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WELL-POSED REDUCTION FORMULAE
FOR ¢-KAMPE DE FERIET FUNCTION

KOPEKTHI ®OPMYJIU PEXYKIIIT
JUISA g-®YHKIIT KAMIIE IE ®EP’C

By means of the limiting case n — oo of Watson’s g-Whipple transformation, we investigate transformations
on the nonterminating g-Kampé de Fériet series. Further new transformation and well-posed reduction formulae
are established for the basic Clausen hypergeometric series. Several remarkable formulae are found also for
new function classes beyond g-Kampé de Fériet function.

3a J0IOMOror0 IpaHUYHOrO BHIIAIKY T — OO JUIS BaTCOHIBCHKOTO ¢-HEPETBOPEHHs Bimmia nociipkeHo me-
peTBopeHHs HecKiHueHHoro g-pany Kammne ne @ep’e. Kpim Toro, BCTaHOBICHO HOBI (hOpMYIIH NEPETBOPEHB Ta
KOpeKTHi (GopMynH peaykuii aust 6a3oBoro rinepreoMerpuyHoro psay Kiaysena. Jlekinabka BaXIMBUX HOPMYT
3HAIICHO TAaKOX JUIS HOBUX KJIACiB (DyHKIIH, 10 SKUX He HaNeKHUTh g-QpyHKuis Kamne ne dep’e.

1. Introduction and motivation. For the two indeterminates = and ¢, the shifted
factorial of x with base q reads as

(x;9)=1 and (7;9),=(1—-2)(1—gz)...(1—¢" 'z) for neN.

When |q| < 1, there are two well-defined infinite product expressions

oo

(@:9) = [[1—d"2) and (2;9), = (#:0),, / (@"%;0) -
k=0

The product and fraction of shifted factorials are abbreviated respectively to
[CE, ﬁ? M) P)/?q]n = (a7q)71 (ﬂ?q)n (vvq)nﬂ

a? /8’ MR f}/
A B, ..., C

_ (259), (B39 - - (10
(4:9),, (B:q),,---(Csq),,

Following Bailey [1] and Gasper, Rahman [5], the basic hypergeometric series is defined
by

b, ..., by

n=0

ap, a1, ..., Qp
1+r¢s

q, b17 ) bs

where the base ¢ will be restricted to |g| < 1 for nonterminating g-series.
Among the g-series transformations, Watson’s one is fundamental (cf. [5], I11-18)

a, gv/a, —qv/a, b, ¢, d, e, ¢" ¢"2a2
807 ar: _ (12)
\/a’ 7\/E’ qa/b’ qa/C, qa/da qa/ev qn a bede
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WELL-POSED REDUCTION FORMULAE FOR ¢-KAMPE DE FERIET FUNCTION 1539

| aqa, qa/be
~ |aa/b,qa/c

-qin’ b’ C’ qa/d6
403 _
qa/d, qaje, q "bc/a

q;q]~ (1b)

Its limiting case n — oo reads equivalently as the nonterminating transformation

p a, ¢, € bd bd/ae,bd/ce 20)
R «
e b, d b ace bd/e,bd/ace 1 . :
Xl bdfe (o[bdfge, a, e, ble, dfe bd\’
xS (1) “i“‘gg“‘li’q(z) gl (22) .
=0 —bd/qe | @ bd/ae, bd/ce, d, b ac

(2b)

As the g-analogue of Kampé de Fériet function, Srivastava and Karlsson [10, p. 349]
define the generalized bivariate basic hypergeometric function by

@)\:T‘;S Qpyene, OO0 ALy v ey Qpy Cly...,Cs; q:x,y
ﬁlw"vﬁu: blw"ubu; dlw"vdv; 7;7j7k

= i [alv"'aa)\;q]m—O—n [ala"'7ar;q]m[cl7"'acs;Q]n xmynqz(yg)+j(g)+kmn

[ﬂlw--»ﬁ;ﬁﬂm«%n [bla-“vbu;Q}m[dla---vdv;Q}n (Q;Q)m(%Q)n

m,n=0

When i, j, k € Ny, this double series ®:7:% is convergent for |z| < 1, [y| < 1 and
|g] < 1. There has not been much attention to this series in the literature. By means
of the g-analogue of Kummer—Thomae — Whipple and the Hall transformation on g¢o-
series (cf. [5], III-9 and I1I-10), Chu, Jia [3] and Jia, Wang [7] investigated systematically
summation and reduction formulae respectively for the (ID?‘ff; and @1?2 series. Chu,
Jia [2] and Chu, Srivastava [4] derived several transformation and reduction formulae
respectively by inversion techniques and formal power series method. Jeugt [6] deter-
mined invariant transformation group for the double Clausen series with A 4+ r = 3 and
w + u = 2. Further works can be found in Jia, Wang [8] and Singh [9] as well as those
cited by Chu, Jia [3].

