and this contradicts $17 \nmid |G|$. If $S \cong PSU(2, 3^6)$, then 73||S| and this contradicts $73 \nmid |G|$. Therefore S is not one of the classical groups $PSU(n, q^2)$.

(5) S is one of the classical groups PSP(2l,q) or $P\Omega(2l+1,q)$. At first we assume that $S \cong PSP(2l,q)$. From $PSP(2,q) \cong PSL(2,q)$ and proof of Lemma 5 and case (3), we obtain $S \ncong PSP(2,q)$. Using the fact that |S|||G| and |PSP(2l,q)| = $=\frac{1}{(2,q-1)}q^{l^2}\prod_{i=1}^{l}(q^{2i}-1) \text{ we obtain } S \cong PSP(4,2), PSP(4,2^2), PSP(4,2^3),$ PSP(4,3) or PSP(6,2). If $S \cong PSP(4,2)$, $PSP(4,2^2)$, PSP(4,3) or PSP(6,2), then $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong PSP(4, 2^3)$, then $|S| = 2^{12} \cdot 3^4 \cdot 5 \cdot 7^2 \cdot$ $\cdot 13 \text{ and } |\operatorname{Aut}(S)| = 2^{13} \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 13 \text{ and so } 2^{12} \cdot 3^4 \cdot 5 \cdot 7^2 \cdot 13 < |G/K| < 2^{13} \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 13.$ Thus the possibilities for |K| are $2 \cdot 3 \cdot 5^2 \cdot 11$, $2^2 \cdot 3 \cdot 5^2 \cdot 11$, $2 \cdot 3 \cdot 5^3 \cdot 11$, $2 \cdot 3^2 \cdot 5^2 \cdot 11$, $2^3 \cdot 3 \cdot 5^2 \cdot 11$ or $2^2 \cdot 3^2 \cdot 5^2 \cdot 11$. In any case K contains four distinct conjugacy classes of elements of orders 2, 3, 5 and 11. The first four smallest conjugacy classes of G by Lemma 3 and [5] have orders 1120, 5460, 104832 and 320320. From $|K| \le 9900$ we deduce that K can not contain four distinct conjugacy classes and this is a contradiction. So Sis not one of the symplectic groups PSP(2l, q). If S is one of the orthogonal groups $P\Omega(2l+1,q)$, then using $PSL(2,q) \cong P\Omega(3,q)$ and proof of Lemma 5 and case (3) we get that $S \not\cong P\Omega(3,q)$. So S may be isomorphic to one of the following cases: $P\Omega(5,2), P\Omega(5,2^2), P\Omega(5,2^3), P\Omega(5,3) \text{ or } P\Omega(7,2).$ If $S \cong P\Omega(5,2), P\Omega(5,2^2),$ $P\Omega(5,3)$ or $P\Omega(7,2)$, then $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong P\Omega(5,2^3)$, then we obtain $|S| = 2^{12} \cdot 3^4 \cdot 5 \cdot 7^2 \cdot 13$ and $|Aut(S)| = 2^{13} \cdot 3^5 \cdot 5 \cdot 7^2 \cdot 13$. By similar argument to the case $S \cong PSP(4, 2^3)$, we get a contradiction. So S is not one of the orthogonal groups $P\Omega(2l+1,q)$. Therefore S is not one of the classical groups PSP(2l,q) or $P\Omega(2l+1,q)$.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11

