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CHARACTERIZATION OF A;4 BY NON-COMMUTING GRAPH
XAPAKTEPU3ALIA A HENEPECTABHUM I'PAOOM

Let G be a finite non-Abelian group. We define a graph Iz, called the non-commuting graph of G, with vertex
set G — Z (@) such that two vertices z and y are adjacent if and only if xy # yz. A. Abdollahi, S. Akbari and
H. R. Maimani put forward a conjecture, the AAM’s Conjecture as follows: If S is a finite non-Abelian simple
group and G is a group such that I'g =2 I"g, then S = G. It is still unknown if this conjecture holds for all
simple finite groups with connected prime graph except A1, L4(8), L4(4) and U4 (4). In this paper we prove
that if A1¢ denotes the alternating group of degree 16, then for any finite group G, the graph isomorphism
[y = T implies Ajg = G.

Hexait G — ckinyenHa HeaGeniBcbka rpyna. ['pad I'g, sikuit HasuBaeThes HenmepecTaBHUM rpadom rpymu G,
BH3HAYCHO 32 JIONOMOTrOK0 MHOXKHHH BepuH G — Z((G) Takux, 10 /Bi BEPUIMHE X Ta Y € CYMDKHAMH TOAL
i TineKH TOMI, KOMK Ty # yr. A. Abmomnaxi, C. AxGapi ta I. P. MaiimaHi BHCYHYITH HACTYIHY TilOTE3y —
AAM rinotesy: sKkmo S € CKIHICHHOI0 HeabeleBolo MPOCTolo Ipymolo i G € rpymoto takoro, mo I's = ',
Tto S 2 G. Jloci 3aNMIIA€EThCS HEBIIOMUM, YU CHPABKYETHCS I TilloTe3a JUI BCIX MPOCTUX CKIHYEHHUX
IpyI 3i 38’s3HUMH npocTUMH rpadamu, okpiM A1o, La(8), La(4) ta Us(4). Y crarti JOBEACHO, WO SKIIO
A1 mo3Haua€ 3HAKO3MIHHY IpyIty cTerneHs 16, To ast Oyab-skoi ckindeHHOi rpymu G 3 i3omopdismy rpadis
Fp = ' Bummsae Ajg = G.

1. Introduction. The study of relation between groups and graphs is one of the main
research topic in group theory. There are several ways to associate a graph to a group
G. The graph we will consider in this paper is denoted by ' and is called the non-
commuting graph of G. The vertex set of I' is V(I'¢) = G — Z(G) where Z(G) is the
center of GG and two distinct vertices « and y are joined whenever zy # yx. It is clear
that if GG is abelian, then ' is the null graph. Hence in what follows we will assume
that GG is a non-Abelian group. Another graph associated to a finite group G is the prime
graph GK (G) introduced by Gruenberg — Kegel. The vertex set of GK(G) is 7w(G), the
set of all the prime divisors of the order of G. Two distinct primes p and ¢ are adjacent
if and only if G contains an element of order pq.

For a graph X, we denote the set of vertices and edges of X by V(X) and E(X)
respectively. Two graphs X and Y are isomorphic and we denote it by X =Y, if there
exists a bijective map ¢: V(X) — V(Y') such that if = and y are adjacent in X, then
¢(z) and ¢(y) are adjacent in Y and vice-versa. For a group G, we denote by k(G)
the number of conjugacy classes of G and N(G) = {n € N|G has a conjugacy class C
such that |C| = n}. Also Clg(g) denotes the conjugacy class containing g € G.

In [1] relation between some graph theoretical properties of I'; and the group theory
properties of the group G are studied. In particular the following two conjectures are
raised.

Conjecture 1. Let G be a finite non-Abelian group. If there is a group such that
I'e =Ty, then |G| = |H|
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Conjecture 2. Let S be a finite non-Abelian simple group. If G is a group such
that T 2 T'g, then G = S.