The purpose of this paper is to investigate the above defined nonterminating g-
Kampé de Fériet function exclusively by employing the limiting transformation (2a),
(2b). The rest of the paper will be divided into five sections, devoted respectively to the
five series labeled by

N e S S e
Several transformation and well-posed reduction formulae on these five series will be
established which can briefly be commented as follows:

Most of the reduction formulae displayed from Section 2 to Section 4 are well-posed,
unlike the usual ones appeared in Chu, Jia [3] and Jia, Wang [7].

Even though the two double series @?i’: and @%?;\L have intensively been studied
by Chu, Jia [3] and Jia, Wang [7], the results shown in Section 2 and Section 5 are
substantially different.

It is remarkable that there exist reduction formulae for new function classes beyond
the ¢-Kampé de Fériet function, which are exemplified for the two transformations

proven in Sections 5 and 6.
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1540 W. CHU, W. ZHANG

2. Nonterminating double series @2{1";2 By means of the two transformations
for 3¢o-series (cf. [5], I11-9 and III-10), the double @?‘I’:\L series has intensively been
investigated by Chu, Jia [3] (§2), where numerous reduction and summation formulae
have been obtained. Instead, we shall utilize (2a), (2b) to transform this <I>(1):fl’> series
into <I>§ ‘;’ l’)ﬁ series modified by a “well-posed” factor, which yields four well-posed
reduction formulae for the former and two unusual ones for the latter.

Theorem 1. For an arbitrary sequence {Q(j)}, there holds the transformation

Q) face| | (gbd\" _
q] Z o (0:q)in lq, d q} (ace) N G0

bd/e,bd/ace
bd/ae,bd/ce

B @i lbd/e | bfe, bd/qe
JZO 1—0bd/qe [b bd/ae,bd/ce q} i - G0
e o R
’ i J

provided that both double series displayed above are absolutely convergent.
Proof. The theorem follows directly by writing the double sum in (3a) as

¢'bd i_ i Q(5) a, ¢ e _qud
qL( ace) _Z(b§Q)j 3¢2[ @b, d|" 1 @

ace
j=0

> Q@) [ace
Z ()

2 B )irg | g, d

and then transforming, via (2a), (2b), the 3¢2-series into

a,c,e ibd qud/agqud/ce oo 11— 2i+i~1pd /e
3¢ 2 = ) al Y (-1 qfl/x
¢?bd/e, ¢?bd/ace = 1—¢i~1bd/e

@b, d ace
] <bd)i
q e =
\ac

> ;|a,cdfe
q] > (1) [ 0 d

j =0

(i)+ii ¢~ tbd/e,a,c,q¢'b/e,d/e
xq\2)™Y . . .
q,¢°bd/ae, ¢?bd/ce,d, ¢’ b

bd/e,bd/ace

| bd/ae,bd/ce
B b/e

] [b, bd/ace

i

] (bd)i
q — .
~ \ac
t+J
Theorem 1 is proved.

Instead, applying the g-analogue of Kummer — Thomae — Whipple transformation (cf. [5],
II1-9), we can reformulate the 5¢--series displayed in (4) as
d]
q; —
a

s a, ¢ e .qud B d/a,q’bd/ce a,q¢’b/c,q¢’b/e
82 @b, d | ace | |d, ¢@’bd/ace 8 ¢’b,¢bd/ce

where the 3¢o-series on the right-hand side of the last equation can further be restated

by means of (2a), (2b) as

5 a,¢'b/c,q’ble | |  [q’bd/ac,q'bd/ae
82 ¢’b,q’bd/ce B d/a, ¢¥b*d/ace

1— ¢¥+i=1bd/e (5)+is b/e, bd/qe
1 —bd/qe b, bd/ae,bd/ce

’
a

1 i 1 —¢**+2-12d/ace "
1

—~ 1- q?I—1b%d/ace
o0 i=
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WELL-POSED REDUCTION FORMULAE FOR ¢-KAMPE DE FERIET FUNCTION 1541

q} d'.