1448

CHARACTERIZATION OF A_{16} BY NON-COMMUTING GRAPH

(6) S is one of the classical groups $P\Omega^{\varepsilon}(2l,q)$ for $\varepsilon \in \{+1,-1\}$. Then using the order of G and $|P\Omega^{\varepsilon}(2l,q)|$, q can be a power of 2, 3, 5 or 7. So S may be one of the groups $P\Omega^{\varepsilon}(4,2^n)$, $1 \le n \le 7$, $P\Omega^{\varepsilon}(4,3)$, $P\Omega^{\varepsilon}(4,3^2)$, $P\Omega^{\varepsilon}(4,3^3)$, $P\Omega^{\varepsilon}(4,5)$, $P\Omega^{\varepsilon}(4,7)$, $P\Omega^{\varepsilon}(6,2)$, $P\Omega^{\varepsilon}(6,2^2)$, $P\Omega^{\varepsilon}(6,3)$ or $P\Omega^{\varepsilon}(8,2)$. If $S \cong P\Omega^{\varepsilon}(4,2)$, $P\Omega^{\varepsilon}(4,2^2)$, $P\Omega^{\varepsilon}(4,2^5)$, $P\Omega^{\varepsilon}(4,2^7)$, $P\Omega^{\varepsilon}(4,3)$, $P\Omega^{\varepsilon}(4,3^2)$, $P\Omega^{\varepsilon}(4,7)$, $P\Omega^{\varepsilon}(6,2)$ or $P\Omega^{\varepsilon}(8,2)$, then $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong P\Omega^{\varepsilon}(4,8)$, $P\Omega^{\varepsilon}(4,5)$, or $P\Omega^{\varepsilon}(6,3)$, then we consider two cases. If $\varepsilon = +1$, then $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong P\Omega^{\varepsilon}(4,2^4)$, we obtain that 7 is adjacent to 11 in GK(G) and this is a contradiction. If $S \cong P\Omega^{\varepsilon}(4,2^4)$ or $P\Omega^{\varepsilon}(6,2^2)$, then $17 \mid |S|$ and this contradicts $17 \nmid |G|$. If $S \cong P\Omega^{\varepsilon}(4,2^6)$, then we consider two cases. If $\varepsilon = -1$, then $13^2 \mid |S|$ and this contradicts $13^2 \nmid |G|$. If $\varepsilon = -1$, then $17 \mid |S|$ and this contradicts $17 \nmid |G|$. So S is not one of the classical groups $P\Omega^{\varepsilon}(2l,q)$.

(7) S is one of the exceptional Chevalley groups $F_4(q)$, $G_2(q)$, $E_6(q)$, $E_7(q)$, $E_8(q)$. If $S \cong G_2(q)$, then using the orders of $|G_2(q)|$ and |G| and the fact that $S \leq G/K$, q may be one of the 2, 3 or 2^2 . If $S \cong G_2(2)$, then $13 \nmid |S|$ which is a contradiction. If $S \cong G_2(2^2)$ or $G_2(3)$, then similar to the case (4) for $PSU(2, 2^6)$, we obtain that 7 is adjacent to 11 in GK(G) which is a contradiction. If $S \cong F_4(q)$, $E_6(q)$, $E_7(q)$ or $E_8(q)$, then |S| has a factor of form q^{24} , q^{36} , q^{63} or q^{120} . But from $S \leq G/K$ we know that the maximum factor in |S| can be q^{14} (for q = 2) and this is a contradiction. So S is not one of the exceptional Chevalley groups.