There are many articles dealing with the characterization of simple groups by its
non-commuting graph. In [3], M. R. Darafsheh proved Conjecture 1 for any simple
group G. Also if GK(G) is a non-connected graph, Conjecture 2 is verified for many
simple groups. In [6], A. Iranmanesh and J. Jafarzadeh verified Conjecture 2 when G
and S are both simple groups. In [10], L. Wang and W. Shi verified Conjecture 2 for
S = Ly(q). But if GK(G) is a connected graph the structure theorem for the group
G does not work in the general case and the problem of characterizing the group G
via its non-commuting graph becomes difficult. In the case that GK(G) is a connected
graph, the following partial results have been obtained so far. In [11], L. Wang and
W. Shi verified Conjecture 2 For S = Aj¢. In [12], L. Zhang and W. Shi proved that
Conjecture 2 is true for L4(8). In [4], Conjecture 2 is verified for the groups L4(4) and
U4 (4). The groups A1g, L4(8), L4(4) and Uy (4) have connected prime graphs. Our aim
in this paper is to verify the above Conjecture for the alternating group of degree 16,
A, that has connected prime graph. In fact, we will prove the following theorem.

Theorem 1. Let G be a finite group such that I'q = T'y,,, then G = Ay;.

2. Preliminaries. In this section we list some basic and known results which will
be used in proving Theorem 1.

Lemma 1 [7, p. 98]. If |G| = pqr, where p,q and r are distinct primes, then G is
not simple.

Lemma 2 (Lemma 3.27 of [1]). If G is a finite group, then 2|E(T'¢)| = |G|(|G| —
— k(@)).

Theorem 2 (P. Hall [8, p. 108]). If G is a solvable group of order mn where (m,
n) = 1, then G contains a subgroup of order m. Moreover any two subgroup of order
m are conjugate.

Denote by ¢t(G) the maximal number of primes in 7(G) which are pairwise nonadja-
cent in GK (G). Also we denote by ¢(2, G) the maximal number of vertices containing 2
but pairwise nonadjacent in GK (G). t(G) is called the independence number of GK (G)
and ¢(2, G) is called the 2-independence number of the graph GK(G).

Theorem 3 [9]. Let G be a finite group satisfying the two conditions:

(a) there exist three primes in w(G) pairwise nonadjacent in GK(G), i.e., t(G)

(b) there exist an odd prime in 7(G) nonadjacent to 2 in GK(G), i.e., t(2,G)

Then there is a finite non-Abelian simple group S such that S < G = G/K
< Aut(S) for the maximal normal solvable subgroup K of G. Furthermore, t(S)
> t(G) — 1 and one of the following statements holds:

(1) S= A7 or PSL(2,q) for some odd q, and t(S) = t(2,5) = 3;

(2) for every prime p € w(QG) nonadjacent to 2 in GK(G) a Sylow p-subgroup of G

)

>3
> 2

<
2

is isomorphic to a Sylow p-subgroup of S. In particular, t(2,5) > t(2,G).

3. Characterization of A;g by non-commuting graph. We know that |Ag| =
= 10461394944000 = 24 .36 .53 .72.11- 13 and by [5] it has 123 conjugacy classes.
For proving Theorem 1, we need the size of conjugacy classes, centralizer orders, order
of elements and the number of conjugacy classes in Ajg. We omit the details of these
items and refer to [5] for some of them in the following.

Lemma 3. Let G be a finite group such that ' = Ty, then
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(D) 1G] = [Asel,

(2) k(G) = k(Ase),

(3) if ¢: T — Ta,, is a graph isomorphism, then |Cg(g)| = |Ca,s(0(g))| and
| Clg(9)| = | Cla,s(¢(9))| for all g € G — Z(G). In particular N(G) = N(A1g).

Proof. By [3] we have |G| = |Aig| and proof of (1) is immediate. Also from
Lemma 2 we know that 2|E(T'¢)| = |G|(|G| — k(G)) and by I'¢ = T'y,, and (1) we
obtain (2). It is clear that deg(g) = |G| — |Ca(g)| for every g € G — Z(G) where
deg(g) denotes the degree of g in the graph I';. From the graph isomorphism, we have
deg(g) = deg(¢(g)) and so |G| — |Cc(g)| = |A16] — |Ca,s(¢(g))|- Hence from (1) we
have |Ca(g)] = |Ca,s(9(g))] and | Clg(g)| = | Cla,s (¢(g))| where Clg(g) denotes the
conjugacy class containing g. Finally from the equality of sizes of conjugacy classes,
we obtain N(G) = N(Asg).