Substituting them successively into (4), we find the following alternative expression:

i Qi) [a,ce (q%d)i B
! woiimo BiDits [ ¢, d ! Nace )
2i42j—1p,2 v
l—q T2=1h2d /ace ()

Z [b/a, b/c b/e ql; Zg 1 —b2d/qace

j=
b/a, b/c, b/e, bd/ace
b, bd/ac, bd/ae, bd/ce

(1) () ¢~ %d/ace, ¢’b/a, ¢'b/c, ¢’b/e, ¢'bd/ace
x(— 2 . . . .
¢ q, @b, ¢’bd/ac, ¢’bd/ae, ¢'bd/ce

d, bd/ace, b*d/ace
bd/ac,bd/ae, bd/ce

(b2d/qa06; Q)i+2j di
(¢:9)i

Letting n := ¢ + j and then keeping in mind of the relation

(@ @)n—j = (e (qu)n = [a7" g b d/ace; q],

we can equivalently reformulate Theorem 1 as another transformation.
Theorem 2. For an arbitrary sequence {2(j)}, there holds the transformation

= @) face| ] /gbd\
q] 2 (b5 9)i+ [q,d q](dﬂf) -

d, bd/ace, b*d/ace
bd/ac,bd/ae,bd/ce

00 1,j=0
_il—q%—lb?d/ace lb/a, b/c, ble, bd/ace, b*d/qace q] < (5b)
o 1 —b%d/qace g, b, bd/ac, bd/ae, bd/ce .
n : —-n ,,n—132
n (™) g\J g7, ¢""1b*d/ace )
x(~1)"q(2)d Z(g) [ ba bje. e |1 2V (5¢)
= ’ j

provided that both double series displayed above are absolutely convergent.
According to Theorems 1 and 2, we are now going to derive five reduction transfor-
mation formulae by concretely specifying §2(j) in five different manners.

q] &
i

evaluating the inner sum with respect to j in (5) by means of the g-Pfaff— Saalschiitz
theorem (cf. [5], 1I-12)
c/a,c/b
q;q] = l q] (6)
n

¢, ¢/ab
and then simplifying the corresponding equation displayed in Theorem 2, we obtain the

2.1. For the Q(j) sequence given by

q,w,b*do/wace

a(j) [a, b/a, b/e, b/e

—-n

q ", a, b
3¢2l _

¢, ¢* "ab/c

following reduction formula.
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1542 W. CHU, W. ZHANG

Proposition 1 (well-posed reduction formula).

] [a, b/a, b/c, b/e

1 ( bd )i
q —_— =
\ace
J

= m 1 —¢?""1b?d/ace
—-1" (3)
q} 7;)( ) 1 —b2d/qace

[b/a, b/c, ble, w/a, bdjace, b*d/qace, b*d/wace
X

= ¢¥dl |a,ce
q, w,b?da/wace

i;;;% i 9)ivs | g, d
bd/ac,bd/ae, bd/ce
d, bd/ace, b*d/ace

da)".
q, b, w, bd/ac, bd/ae, bd/ce, b da/wace q] (de)

The limiting case o — oo of this proposition yields an interesting transformation.

Corollary 1 (well-posed reduction formula).

] lb/a,b/c, b/e
q

| () (e -

|

b2d \/qde __\/qde b b b bd b
€

> q a,c,e
q, w

(b;@)ivs | ¢, d

4,5=0
_|bd/ac,bd/ae,bd/ce
| d, bd/ace, b2d/ace

¢ qace ’ ace ’ ace ’ a ’ & ’ ’ ace ’ wace wace
X8P7 4 —5
b2d b2d bd  bd bd T2
s ) bu w, —, D -
qace qace C ae ce

2.2, For the Q(j) sequence defined by
(é) [b/a7 b/C, b/ev Q]j dj
(¢:9);(b*d/ace; ¢*);

Q@) =
evaluating the inner sum with respect to j displayed in (5) through the g-analogue of

1
Gauss’ o F} (2> sum (cf. [5], -11)

a, b
202 [\/qab, —\/qab

and then simplifying the corresponding equation in Theorem 2, we get the following

q2] (7)

1 [qa,qb
G —q| =
q,qab

reduction formula.
Proposition 2 (well-posed reduction formula).

