CHARACTERIZATION OF \mathbb{A}_{16} BY NON-COMMUTING GRAPH ХАРАКТЕРИЗАЦІЯ \mathbb{A}_{16} НЕПЕРЕСТАВНИМ ГРАФОМ

Abstract

Let G be a finite non-Abelian group. We define a graph Γ_{G}, called the non-commuting graph of G, with vertex set $G-Z(G)$ such that two vertices x and y are adjacent if and only if $x y \neq y x$. A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture, the AAM's Conjecture as follows: If S is a finite non-Abelian simple group and G is a group such that $\Gamma_{S} \cong \Gamma_{G}$, then $S \cong G$. It is still unknown if this conjecture holds for all simple finite groups with connected prime graph except $\mathbb{A}_{10}, L_{4}(8), L_{4}(4)$ and $U_{4}(4)$. In this paper we prove that if \mathbb{A}_{16} denotes the alternating group of degree 16 , then for any finite group G, the graph isomorphism $\Gamma_{\mathbb{A}_{16}} \cong \Gamma_{G}$ implies $\mathbb{A}_{16} \cong G$.

Нехай G - скінченна неабелівська група. Граф Γ_{G}, який називається непереставним графом групи G, визначено за допомогою множини вершин $G-Z(G)$ таких, що дві вершини x та y є суміжними тоді і тільки тоді, коли $x y \neq y x$. А. Абдоллахі, С. Акбарі та Г. Р. Маймані висунули наступну гіпотезу ААМ гіпотезу: якщо S є скінченною неабелевою простою групою і G є групою такою, що $\Gamma_{S} \cong \Gamma_{G}$, то $S \cong G$. Досі залишається невідомим, чи справджується ця гіпотеза для всіх простих скінченних груп зі зв'язними простими графами, окрім $\mathbb{A}_{10}, L_{4}(8), L_{4}(4)$ та $U_{4}(4)$. У статті доведено, що якщо \mathbb{A}_{16} позначає знакозмінну групу степеня 16 , то для будь-якої скінченної групи G з ізоморфізму графів $\Gamma_{\mathbb{A}_{16}} \cong \Gamma_{G}$ випливає $\mathbb{A}_{16} \cong G$.

1. Introduction. The study of relation between groups and graphs is one of the main research topic in group theory. There are several ways to associate a graph to a group G. The graph we will consider in this paper is denoted by Γ_{G} and is called the noncommuting graph of G. The vertex set of Γ_{G} is $V\left(\Gamma_{G}\right)=G-Z(G)$ where $Z(G)$ is the center of G and two distinct vertices x and y are joined whenever $x y \neq y x$. It is clear that if G is abelian, then Γ_{G} is the null graph. Hence in what follows we will assume that G is a non-Abelian group. Another graph associated to a finite group G is the prime graph $G K(G)$ introduced by Gruenberg - Kegel. The vertex set of $G K(G)$ is $\pi(G)$, the set of all the prime divisors of the order of G. Two distinct primes p and q are adjacent if and only if G contains an element of order $p q$.

For a graph X, we denote the set of vertices and edges of X by $V(X)$ and $E(X)$ respectively. Two graphs X and Y are isomorphic and we denote it by $X \cong Y$, if there exists a bijective map $\phi: V(X) \longrightarrow V(Y)$ such that if x and y are adjacent in X, then $\phi(x)$ and $\phi(y)$ are adjacent in Y and vice-versa. For a group G, we denote by $k(G)$ the number of conjugacy classes of G and $N(G)=\{n \in \mathbb{N} \mid G$ has a conjugacy class C such that $|C|=n\}$. Also $\mathrm{Cl}_{G}(g)$ denotes the conjugacy class containing $g \in G$.

In [1] relation between some graph theoretical properties of Γ_{G} and the group theory properties of the group G are studied. In particular the following two conjectures are raised.

Conjecture 1. Let G be a finite non-Abelian group. If there is a group such that $\Gamma_{G} \cong \Gamma_{H}$, then $|G|=|H|$.

Conjecture 2. Let S be a finite non-Abelian simple group. If G is a group such that $\Gamma_{G} \cong \Gamma_{S}$, then $G \cong S$.

There are many articles dealing with the characterization of simple groups by its non-commuting graph. In [3], M. R. Darafsheh proved Conjecture 1 for any simple group G. Also if $G K(G)$ is a non-connected graph, Conjecture 2 is verified for many simple groups. In [6], A. Iranmanesh and J. Jafarzadeh verified Conjecture 2 when G and S are both simple groups. In [10], L. Wang and W. Shi verified Conjecture 2 for $S \cong L_{2}(q)$. But if $G K(G)$ is a connected graph the structure theorem for the group G does not work in the general case and the problem of characterizing the group G via its non-commuting graph becomes difficult. In the case that $G K(G)$ is a connected graph, the following partial results have been obtained so far. In [11], L. Wang and W. Shi verified Conjecture 2 For $S \cong \mathbb{A}_{10}$. In [12], L. Zhang and W. Shi proved that Conjecture 2 is true for $L_{4}(8)$. In [4], Conjecture 2 is verified for the groups $L_{4}(4)$ and $U_{4}(4)$. The groups $\mathbb{A}_{10}, L_{4}(8), L_{4}(4)$ and $U_{4}(4)$ have connected prime graphs. Our aim in this paper is to verify the above Conjecture for the alternating group of degree 16 , \mathbb{A}_{16}, that has connected prime graph. In fact, we will prove the following theorem.