Lemma 3 is proved.

In GK(A4g), from the set of orders of elements, we know that 2, 3, 5 and 7 are
adjacent to each other, 11 is adjacent to 2, 3 and 5 and finally 13 is adjacent to 3. In the
following we draw GK (A46) (Fig. 1).

13 7

11
Fig. 1

In the next lemma, we show that if the non-commuting graphs of G and A¢ are
isomorphic, then their prime graphs are equal.

Lemma 4. Let G be a finite group such that T'q = Ty, then GK(G) =
= GK(A1g).

Proof. By Lemma 3, G and A4 have the same set of centralizer orders and 7(G) =
= m(Ag) = {2,3,5,7,11,13}. By [5] we know that A, has a centralizer order
|Ca,g(a)] = 2433 for a € Agg. So G has a centralizer order |Cg(g)| = 2% - 33
where ¢(g) = a in the graph isomorphism ¢: I'¢ — T'p . If 0(g) = 2%, 1 < a < 4,
then g commutes with an element of order 3 and so G has an element of order 6. If
o(g) =2%-3°, 1 <a<4and 1 < B < 3, then G has an element of order 6. If
o(g) = 37,1 < 8 < 3, then g commutes with an element of order 2 and so G has an el-
ement of order 6. Thus in any case G has an element of order 6 and 2 is adjacent to 3 in
GK(QG). By [5] and using similar argument we obtain G has elements g1, g2, g3, g4, g5,
9, g7 and gs with |Ca(g1)| = 3-5, [Ca(g2)| = 2:7, |Ca(gs)| = 3-13, Calga) = 3-11,
|Cg(g5)| =5 11, ‘Cg(g6)| = 22 . 11, ‘Cg(g7)| = 23 -5 and |C(;(gg)| = 32 -7- So 2,3
and 5 are adjacent to each other, 7 is adjacent to 2 and 3, 11 is adjacent to 2,3, 5 and
13 is adjacent to 3. Next we show that 5 is adjacent to 7. From centralizer orders of Aj¢
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and by Lemma 3, we deduce that G has a centralizer order |C(g)] =3 -5 - 7. Now by
Lemma 1 and Theorem 2, G has a subgroup K with |K| = 5-7 = 35. But every group
of order 35 is Abelian (and cyclic). So G has an element h with o(h) = 35. Thus 5 is
adjacent to 7 in GK (G).

Next we prove that 2 is not adjacent to 13. If 2 is adjacent to 13, then G has an
element g with o(g) = 26. It implies that 26||C;(g)|. From Lemma 3 and centralizer
orders of Ajg taken from [5] we obtain |[Co(g)| = 2% - 3552711 - 13. Now by
o(g) = 26 and |Cg(g)|, G has elements of order 2, 3, 5, 7, and 11 such that both 2 and
13 divide centralizer order of these elements. So G has at least five conjugacy classes
of elements with different orders where both 2 and 13 divide the centralizer order of
each element. But by Lemma 3 and [5], G has only one conjugacy class of element with
centralizer order divisible by 26, a contradiction. Similarly 13 is not adjacent to 5,7, and
11. We will prove that 7 is not adjacent to 11 in GK (G). If this happens, then G has an
element  with o(h) = 77. So 77||C¢(h)| and from Lemma 3 and centralizer orders of
Ayg, we have |Cg(h)| =27-3%.5.7-11,29-36.52.7-11-13 or 212.35.52. 7 11.
In these cases G has elements of order 2, 3, 5, 7 and 11 such that 77 divides centralizer
order of these elements. But GG has only three centralizer orders divisible by 77. This is
a contradiction and 7 is not adjacent to 11 in GK (G). Therefore GK(G) = GK (A1¢)
and the proof is completed.

Lemma 4 is proved.