(8) S is one of the twisted Chevalley groups or Tits group. Then $S \cong^2 D_4(q)$, ${}^{2}F_{4}(2^{2n+1}), {}^{2}E_{6}(q), {}^{2}G_{2}(3^{2n+1}), {}^{2}G_{2}(3)', {}^{2}B_{2}(2^{2n+1})$ or T, the Tits group. If $S \cong$ $\cong {}^{3}D_{4}(q)$, then using $S \leq G/K$, |G| and $|{}^{3}D_{4}(q)|$, the only possibility for q is 2. If $S \cong^{3} D_{4}(2)$, then $|S| = 2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$ and $|\operatorname{Aut}(S)| = 2^{12} \cdot 3^{5} \cdot 7^{2} \cdot 13$. So from $S \leq G/K \leq \operatorname{Aut}(S) \text{ and } |G| \text{ we have } |K| = 2^2 \cdot 3 \cdot 5^3 \cdot 11, 2^3 \cdot 3 \cdot 5^3 \cdot 11 \text{ or } 2^2 \cdot 3^2 \cdot 5^3 \cdot 11.$ K is normal in G and in any case has four conjugacy classes of elements of order 2, 3, 5and 11. But the four smallest conjugacy classes of G (by [5] and Lemma 3) have orders 1120, 5460, 104832 and 320320. From |K| we deduce that K can not contain four distinct conjugacy classes which is a contradiction. If $S \cong {}^2F_4(2^{2n+1})$ for n > 0, then by $|{}^{2}F_{4}(2^{2n+1})|$ we have $2^{36}||S|$ and this contradicts $2^{36} \nmid |G|$. If $S \cong G_{2}(3^{2n+1})$ for n > 0, then $3^9 ||S|$ and this contradicts $3^9 \nmid |G|$. If $S \cong^2 E_6(q)$ for n > 0, then |S| has a factor of the form q^{36} . But the largest factor in |S| can be q^{14} (for q = 2) and this is a contradiction. If $S \cong^2 B_2(2^{2n+1})$ for n > 0, then by |S| we obtain that n may be 1, 2 or 3. If n = 1, then $S \cong^2 B_2(2^3)$. So $|S| = 2^6 \cdot 5 \cdot 7 \cdot 13$ and $|\operatorname{Aut}(S)| = 2^6 \cdot 3 \cdot 5 \cdot 7 \cdot 13$. Similar to the case (4) for $PSU(2, 2^6)$ we get a contradiction with 7 adjacent to 11 in GK(G). If n = 2 or 3, then $S \cong^2 B_2(2^5)$ or ${}^2B_2(2^7)$. In any case $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong^2 G_2(3)'$, then $13 \nmid |S|$ and this contradicts Lemma 5. If $S \cong T$, the Tits group, then $|S| = 2^{11} \cdot 3^3 \cdot 5^2 \cdot 13$ and $|\operatorname{Aut}(S)| = 2^{12} \cdot 3^3 \cdot 5^2 \cdot 13$. Similar to the case (4) for $PSU(2, 2^6)$, we deduce that 7 is adjacent to 11 in GK(G) and this is a contradiction. So S is not one of the twisted Chevalley groups or Tits group.

Conclusion of the proof of Theorem 1. In cases (1)–(8) we considered S to be a non-Abelian finite simple group and showed that the only possibility is $S \cong \mathbb{A}_{16}$. So $|S| = |G| = 2^{14} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13$ and from $S \leq G/K \leq \operatorname{Aut}(S)$ for a maximal normal solvable subgroup K of G, we obtain $S = G = \mathbb{A}_{16}$ and $K = \{1\}$. Thus $S = G = \mathbb{A}_{16}$ and the proof is completed.

- 1. Abdollahi A., Akbari S., Maimani H. R. Non-commuting graph of a group // J. Algebra. 2006. 298. P. 468–496.
- Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. Oxford: Clarendon Press, 1985.
- Darafsheh M. R. Groups with the same non-commuting graph // Discrete Appl. Math. 2009. 157. P. 833–837.
- 4. Darafsheh M. R., Monfared M. Davoudi. A characterization of the groups PSU(4,4) and PSL(4,4) by non-commuting graph (submitted).
- 5. The gap group, gap-groups, algoritms and programming, version 4.4, http://www.gap-system.org, 2005.
- Iranmanesh A., Jafarzadeh A. Characterization of finite groups by their commuting graph // Acta math. hung. – 2007. – 23. – P. 7–13.
- 7. Rose John S. A course on group theory. Cambridge: Cambridge Univ. Press, 1978.
- *Rotman J. J.* An introduction to the theory of groups. Fourth ed. New York: Springer, 1994.
 Vasilév A. V. On connection between the structure of a finite group and the proprties of its prime graph
- // Sib. Math. J. 2005. **46**, № 3. P. 396–404.
- 10. Wang L., Shi W. A new characterization of $L_2(q)$ by noncommuting graph // Front. Math. China. 2007. 2, No 1. P. 143–148.
- 11. Wang L., Shi W. A new characterization of A₁₀ by its noncommuting graph // Communs Algebra. 2008. **36**, № 2. P. 523–528.
- Zhang L., Shi W. Noncommuting graph characterization of some simple groups with connected prime graph // Int. Electron. J. Algebra. – 2009. – 5. – P. 169–181.

Received 10.06.09, after revision -14.06.10

1450