Theorem 1. Let G be a finite group such that $\Gamma_{G} \cong \Gamma_{\mathbb{A}_{16}}$, then $G \cong \mathbb{A}_{16}$.
2. Preliminaries. In this section we list some basic and known results which will be used in proving Theorem 1.

Lemma 1 [7, p. 98]. If $|G|=p q r$, where p, q and r are distinct primes, then G is not simple.

Lemma 2 (Lemma 3.27 of [1]). If G is a finite group, then $2\left|E\left(\Gamma_{G}\right)\right|=|G|(|G|-$ $-k(G))$.

Theorem 2 (P. Hall [8, p. 108]). If G is a solvable group of order $m n$ where (m, $n)=1$, then G contains a subgroup of order m. Moreover any two subgroup of order m are conjugate.

Denote by $t(G)$ the maximal number of primes in $\pi(G)$ which are pairwise nonadjacent in $G K(G)$. Also we denote by $t(2, G)$ the maximal number of vertices containing 2 but pairwise nonadjacent in $G K(G) . t(G)$ is called the independence number of $G K(G)$ and $t(2, G)$ is called the 2 -independence number of the graph $G K(G)$.

Theorem 3 [9]. Let G be a finite group satisfying the two conditions:
(a) there exist three primes in $\pi(G)$ pairwise nonadjacent in $G K(G)$, i.e., $t(G) \geq 3$;
(b) there exist an odd prime in $\pi(G)$ nonadjacent to 2 in $G K(G)$, i.e., $t(2, G) \geq 2$.

Then there is a finite non-Abelian simple group S such that $S \leq \bar{G}=G / K \leq$ $\leq \operatorname{Aut}(S)$ for the maximal normal solvable subgroup K of G. Furthermore, $t(S) \geq$ $\geq t(G)-1$ and one of the following statements holds:
(1) $S \cong \mathbb{A}_{7}$ or $\operatorname{PSL}(2, q)$ for some odd q, and $t(S)=t(2, S)=3$;
(2) for every prime $p \in \pi(G)$ nonadjacent to 2 in $G K(G)$ a Sylow p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular, $t(2, S) \geq t(2, G)$.
3. Characterization of $\mathbb{A}_{\mathbf{1 6}}$ by non-commuting graph. We know that $\left|\mathbb{A}_{16}\right|=$ $=10461394944000=2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$ and by [5] it has 123 conjugacy classes. For proving Theorem 1, we need the size of conjugacy classes, centralizer orders, order of elements and the number of conjugacy classes in \mathbb{A}_{16}. We omit the details of these items and refer to [5] for some of them in the following.

Lemma 3. Let G be a finite group such that $\Gamma_{G} \cong \Gamma_{\mathbb{A}_{16}}$, then
(1) $|G|=\left|\mathbb{A}_{16}\right|$,
(2) $k(G)=k\left(\mathbb{A}_{16}\right)$,
(3) if $\phi: \Gamma_{G} \longrightarrow \Gamma_{\mathbb{A}_{16}}$ is a graph isomorphism, then $\left|C_{G}(g)\right|=\left|C_{\mathbb{A}_{16}}(\phi(g))\right|$ and $\left|\mathrm{Cl}_{G}(g)\right|=\left|\mathrm{Cl}_{\mathbb{A}_{16}}(\phi(g))\right|$ for all $g \in G-Z(G)$. In particular $N(G)=N\left(\mathbb{A}_{16}\right)$.

Proof. By [3] we have $|G|=\left|\mathbb{A}_{16}\right|$ and proof of (1) is immediate. Also from Lemma 2 we know that $2\left|E\left(\Gamma_{G}\right)\right|=|G|(|G|-k(G))$ and by $\Gamma_{G} \cong \Gamma_{\mathbb{A}_{16}}$ and (1) we obtain (2). It is clear that $\operatorname{deg}(g)=|G|-\left|C_{G}(g)\right|$ for every $g \in G-Z(G)$ where $\operatorname{deg}(g)$ denotes the degree of g in the graph Γ_{G}. From the graph isomorphism, we have $\operatorname{deg}(g)=\operatorname{deg}(\phi(g))$ and so $|G|-\left|C_{G}(g)\right|=\left|\mathbb{A}_{16}\right|-\left|C_{\mathbb{A}_{16}}(\phi(g))\right|$. Hence from (1) we have $\left|C_{G}(g)\right|=\left|C_{\mathbb{A}_{16}}(\phi(g))\right|$ and $\left|\mathrm{Cl}_{G}(g)\right|=\left|\mathrm{Cl}_{\mathbb{A}_{16}}(\phi(g))\right|$ where $\mathrm{Cl}_{G}(g)$ denotes the conjugacy class containing g. Finally from the equality of sizes of conjugacy classes, we obtain $N(G)=N\left(\mathbb{A}_{16}\right)$.