Now by Theorem 3, there is a non-Abelian simple group S such that S < G/K <
< Aut(S) for the maximal normal solvable subgroup K of G. Furthermore, ¢(S) >
> t(G) — 1 and one of the following statements holds:

(1) S =A7or PSL(2,q) for some odd ¢, and ¢(S) = t(2,5) = 3,

(2) for every prime p € w(G) nonadjacent to 2 in GK(G) a Sylow p-subgroup of G
is isomorphic to a Sylow p-subgroup of S. In particular, ¢(2, S) > (2, G).

In the next lemma we will prove that condition (1) of Theorem 3 does not hold. So
condition (2) holds.

Lemma 5. The non-Abelian simple group S in Theorem 5 has a Sylow 13-
subgroup of order 13.

Proof. We show that conclusion (1) of Theorem 5 does not hold. If S = A7, then
|S] = 7!/2 and | Aut(S)| = 7!. So 7!/2 < |G/K| < 7! and since |G| = 16!/2 we
obtain 4151347200 < | K| < 8302694400. So |K| = 4151347200 or 8302694400 and
in any case 11 - 13||K\. Since K is solvable, by Theorem 2 K has a subgroup K; of
order 11 - 13. By Sylow’s theorems, every group of order 11 - 13 is cyclic. Hence G
has an element of order 143 that implies 11 is adjacent to 13 in GK(G) which is a
contradiction by Fig. 1. Therefore S 2 A-.

2

If S = PSL(2,q) for some odd ¢, thenby S < G/K, |PSL(2,q)| = ﬁq(q —

— 1) and comparing ¢ in |G| and |PSL(2,q)|, the following cases are raised: S =
~ PSL(2,3"), 2 < n < 6, PSL(2,5), PSL(2,5%), PSL(2,5%), PSL(2,7),
PSL(2,7%), PSL(2,11) or PSL(2,13).

If S = PSL(2,3%), then | S| =2%-3%-5 and | Aut(S)| =2°-3%-5. S0 2%.32.5 <
< |G/K| < 2°-32.5. From |G| we deduce that 27 - 3% .52 .72.11-13 < |K| <
< 210.3%.52.72.11-13. Since |K|||G| we obtain [K| =2°-3*.52.72.11-13 or
|K|=2%0.3%.52.72.11-13. In any case by Theorem 2, K has a subgroup of order
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11 - 13. Every group of order 11 - 13 is Abelian (and cyclic) which implies that 11 is
adjacent to 13 in GK(G) and this contradicts Lemma 4. If S = PSL(2,3%), then by
similar argument we obtain 7 is adjacent to 11 in GK(G) and this is a contradiction.
If S = PSL(2,3%), then |S| = 265680 = 2% - 3% .5 . 41. By Theorem 3 we know
that |S|||G|. So 41|G| and this contradicts 41 { |G|. If S = PSL(2,3°), then 61||S]|
and this contradicts 61 { |G|. If S = PSL(2,3°%), then 73||S| and this contradicts
73 1 |G|. If S = PSL(2,5), then similar to the case S = PSL(2,3?), we deduce
that G has a subgroup of order 11 - 13. Thus 11 is adjacent to 13 in GK(G) and this
contradicts GK (G) = GK(Agg). If S = PSL(2,5%), then |S| = 23 -3 -5%-13 and
|Aut(S)] = 2%-3-52-13.802%-3%-5.-72. 11 < |K| <2Y1.3°.5.72.11 and
possibilities for |[K| are |K|=22-35.5.7%2.11,219.35.5.72.11,29.35.5.72. 11 or
211.35.5.72.11. In any case by Theorem 2, K has a subgroup K; with |K;| = 11-72.
If P is an 11-Sylow subgroup of K, then by Sylow’s theorms P is normal in K;. If
t € Ky with o(t) = 7, then P(t) is a subgroup of K; of order 77. Every group of
order 77 is Abelian (and cyclic) implying that 7 is adjacent to 11 in GK(G) and this
contradicts GK (G) = GK(Ayg). If S =2 PSL(2,5%), then 31||S| and this contradicts
311|G|. If S = PSL(2,7) or PSL(2,7?), then similar to the case S = PSL(2,3?)
we have 11 is adjacent to 13 in GK(G) which is a contradiction. If S = PSL(2,11),
then similar to the case S = PSL(2,3?), we obtain 7 is adjacent to 13 in GK(G),
a contradiction. If S = PSL(2,13), then similarly we show that 7 is adjacent to 11
in GK (G) and this is a contradiction. Therefore conclusion (1) of Theorem 3 does not
hold. So conclusion (2) of Theorem 3 holds and .S has a 13-Sylow subgroup of order 13.