(¢'d)?[b/a,b/c,bje; q); (bd)i_
1) W )insla 0);(0Pd/ace; ) \ace
1—¢*1v%d/ace

q] Z(_l)nq(g) 1 —b2d/qace

oo n=0

oo
i | a,c e
2
l q, d

bd/ac,bd/ae,bd/ce
d, bd/ace, b*d/ace

] (t*d/qace; %) 3,
2

(4%:¢*)n

b/a, b/c, b/e, bd/ace
b, bd/ac, bd/ae, bd/ce
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WELL-POSED REDUCTION FORMULAE FOR ¢-KAMPE DE FERIET FUNCTION 1543

2.3. For the Q(j) sequence specified by

a(j) [b/a,b/c, b/e

q, w (b*d/ace; ¢?);

q] (wig?);
J

evaluating the inner sum with respect to j displayed in (5) via Andrews’ terminating
g-analogue of the Watson 3 Fy-sum (cf. [5], II-17)

n+1a2’

q7n7 q & —C
493 [ 9
c, qa, —qa

0, n — odd,

2.2 /.2
= s a~/c
c” [q 2q2 /2 QQ] , n = 2,',”7
g-a-, gc
m

®)

and then simplifying the corresponding equation in Theorem 2, we find the following
reduction formula.
Proposition 3 (well-posed reduction formula).

= (¢d)y |a.ce bja,bjc,bje
> s ot |1

520 (03 @it ¢ w

¢ (w; g%, bd\'_
(b%d/ace; ¢?); \ace
j

] o () 1-— q4”*1b2d/ace

Zq 1 —b2d/qace

oo n=0

bd/ac,bd/ae,bd/ce
d, bd/ace, b*d/ace

b, bd/ac, bd/ae, bd/ce

b/a, b/c, b/e, bd/ace
7, qu

b%d/qace, b*d/wace
1 l | (d*w)".

2.4. In Theorem 1, rewrite the double sum (3a) as

= a e e| | (b 006)
Z[q, b, d q]i(ace) Z(qib;q)jqj' )

i=0 =0

b J
q il
,<57>
J
and then evaluating the sum with respect to 5 displayed in (9) by means of the g-Gauss
summation theorem (cf. [5], 11-8)

a, b
201 [

C

Specializing the () sequence explicitly by

B,y
q

QU)=[

Cc| |c¢/ac/b
Tab| T c, c/ab

q] (10)

we have from Theorem 1 the following interesting reduction formula.
Proposition 4 (reduction formula).
|
itj

i;i 1—¢*ti~1bd/e | b/e, bd/qe
1 — bd/qe b,bd/ae,bd/ce

,j=0
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1544 W. CHU, W. ZHANG

o] ] (-

q, d
b/B,b/v,bd/e,bd/ace a, ¢, e b/py bd
= q| 493 G|

b,b/Bv,bd/ae,bd/ce d, b/B, b/vy

2.5. Alternatively, specializing the Q(j) sequence explicitly by

, NERTERT
) (4% 4%);
and then evaluating the sum with respect to j displayed in (9) through the g-analogue
1
of Bailey’s o F (2> sum (cf. [5], II-10)

202 l a4/

—q, b (b; ) oo an

a; b‘| _ [abv qb/a; q2]00

we derive from Theorem 1 another strange reduction formula.
Proposition 5 (reduction formula).
1 ( bd)i
q X
.\ ac
i+J

q] [ﬂ,q/ﬁ,bd/ace q] b
J

q, —4, b/e
a, ¢ e q'v3 ( bd )i
¢ d, b/p g/ | ace )
. . . 2:15 . . 0:3;

3. Nonterminating double series ®5..,. There is a theorem connecting the @777
series in the last section to @3(1)/’) 41 series due to Chu, Jia [3] (Theorem 2.2), where no
reduction formulae was given for this last series. By means of (2a), (2b), this section will
prove a transformation theorem for this @352 series and then derive four well-posed
reduction formulae.

Theorem 3. For an arbitrary sequence {Q(j)}, there holds the transformation

o0

Z 1—¢**+i~tbd/e b/e, bd/qe
1—bd/qe b,bd/ae,bd/ce

,j=0

(i+j) [a, c,d/e
xXqg\ 2
q, d

b/B,bd/e,bd/ace
b, bd/ae, bd/ce

q]i

o0 i=0

bd/e,bd/ace bd c .
Q) = 12
[bd/ae,bd/ce qL”zv_:o(ace) lb p ]H [q qi () (12a)
2n 1 , b 7 d 7 bd
_Z bje |a, ¢, ble, dfe, bdjge] | (12b)
1—bd/q6 g, b, d, bd/ae, bd/ce

x(=1)"q(%) (Zi)jz: (%)j [i}: q”_dl/bed/e

q] Q(j) (12¢)
J
provided that both double series displayed above are absolutely convergent.
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WELL-POSED REDUCTION FORMULAE FOR ¢-KAMPE DE FERIET FUNCTION 1545