Lemma 3 is proved.
In $G K\left(\mathbb{A}_{16}\right)$, from the set of orders of elements, we know that $2,3,5$ and 7 are adjacent to each other, 11 is adjacent to 2,3 and 5 and finally 13 is adjacent to 3 . In the following we draw $G K\left(\mathbb{A}_{16}\right)$ (Fig. 1).

11
Fig. 1
In the next lemma, we show that if the non-commuting graphs of G and \mathbb{A}_{16} are isomorphic, then their prime graphs are equal.

Lemma 4. Let G be a finite group such that $\Gamma_{G} \cong \Gamma_{\mathbb{A}_{16}}$, then $G K(G)=$ $=G K\left(\mathbb{A}_{16}\right)$.

Proof. By Lemma 3, G and \mathbb{A}_{16} have the same set of centralizer orders and $\pi(G)=$ $=\pi\left(\mathbb{A}_{16}\right)=\{2,3,5,7,11,13\}$. By [5] we know that \mathbb{A}_{16} has a centralizer order $\left|C_{\mathbb{A}_{16}}(a)\right|=2^{4} \cdot 3^{3}$ for $a \in \mathbb{A}_{16}$. So G has a centralizer order $\left|C_{G}(g)\right|=2^{4} \cdot 3^{3}$ where $\phi(g)=a$ in the graph isomorphism $\phi: \Gamma_{G} \rightarrow \Gamma_{\mathbb{A}_{16}}$. If $o(g)=2^{\alpha}, 1 \leq \alpha \leq 4$, then g commutes with an element of order 3 and so G has an element of order 6 . If $o(g)=2^{\alpha} \cdot 3^{\beta}, 1 \leq \alpha \leq 4$ and $1 \leq \beta \leq 3$, then G has an element of order 6 . If $o(g)=3^{\beta}, 1 \leq \beta \leq 3$, then g commutes with an element of order 2 and so G has an element of order 6 . Thus in any case G has an element of order 6 and 2 is adjacent to 3 in $G K(G)$. By [5] and using similar argument we obtain G has elements $g_{1}, g_{2}, g_{3}, g_{4}, g_{5}$, g_{6}, g_{7} and g_{8} with $\left|C_{G}\left(g_{1}\right)\right|=3 \cdot 5,\left|C_{G}\left(g_{2}\right)\right|=2 \cdot 7,\left|C_{G}\left(g_{3}\right)\right|=3 \cdot 13, C_{G}\left(g_{4}\right)=3 \cdot 11$, $\left|C_{G}\left(g_{5}\right)\right|=5 \cdot 11,\left|C_{G}\left(g_{6}\right)\right|=2^{2} \cdot 11,\left|C_{G}\left(g_{7}\right)\right|=2^{3} \cdot 5$ and $\left|C_{G}\left(g_{8}\right)\right|=3^{2} \cdot 7 \cdot$ So 2,3 and 5 are adjacent to each other, 7 is adjacent to 2 and 3,11 is adjacent to $2,3,5$ and 13 is adjacent to 3 . Next we show that 5 is adjacent to 7 . From centralizer orders of \mathbb{A}_{16}
and by Lemma 3, we deduce that G has a centralizer order $\left|C_{G}(g)\right|=3 \cdot 5 \cdot 7$. Now by Lemma 1 and Theorem 2, G has a subgroup K with $|K|=5 \cdot 7=35$. But every group of order 35 is Abelian (and cyclic). So G has an element h with $o(h)=35$. Thus 5 is adjacent to 7 in $G K(G)$.

Next we prove that 2 is not adjacent to 13 . If 2 is adjacent to 13 , then G has an element g with $o(g)=26$. It implies that $26 \| C_{G}(g) \mid$. From Lemma 3 and centralizer orders of \mathbb{A}_{16} taken from [5] we obtain $\left|C_{G}(g)\right|=2^{9} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. Now by $o(g)=26$ and $\left|C_{G}(g)\right|, G$ has elements of order $2,3,5,7$, and 11 such that both 2 and 13 divide centralizer order of these elements. So G has at least five conjugacy classes of elements with different orders where both 2 and 13 divide the centralizer order of each element. But by Lemma 3 and [5], G has only one conjugacy class of element with centralizer order divisible by 26 , a contradiction. Similarly 13 is not adjacent to 5,7 , and 11. We will prove that 7 is not adjacent to 11 in $G K(G)$. If this happens, then G has an element h with $o(h)=77$. So $77 \| C_{G}(h) \mid$ and from Lemma 3 and centralizer orders of \mathbb{A}_{16}, we have $\left|C_{G}(h)\right|=2^{7} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11,2^{9} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ or $2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11$. In these cases G has elements of order $2,3,5,7$ and 11 such that 77 divides centralizer order of these elements. But G has only three centralizer orders divisible by 77 . This is a contradiction and 7 is not adjacent to 11 in $G K(G)$. Therefore $G K(G)=G K\left(\mathbb{A}_{16}\right)$ and the proof is completed.