Lemma 5 is proved.

3.1. Proof of the main theorem. Now by [2] we consider each of the finite non-
Abelian simple groups as a candidate for S.

(1) S = A, forn > 5. By Lemma 5 we know that 13HS|7 so n > 13. Therefore
S = Aqg, Ay, Ajs or Agg. If S =2 Ay3, then by Theorem 3 we obtain 13!/2 < G/K <
13!. Thus 3360 < |K| < 6720 and |K| = 3360 = 2°-3-5-7 or 6720 = 26-3-5-7- On the
other hand K is normal in GG, so in any case K contains four distinct conjugacy classes of
elements with orders 2, 3, 5 and 7. But the four smallest orders for conjugacy classes of
G are 1120, 5460, 104832, 320320. Therefore K can not contain four conjugacy classes
which is a contradiction. The cases S = A4 or A;5 similarly lead to contradiction. If
S = Ayg, then from S < G/K we obtain |S| = |G| and |[K| = 1. So S = G and in
this case S = G = Ayg. Thus if S = A, for n > 5, then S = A4 and in this case
S =G = A

(2) If S is isomorphic to one of the sporadic simple groups, then by Lemma 5 we
have 13||S]. Also the possible prime divisors of | S| are 2, 3, 5, 7, 11 or 13, hence we
obtain S = Suz or Figy. If S = Suz, then |S| = 2'%.37-5%.7-11-13. So 37||S| implying
that 37||G| and this is a contradiction. If S = Fisy, then |S| = 2'7-39.5%.7-11-13.
So 2'7|| S| implying that 2'7||G|, a contradiction. Therefore S is not one of the sporadic
simple groups.

(3) S is one of the classical groups PSL(n,q) for n € N and prime power q.
Since |PSL(n,q)| = 1 1)q"(”*l)/z H:L_2(q’ —1)and S < G/K and |G| =

(naq_
=214.36.53.72.11.13, ¢ must be a power of 2, 3, 5, 7, 11 or 13. In Lemma 5

we showed that S is not one of the classical groups PSL(2,q) for odd ¢g. So S may
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be isomorphic to one of the following cases: PSL(2,2"), 2 < n < 14, PSL(3,2"),
1 <n <4, PSL(3,3), PSL(3,3?), PSL(3,5), PSL(4,2), PSL(4,22) or PSL(5,2).
If S = PSL(2,2"),2 < n < 14 and n # 6,12, PSL(3,2), PSL(3,22), PSL(3,2°),
PSL(3,5), PSL(4,2), PSL(4,4) or PSL(5,2), then 13 { |S| and this contradicts
Lemma 5. If S = PSL(2,25), PSL(3,3) or PSL(3,3%) then similar to the Lemma 5,
the case S = PSL(2,3%), we deduce that 7 is adjacent to 11 in GK(G) and this is
a contradiction. If S = PSL(2,2'?) or PSL(3,2*), then 17||S| and this contradicts
171 |G|. So S is not one of the classical groups PSL(n,q).