Lemma 4 is proved.
Now by Theorem 3, there is a non-Abelian simple group S such that $S \leq G / K \leq$ $\leq \operatorname{Aut}(S)$ for the maximal normal solvable subgroup K of G. Furthermore, $t(S) \geq$ $\geq t(G)-1$ and one of the following statements holds:
(1) $S \cong \mathbb{A}_{7}$ or $\operatorname{PSL}(2, q)$ for some odd q, and $t(S)=t(2, S)=3$,
(2) for every prime $p \in \pi(G)$ nonadjacent to 2 in $G K(G)$ a Sylow p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular, $t(2, S) \geq t(2, G)$.

In the next lemma we will prove that condition (1) of Theorem 3 does not hold. So condition (2) holds.

Lemma 5. The non-Abelian simple group S in Theorem 5 has a Sylow 13subgroup of order 13.

Proof. We show that conclusion (1) of Theorem 5 does not hold. If $S \cong \mathbb{A}_{7}$, then $|S|=7!/ 2$ and $|\operatorname{Aut}(S)|=7!$. So $7!/ 2 \leq|G / K| \leq 7!$ and since $|G|=16!/ 2$ we obtain $4151347200 \leq|K| \leq 8302694400$. So $|K|=4151347200$ or 8302694400 and in any case $11 \cdot 13\left||K|\right.$. Since K is solvable, by Theorem $2 K$ has a subgroup K_{1} of order $11 \cdot 13$. By Sylow's theorems, every group of order $11 \cdot 13$ is cyclic. Hence G has an element of order 143 that implies 11 is adjacent to 13 in $G K(G)$ which is a contradiction by Fig. 1 . Therefore $S \neq \mathbb{A}_{7}$.

If $S \cong P S L(2, q)$ for some odd q, then by $S \leq G / K,|P S L(2, q)|=\frac{1}{(n, q-1)} q\left(q^{2}-\right.$ $-1)$ and comparing q in $|G|$ and $|P S L(2, q)|$, the following cases are raised: $S \cong$ $\cong \operatorname{PSL}\left(2,3^{n}\right), 2 \leq n \leq 6, \operatorname{PSL}(2,5), \operatorname{PSL}\left(2,5^{2}\right), \operatorname{PSL}\left(2,5^{3}\right), \operatorname{PSL}(2,7)$, $\operatorname{PSL}\left(2,7^{2}\right), \operatorname{PSL}(2,11)$ or $\operatorname{PSL}(2,13)$.

If $S \cong P S L\left(2,3^{2}\right)$, then $|S|=2^{4} \cdot 3^{2} \cdot 5$ and $|\operatorname{Aut}(S)|=2^{5} \cdot 3^{2} \cdot 5$. So $2^{4} \cdot 3^{2} \cdot 5 \leq$ $\leq|G / K| \leq 2^{5} \cdot 3^{2} \cdot 5$. From $|G|$ we deduce that $2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \leq|K| \leq$ $\leq 2^{10} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$. Since $|K|||G|$ we obtain $| K \mid=2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$ or $|K|=2^{10} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$. In any case by Theorem 2 , K has a subgroup of order
$11 \cdot 13$. Every group of order $11 \cdot 13$ is Abelian (and cyclic) which implies that 11 is adjacent to 13 in $G K(G)$ and this contradicts Lemma 4. If $S \cong P S L\left(2,3^{3}\right)$, then by similar argument we obtain 7 is adjacent to 11 in $G K(G)$ and this is a contradiction. If $S \cong P S L\left(2,3^{4}\right)$, then $|S|=265680=2^{4} \cdot 3^{4} \cdot 5 \cdot 41$. By Theorem 3 we know that $|S|||G|$. So 41$| G \mid$ and this contradicts $41 \nmid|G|$. If $S \cong P S L\left(2,3^{5}\right)$, then $61||S|$ and this contradicts $61 \nmid|G|$. If $S \cong P S L\left(2,3^{6}\right)$, then $73||S|$ and this contradicts $73 \nmid|G|$. If $S \cong P S L(2,5)$, then similar to the case $S \cong P S L\left(2,3^{2}\right)$, we deduce that G has a subgroup of order $11 \cdot 13$. Thus 11 is adjacent to 13 in $G K(G)$ and this contradicts $G K(G)=G K\left(\mathbb{A}_{16}\right)$. If $S \cong P S L\left(2,5^{2}\right)$, then $|S|=2^{3} \cdot 3 \cdot 5^{2} \cdot 13$ and $|\operatorname{Aut}(S)|=2^{5} \cdot 3 \cdot 5^{2} \cdot 13$. So $2^{9} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 11 \leq|K| \leq 2^{11} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 11$ and possibilities for $|K|$ are $|K|=2^{9} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 11,2^{10} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 11,2^{9} \cdot 3^{6} \cdot 5 \cdot 7^{2} \cdot 11$ or $2^{11} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 11$. In any case by Theorem $2, K$ has a subgroup K_{1} with $\left|K_{1}\right|=11 \cdot 7^{2}$. If P is an 11-Sylow subgroup of K_{1}, then by Sylow's theorms P is normal in K_{1}. If $t \in K_{1}$ with $o(t)=7$, then $P\langle t\rangle$ is a subgroup of K_{1} of order 77 . Every group of order 77 is Abelian (and cyclic) implying that 7 is adjacent to 11 in $G K(G)$ and this contradicts $G K(G)=G K\left(\mathbb{A}_{16}\right)$. If $S \cong P S L\left(2,5^{3}\right)$, then $31||S|$ and this contradicts $31 \nmid|G|$. If $S \cong P S L(2,7)$ or $P S L\left(2,7^{2}\right)$, then similar to the case $S \cong P S L\left(2,3^{2}\right)$ we have 11 is adjacent to 13 in $G K(G)$ which is a contradiction. If $S \cong P S L(2,11)$, then similar to the case $S \cong \operatorname{PSL}\left(2,3^{3}\right)$, we obtain 7 is adjacent to 13 in $G K(G)$, a contradiction. If $S \cong P S L(2,13)$, then similarly we show that 7 is adjacent to 11 in $G K(G)$ and this is a contradiction. Therefore conclusion (1) of Theorem 3 does not hold. So conclusion (2) of Theorem 3 holds and S has a 13-Sylow subgroup of order 13.

Lemma 5 is proved.
3.1. Proof of the main theorem. Now by [2] we consider each of the finite nonAbelian simple groups as a candidate for S.
(1) $S \cong \mathbb{A}_{n}$ for $n \geq 5$. By Lemma 5 we know that $13||S|$, so $n \geq 13$. Therefore $S \cong \mathbb{A}_{13}, \mathbb{A}_{14}, \mathbb{A}_{15}$ or \mathbb{A}_{16}. If $S \cong \mathbb{A}_{13}$, then by Theorem 3 we obtain $13!/ 2 \leq G / K \leq$ 13!. Thus $3360 \leq|K| \leq 6720$ and $|K|=3360=2^{5} \cdot 3 \cdot 5 \cdot 7$ or $6720=2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot$ On the other hand K is normal in G, so in any case K contains four distinct conjugacy classes of elements with orders $2,3,5$ and 7 . But the four smallest orders for conjugacy classes of G are $1120,5460,104832,320320$. Therefore K can not contain four conjugacy classes which is a contradiction. The cases $S \cong \mathbb{A}_{14}$ or \mathbb{A}_{15} similarly lead to contradiction. If $S \cong \mathbb{A}_{16}$, then from $S \leq G / K$ we obtain $|S|=|G|$ and $|K|=1$. So $S=G$ and in this case $S=G \cong \mathbb{A}_{16}$. Thus if $S \cong \mathbb{A}_{n}$ for $n \geq 5$, then $S \cong \mathbb{A}_{16}$ and in this case $S=G \cong \mathbb{A}_{16}$.
(2) If S is isomorphic to one of the sporadic simple groups, then by Lemma 5 we have $13||S|$. Also the possible prime divisors of $| S \mid$ are $2,3,5,7,11$ or 13 , hence we obtain $S \cong S u z$ or $F i_{22}$. If $S \cong S u z$, then $|S|=2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. So $3^{7}| | S \mid$ implying that $3^{7}| | G \mid$ and this is a contradiction. If $S \cong F i_{22}$, then $|S|=2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$. So $2^{17}| | S \mid$ implying that $2^{17}| | G \mid$, a contradiction. Therefore S is not one of the sporadic simple groups.
(3) S is one of the classical groups $P S L(n, q)$ for $n \in \mathbb{N}$ and prime power q. Since $|P S L(n, q)|=\frac{1}{(n, q-1)} q^{n(n-1) / 2} \prod_{i=2}^{n}\left(q^{i}-1\right)$ and $S \leq G / K$ and $|G|=$ $=2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13, q$ must be a power of $2,3,5,7,11$ or 13 . In Lemma 5 we showed that S is not one of the classical groups $\operatorname{PSL}(2, q)$ for odd q. So S may
be isomorphic to one of the following cases: $\operatorname{PSL}\left(2,2^{n}\right), 2 \leq n \leq 14, \operatorname{PSL}\left(3,2^{n}\right)$, $1 \leq n \leq 4, \operatorname{PSL}(3,3), \operatorname{PSL}\left(3,3^{2}\right), \operatorname{PSL}(3,5), \operatorname{PSL}(4,2), \operatorname{PSL}\left(4,2^{2}\right)$ or $\operatorname{PSL}(5,2)$. If $S \cong P S L\left(2,2^{n}\right), 2 \leq n \leq 14$ and $n \neq 6,12, \operatorname{PSL}(3,2), \operatorname{PSL}\left(3,2^{2}\right), \operatorname{PSL}\left(3,2^{3}\right)$, $\operatorname{PSL}(3,5), \operatorname{PSL}(4,2), \operatorname{PSL}(4,4)$ or $P S L(5,2)$, then $13 \nmid|S|$ and this contradicts Lemma 5. If $S \cong \operatorname{PSL}\left(2,2^{6}\right), \operatorname{PSL}(3,3)$ or $\operatorname{PSL}\left(3,3^{2}\right)$ then similar to the Lemma 5, the case $S \cong P S L\left(2,3^{2}\right)$, we deduce that 7 is adjacent to 11 in $G K(G)$ and this is a contradiction. If $S \cong \operatorname{PSL}\left(2,2^{12}\right)$ or $\operatorname{PSL}\left(3,2^{4}\right)$, then $17||S|$ and this contradicts $17 \nmid|G|$. So S is not one of the classical groups $\operatorname{PSL}(n, q)$.
(4) S is one of the classical groups $P S U\left(n, q^{2}\right)$ for $n \in \mathbb{N}$ and prime power q. Similar to the case (3) we obtain that $S \cong \operatorname{PSU}\left(2,2^{2 n}\right), 2 \leq n \leq 7, \operatorname{PSU}\left(2,3^{2}\right)$, $\operatorname{PSU}\left(2,3^{4}\right), \operatorname{PSU}\left(2,3^{6}\right), \operatorname{PSU}\left(2,5^{2}\right), \operatorname{PSU}\left(2,7^{2}\right), \operatorname{PSU}\left(3,2^{2}\right), \operatorname{PSU}\left(3,2^{4}\right)$ or $\operatorname{PSU}\left(3,3^{2}\right)$. If $S \cong \operatorname{PSU}\left(2,2^{4}\right), \operatorname{PSU}\left(2,2^{8}\right), \operatorname{PSU}\left(2,2^{10}\right), \operatorname{PSU}\left(2,2^{14}\right), \operatorname{PSU}\left(2,3^{2}\right)$, $\operatorname{PSU}\left(2,3^{4}\right)$ or $\operatorname{PSU}\left(2,7^{2}\right)$, then $13 \nmid|S|$ and this contradicts Lemma 5. If $S \cong$ $\cong \operatorname{PSU}\left(2,2^{6}\right)$, then $|S|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ and $|\operatorname{Aut}(S)|=2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13$. So $2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \leq|G / K| \leq 