(4) S is one of the classical groups PSU(n,q?) for n € N and prime power gq.
Similar to the case (3) we obtain that S = PSU(2,2?"), 2 < n < 7, PSU(2,32),
PSU(2,3%), PSU(2,35), PSU(2,5%), PSU(2,7%), PSU(3,22%), PSU(3,2%) or
PSU(3,3%).1f S = PSU(2,2%), PSU(2,28), PSU(2,210), PSU(2,24), PSU(2,32),
PSU(2,3%) or PSU(2,7?%), then 13 { |S| and this contradicts Lemma 5. If S =
~ PSU(2,2%), then S| = 20 -32-5.7-13 and |Aut(S)| = 27 -3% -5 .7 13.
S026.32.5.7-13 < |G/K| < 27-3%.5-7-13 and by |G| we have 27-33.52.7-11 <
< |K| < 28.3%*.5%.7-11. Then the possibilities for |K| are 27 - 3% - 5% . 7. 11,
98 .33.52.7.11,27.3%.5%.7.11,27-34.52. 7. 11 or 28 -34.52.7.11. By
Theorem 2, in any case K has a subgroup K7 of order 77. But every group of order
77 is Abelian (and cyclic) which means that 7 is adjacent to 11 in GK(G) and this is
a contradiction. Similar to this argument S can not be isomorphic to either PSU (2, 5?)
or PSU(3,22). If S = PSU(2,2'?) or PSU(3,2%), then 17||S| and this contradicts
171 |G|. If S = PSU(2,3°), then 73||S| and this contradicts 73 { |G|. Therefore S is
not one of the classical groups PSU (n, ¢?).

(5) S is one of the classical groups PSP(2l,q) or PQ(20+1, ¢). At first we assume
that S = PSP(2l,q). From PSP(2,q) = PSL(2,q) and proof of Lemma 5 and

case (3), we obtain S % PSP(2,q). Using the fact that |S|||G| and |PSP(2l,q)| =

= ﬁqﬂ Hizl(q% — 1) we obtain S = PSP(4,2), PSP(4,2%), PSP(4,2%),
PSP(4,3) or PSP(6,2). If S = PSP(4,2), PSP(4, 22), PSP(4,3) or PSP(6,2),
then 13 1 |'S| and this contradicts Lemma 5. If S & PSP(4,23), then |S| = 212.3%.5.72.
13 and | Aut(S)| = 2'3.35.5-72-13 and s0 212-34.5.7%2.13 < |G/K]| < 213.3%.5.7%-13.
Thus the possibilities for | K| are 2-3-52-11, 22.3.52.11, 2-3-53-11, 2-3%.52.11, 23.3.52.11
or 22.32.52.11. In any case K contains four distinct conjugacy classes of elements
of orders 2, 3, 5 and 11. The first four smallest conjugacy classes of G by Lemma 3
and [5] have orders 1120, 5460, 104832 and 320320. From |K| < 9900 we deduce
that K can not contain four distinct conjugacy classes and this is a contradiction. So S
is not one of the symplectic groups PSP(2l,q). If S is one of the orthogonal groups
PQ(21 + 1, q), then using PSL(2,q) = PQ(3,q) and proof of Lemma 5 and case (3)
we get that S 22 P(3,¢). So S may be isomorphic to one of the following cases:
PQ(5,2), PQ(5,22), PQ(5,23), PQ(5,3) or PQU7,2). If S = PQ(5,2), PQ(5,22),
PQ(5,3) or PQ(7,2), then 13 { |S| and this contradicts Lemma 5. If S =2 PQ(5,23),
then we obtain |S| = 2'2-3%.5.7%2.13 and | Aut(S)| = 23 -3°.5-72.13. By
similar argument to the case S = PSP(4,23), we get a contradiction. So S is not one
of the orthogonal groups P$2(2[ + 1, g). Therefore S is not one of the classical groups
PSP(2l,q) or PQ(20 +1,q).
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(6) S is one of the classical groups PQ(2l,q) for ¢ € {+1,—1}. Then using the
order of G and |PQ°(2l,q)|, ¢ can be a power of 2, 3, 5 or 7. So S may be one
of the groups PQ¢(4,2"), 1 < n < 7, PQ%(4,3), PQf(4,3%), PO (4,3%), PQ¢(4,5),
PQE(4,7), PQE(6,2), PQ(6,22), PQE(6,3) or PQE(S, 2). If S = PQ(4,2),
PQ#(4,22), PQE(4,25), POS(4,27), PQS(4,3), PQS(4,32), PQ(4,7), PQE(6,2) or
PQ*(8,2), then 13 1 |S| and this contradicts Lemma 5. If S & PQ<(4,8), PQ°(4,5),
or PQ°(6,3), then we consider two cases. If ¢ = +1, then 13 1 |S| and this contradicts
Lemma 5. If ¢ = —1, then similar to the case (4) for S = PSU(2,25), we obtain
that 7 is adjacent to 11 in GK(G) and this is a contradiction. If S =2 PQ¢(4,2%) or
P$F(6,2%), then 17||S| and this contradicts 17 { |G]. If S = PQ#(4,29), then we con-
sider two cases. If & = +1, then 132|| S| and this contradicts 13% { |G|. If ¢ = —1, then
17||S| and this contradicts 17 1 |G|. So S is not one of the classical groups PQ< (21, q).