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13$ and by $|G|$ we have $2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \leq$ $\leq|K| \leq 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$. Then the possibilities for $|K|$ are $2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11$, $2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11,2^{7} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 11,2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$ or $2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$. By Theorem 2, in any case K has a subgroup K_{1} of order 77 . But every group of order 77 is Abelian (and cyclic) which means that 7 is adjacent to 11 in $G K(G)$ and this is a contradiction. Similar to this argument S can not be isomorphic to either $\operatorname{PSU}\left(2,5^{2}\right)$ or $\operatorname{PSU}\left(3,2^{2}\right)$. If $S \cong \operatorname{PSU}\left(2,2^{12}\right)$ or $\operatorname{PSU}\left(3,2^{4}\right)$, then $17||S|$ and this contradicts $17 \nmid|G|$. If $S \cong P S U\left(2,3^{6}\right)$, then $73||S|$ and this contradicts $73 \nmid| G \mid$. Therefore S is not one of the classical groups $\operatorname{PSU}\left(n, q^{2}\right)$.
(5) S is one of the classical groups $P S P(2 l, q)$ or $P \Omega(2 l+1, q)$. At first we assume that $S \cong P S P(2 l, q)$. From $\operatorname{PSP}(2, q) \cong \operatorname{PSL}(2, q)$ and proof of Lemma 5 and case (3), we obtain $S \neq P S P(2, q)$. Using the fact that $|S|||G|$ and $| P S P(2 l, q) \mid=$ $=\frac{1}{(2, q-1)} q^{l^{2}} \prod_{i=1}^{l}\left(q^{2 i}-1\right)$ we obtain $S \cong P S P(4,2), \operatorname{PSP}\left(4,2^{2}\right), \operatorname{PSP}\left(4,2^{3}\right)$, $P S P(4,3)$ or $P S P(6,2)$. If $S \cong P S P(4,2), P S P\left(4,2^{2}\right), P S P(4,3)$ or $\operatorname{PSP}(6,2)$, then $13 \nmid|S|$ and this contradicts Lemma 5. If $S \cong P S P\left(4,2^{3}\right)$, then $|S|=2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2}$. $\cdot 13$ and $|\operatorname{Aut}(S)|=2^{13} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 13$ and so $2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13 \leq|G / K| \leq 2^{13} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 13$. Thus the possibilities for $|K|$ are $2 \cdot 3 \cdot 5^{2} \cdot 11,2^{2} \cdot 3 \cdot 5^{2} \cdot 11,2 \cdot 3 \cdot 5^{3} \cdot 11,2 \cdot 3^{2} \cdot 5^{2} \cdot 11,2^{3} \cdot 3 \cdot 5^{2} \cdot 11$ or $2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11$. In any case K contains four distinct conjugacy classes of elements of orders $2,3,5$ and 11 . The first four smallest conjugacy classes of G by Lemma 3 and [5] have orders 1120, 5460, 104832 and 320320. From $|K| \leq 9900$ we deduce that K can not contain four distinct conjugacy classes and this is a contradiction. So S is not one of the symplectic groups $P S P(2 l, q)$. If S is one of the orthogonal groups $P \Omega(2 l+1, q)$, then using $P S L(2, q) \cong P \Omega(3, q)$ and proof of Lemma 5 and case (3) we get that $S \not \approx P \Omega(3, q)$. So S may be isomorphic to one of the following cases: $P \Omega(5,2), P \Omega\left(5,2^{2}\right), P \Omega\left(5,2^{3}\right), P \Omega(5,3)$ or $P \Omega(7,2)$. If $S \cong P \Omega(5,2), P \Omega\left(5,2^{2}\right)$, $P \Omega(5,3)$ or $P \Omega(7,2)$, then $13 \nmid|S|$ and this contradicts Lemma 5. If $S \cong P \Omega\left(5,2^{3}\right)$, then we obtain $|S|=2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13$ and $|\operatorname{Aut}(S)|=2^{13} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 13$. By similar argument to the case $S \cong P S P\left(4,2^{3}\right)$, we get a contradiction. So S is not one of the orthogonal groups $P \Omega(2 l+1, q)$. Therefore S is not one of the classical groups $P S P(2 l, q)$ or $P \Omega(2 l+1, q)$.
(6) S is one of the classical groups $P \Omega^{\varepsilon}(2 l, q)$ for $\varepsilon \in\{+1,-1\}$. Then using the order of G and $\left|P \Omega^{\varepsilon}(2 l, q)\right|, q$ can be a power of $2,3,5$ or 7 . So S may be one of the groups $P \Omega^{\varepsilon}\left(4,2^{n}\right), 1 \leq n \leq 7, P \Omega^{\varepsilon}(4,3), P \Omega^{\varepsilon}\left(4,3^{2}\right), P \Omega^{\varepsilon}\left(4,3^{3}\right), P \Omega^{\varepsilon}(4,5)$, $P \Omega^{\varepsilon}(4,7), P \Omega^{\varepsilon}(6,2), P \Omega^{\varepsilon}\left(6,2^{2}\right), P \Omega^{\varepsilon}(6,3)$ or $P \Omega^{\varepsilon}(8,2)$. If $S \cong P \Omega^{\varepsilon}(4,2)$, $P \Omega^{\varepsilon}\left(4,2^{2}\right), P \Omega^{\varepsilon}\left(4,2^{5}\right), P \Omega^{\varepsilon}\left(4,2^{7}\right), P \Omega^{\varepsilon}(4,3), P \Omega^{\varepsilon}\left(4,3^{2}\right), P \Omega^{\varepsilon}(4,7), P \Omega^{\varepsilon}(6,2)$ or $P \Omega^{\varepsilon}(8,2)$, then $13 \nmid|S|$ and this contradicts Lemma 5. If $S \cong P \Omega^{\varepsilon}(4,8), P \Omega^{\varepsilon}(4,5)$, or $P \Omega^{\varepsilon}(6,3)$, then we consider two cases. If $\varepsilon=+1$, then $13 \nmid|S|$ and this contradicts Lemma 5. If $\varepsilon=-1$, then similar to the case (4) for $S \cong \operatorname{PSU}\left(2,2^{6}\right)$, we obtain that 7 is adjacent to 11 in $G K(G)$ and this is a contradiction. If $S \cong P \Omega^{\varepsilon}\left(4,2^{4}\right)$ or $P \Omega^{\varepsilon}\left(6,2^{2}\right)$, then $17||S|$ and this contradicts $17 \nmid| G \mid$. If $S \cong P \Omega^{\varepsilon}\left(4,2^{6}\right)$, then we consider two cases. If $\varepsilon=+1$, then $13^{2}| | S \mid$ and this contradicts $13^{2} \nmid|G|$. If $\varepsilon=-1$, then $17||S|$ and this contradicts $17 \nmid| G \mid$. So S is not one of the classical groups $P \Omega^{\varepsilon}(2 l, q)$.
(7) S is one of the exceptional Chevalley groups $F_{4}(q), G_{2}(q), E_{6}(q), E_{7}(q), E_{8}(q)$. If $S \cong G_{2}(q)$, then using the orders of $\left|G_{2}(q)\right|$ and $|G|$ and the fact that $S \leq G / K$, q may be one of the 2,3 or 2^{2}. If $S \cong G_{2}(2)$, then $13 \nmid|S|$ which is a contradiction. If $S \cong G_{2}\left(2^{2}\right)$ or $G_{2}(3)$, then similar to the case (4) for $\operatorname{PSU}\left(2,2^{6}\right)$, we obtain that 7 is adjacent to 11 in $G K(G)$ which is a contradiction. If $S \cong F_{4}(q), E_{6}(q), E_{7}(q)$ or $E_{8}(q)$, then $|S|$ has a factor of form q^{24}, q^{36}, q^{63} or q^{120}. But from $S \leq G / K$ we know that the maximum factor in $|S|$ can be q^{14} (for $q=2$) and this is a contradiction. So S is not one of the exceptional Chevalley groups.
(8) S is one of the twisted Chevalley groups or Tits group. Then $S \cong^{2} D_{4}(q)$, ${ }^{2} F_{4}\left(2^{2 n+1}\right),{ }^{2} E_{6}(q),{ }^{2} G_{2}\left(3^{2 n+1}\right),{ }^{2} G_{2}(3)^{\prime},{ }^{2} B_{2}\left(2^{2 n+1}\right)$ or T, the Tits group. If $S \cong$ $\cong{ }^{3} D_{4}(q)$, then using $S \leq G / K,|G|$ and $\left|{ }^{3} D_{4}(q)\right|$, the only possibility for q is 2. If $S \cong{ }^{3} D_{4}(2)$, then $|S|=2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$ and $|\operatorname{Aut}(S)|=2^{12} \cdot 3^{5} \cdot 7^{2} \cdot 13$. So from $S \leq G / K \leq \operatorname{Aut}(S)$ and $|G|$ we have $|K|=2^{2} \cdot 3 \cdot 5^{3} \cdot 11,2^{3} \cdot 3 \cdot 5^{3} \cdot 11$ or $2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 11$. K is normal in G and in any case has four conjugacy classes of elements of order $2,3,5$ and 11. But the four smallest conjugacy classes of G (by [5] and Lemma 3) have orders 1120, 5460, 104832 and 320320 . From $|K|$ we deduce that K can not contain four distinct conjugacy classes which is a contradiction. If $S \cong{ }^{2} F_{4}\left(2^{2 n+1}\right)$ for $n>0$, then by $\left.\right|^{2} F_{4}\left(2^{2 n+1}\right) \mid$ we have $2^{36}| | S \mid$ and this contradicts $2^{36} \nmid|G|$. If $S \cong{ }^{2} G_{2}\left(3^{2 n+1}\right)$ for $n>0$, then $3^{9}| | S \mid$ and this contradicts $3^{9} \nmid|G|$. If $S \cong{ }^{2} E_{6}(q)$ for $n>0$, then $|S|$ has a factor of the form q^{36}. But the largest factor in $|S|$ can be q^{14} (for $q=2$) and this is a contradiction. If $S \cong{ }^{2} B_{2}\left(2^{2 n+1}\right)$ for $n>0$, then by $|S|$ we obtain that n may be 1,2 or 3 . If $n=1$, then $S \cong^{2} B_{2}\left(2^{3}\right)$. So $|S|=2^{6} \cdot 5 \cdot 7 \cdot 13$ and $|\operatorname{Aut}(S)|=2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13$. Similar to the case (4) for $\operatorname{PSU}\left(2,2^{6}\right)$ we get a contradiction with 7 adjacent to 11 in $G K(G)$. If $n=2$ or 3 , then $S \cong{ }^{2} B_{2}\left(2^{5}\right)$ or ${ }^{2} B_{2}\left(2^{7}\right)$. In any case $13 \nmid|S|$ and this contradicts Lemma 5. If $S \cong^{2} G_{2}(3)^{\prime}$, then $13 \nmid|S|$ and this contradicts Lemma 5. If $S \cong T$, the Tits group, then $|S|=2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$ and $|\operatorname{Aut}(S)|=2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 13$. Similar to the case (4) for $\operatorname{PSU}\left(2,2^{6}\right)$, we deduce that 7 is adjacent to 11 in $G K(G)$ and this is a contradiction. So S is not one of the twisted Chevalley groups or Tits group.