(7) S is one of the exceptional Chevalley groups F4(q), G2(q), Fs(q), F7(q), Es(q).
If S = G2(q), then using the orders of |G2(g)| and |G| and the fact that S < G/K,
q may be one of the 2,3 or 22. If S = G(2), then 13 { |S| which is a contradiction.
If S = G5(2%) or Ga(3), then similar to the case (4) for PSU(2,2°), we obtain that 7
is adjacent to 11 in GK(G) which is a contradiction. If S = Fy(q), Es(q), E7(q) or
FEs(q), then | S| has a factor of form ¢4, ¢3¢, ¢%3 or ¢*2°. But from S < G/K we know
that the maximum factor in |S| can be ¢'* (for ¢ = 2) and this is a contradiction. So S
is not one of the exceptional Chevalley groups.

(8) S is one of the twisted Chevalley groups or Tits group. Then S =2 D,(q),
2Fu(227Y) 2Eg(q), 2G2(327 1), 2Ga(3), 2Bo(22"11) or T, the Tits group. If S =
=~ 3D,(q), then using S < G/K, |G| and |>D4(q)|, the only possibility for ¢ is 2. If
S =3 Dy(2), then |S| = 2'2.3%.72.13 and | Aut(S)| = 2'2-3°- 7% . 13. So from
S < G/K < Aut(S) and |G| we have |K| =22-3-53-11,23-3-53-11 or 22-32.53-11.
K is normal in G and in any case has four conjugacy classes of elements of order 2, 3,5
and 11. But the four smallest conjugacy classes of G (by [5] and Lemma 3) have orders
1120, 5460, 104832 and 320320. From |K| we deduce that K can not contain four
distinct conjugacy classes which is a contradiction. If S = 2F,(22"+1) for n > 0, then
by |2F,4(22"1)| we have 2%6||S| and this contradicts 236 { |G|. If S 2% G5(3*"!) for
n > 0, then 3%||S| and this contradicts 3° 1 |G|. If S =% Eg(q) for n > 0, then |S| has
a factor of the form ¢36. But the largest factor in |S| can be ¢'* (for ¢ = 2) and this is
a contradiction. If S 222 By(22"*1) for n > 0, then by |S| we obtain that n may be 1,2
or3.Ifn =1, then S =2 By(23). So |S| =2%-5-7-13 and | Aut(S)| =25-3.5-7-13.
Similar to the case (4) for PSU(2,2°) we get a contradiction with 7 adjacent to 11 in
GK(G).If n = 2 or 3, then S =22 By(2°) or 2B3(27). In any case 13 1 |S| and this
contradicts Lemma 5. If S =% (5(3)’, then 13 { | S| and this contradicts Lemma 5. If
S = T, the Tits group, then |S| = 2!1.33.52.13 and | Aut(9)| = 2'2-3%.52-13. Similar
to the case (4) for PSU(2,2%), we deduce that 7 is adjacent to 11 in GK (G) and this
is a contradiction. So S is not one of the twisted Chevalley groups or Tits group.

Conclusion of the proof of Theorem 1. In cases (1)—(8) we considered S to be
a non-Abelian finite simple group and showed that the only possibility is .S = Ay4. So
|S| = |G| =21-3%-53.72.11-13 and from S < G/K < Aut(S) for a maximal normal
solvable subgroup K of G, we obtain S = G = Ajg and K = {1}. Thus S = G = Ag
and the proof is completed.
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