Conclusion of the proof of Theorem 1. In cases (1)-(8) we considered S to be a non-Abelian finite simple group and showed that the only possibility is $S \cong \mathbb{A}_{16}$. So $|S|=|G|=2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$ and from $S \leq G / K \leq \operatorname{Aut}(S)$ for a maximal normal solvable subgroup K of G, we obtain $S=G=\mathbb{A}_{16}$ and $K=\{1\}$. Thus $S=G=\mathbb{A}_{16}$ and the proof is completed.

1. Abdollahi A., Akbari S., Maimani H. R. Non-commuting graph of a group // J. Algebra. - 2006. - 298. - P. 468-496.
2. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. - Oxford: Clarendon Press, 1985.
3. Darafsheh M. R. Groups with the same non-commuting graph // Discrete Appl. Math. - 2009. - 157. P. 833-837.
4. Darafsheh M. R., Monfared M. Davoudi. A characterization of the groups $\operatorname{PSU}(4,4)$ and $\operatorname{PSL}(4,4)$ by non-commuting graph (submited).
5. The gap group, gap-groups, algoritms and programming, version 4.4, http://www.gap-system.org, 2005.
6. Iranmanesh A., Jafarzadeh A. Characterization of finite groups by their commuting graph // Acta math. hung. - 2007. - 23. - P. 7-13.
7. Rose John S. A course on group theory. - Cambridge: Cambridge Univ. Press, 1978.
8. Rotman J. J. An introduction to the theory of groups. - Fourth ed. - New York: Springer, 1994.
9. Vasilév A. V. On connection between the structure of a finite group and the proprties of its prime graph // Sib. Math. J. - 2005. - 46, № 3. - P. 396-404.
10. Wang L., Shi W. A new characterization of $L_{2}(q)$ by noncommuting graph // Front. Math. China. 2007. - 2, № 1. - P. 143-148.
11. Wang L., Shi W. A new characterization of \mathbb{A}_{10} by its noncommuting graph // Communs Algebra. 2008. - 36, № 2. - P. 523-528.
12. Zhang L., Shi W. Noncommuting graph characterization of some simple groups with connected prime graph // Int. Electron. J. Algebra. - 2009. - 5. - P. 169-181.

Received 10.06.09,
after revision -14.06 .10