Proof. Expressing the double sum in (12a) as

bd c e )
Z(ace) lb J ] l a| 20) = (13a)
1,7=0 i+ q [
= /- c da,dcie | bd
=>_90) a| ata | G (13b)
o i @b, ¢°d ace

and then transforming, by (2a), (2b), the above 3¢2-series into

s [qja, e 2042j-1p ¢

q] Z 1—¢%-1bd/e

o0 i=0
] <bd)i
q e =
~\ac

0 1— q2i+2j—1bd/e
q] 4 Z 1—bd/qe %

¢’b,q’d " ace q*bd/e, bd/ace

. bd] B [qud/ae,qud/ce

«(—1)ig(3) ¢ tbdfe,  ¢’a, ¢e,  ¢dfe, ¢ib/e
q, ¢’bd/ae, ¢'bd/ce, ¢’b, ¢'d

1 [ b, d
q
. a,c,b/e,d/e

| bd/ae,bd/ce
| bd/e,bd/ace

j =0

i b d AT ?

x(—l)lq(z) a, ¢, bfe, /e . (bd/qé,q)z+2g <bd>

b, d, bd/ae, bd/ce (¢;9)i ac
we derive the following equality:

S j - 1fq2i+2j*1bd/e
Eq(12 (2)
q(12a) = Z [b/e, d/e ql; Z 1—bd/qe ¢

=0

[a, ¢, ble, dfe
X

(bd/qe; q)it2; (bd '
b, d, bd/ae, bd/ce '

(4;9) ac

Relabeling the summation indices by n := i + j leads us to another expression

n

- Q) (bd/qe; Dnvi ;L \n—j ("57) bd I
XZ(:)[b/e,d/e;q]j (43 Dn—; A (a0>

2 1—¢* 'bd/e |a, ¢, ble, dfe
Eq(12a) = _
q(12a) = )

1—bd/qe , d, bd/ae, bd/ce

n=0

which is equivalent to the transformation in Theorem 3 in view of the relation

(bd/ae; Dnts _ (yj (@) OHIEDn t oy
(QQQ)n—j _( 1) q (Q7Q)n [q 4 bd/ aQ]j-

Theorem 3 is proved.

By specifying the Q(j) sequence in terms of shifted factorial fractions, we shall
derive from Theorem 3 three reduction formulae.
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1546 W. CHU, W. ZHANG
3.1. In Theorem 3, specializing the 2(j) sequence firstly by

a, ble, dfe q] <bd)j

g, w, bdajwe
and then evaluating the inner sum with respect to j displayed in (12¢) by means of (6)
lead us to the following reduction formula.
Proposition 6 (well-posed reduction formula).
e
q q| X
i+j a i
] ( bd ) (bd)j
q _ J— =
~\ace ac
J

q] 2 lb’ d
— i(—l)”q(g)ﬂx
n=0

Q@) = [

bd/e,bd/ace
bd/ae,bd/ce

q, w, bda/we

y |f)z, b/e, dfe

o0 4,j=0 L™
1 —bd/qe

a, ¢, ble, dfe, bd/qe, w/a, bdjwe
X
q, b, d, w, bd/ae, bd/ce, bda/we

] ( bda ) "
q — ) .
ac
When « — o0, this proposition results in an interesting transformation.

Corollary 2 (well-posed reduction formula).
e
q ql X
i+J a i

[bd/e,bd/ace q] i [Z 2
] (32) (-

bd/ae,bd/ce oo 1320
bd/qe, q\/bd/qe, fq\/bd/qe, a, ¢, ble, dje, bd/we
Vbd/qe, —+/bd/ge, b, d, w, bd/ae, bd/ce

lb/e, d/e
X

q, w

— 8¥7

3.2. In Theorem 3, specializing the §2(j) sequence alternatively by

Q) = o _Lledled; (M>j

bd/e,bd/ace
bd/ae,bd/ce

(¢:9);(bd/e; q?); \ac
and then evaluating the inner sum with respect to j displayed in (12¢) by means of (7)
Proposition 7 (well-posed reduction formula).
SCOIR
q] > a b d
o b/ed/eid; (bd) (bd)j _
(g:9);(bd/e;q?); \ ace ac
> _An—1 o on
=3 (cayrg) i bl o e e, dfe | (b /g g (AT
n=0 ,, (@%@ \ac

yield another reduction formula.
e
q q| X
o %,J=0 i+J 9 i
1—bd/gqe |b, d, bd/ae, bd/ce
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WELL-POSED REDUCTION FORMULAE FOR ¢-KAMPE DE FERIET FUNCTION 1547

n=0

bd/qe, bd/we
x 2
q, qw

3.3. In Theorem 3, specializing the 2(j) sequence finally by
_ b/e, dje wig?); [(bd\’
Q@) = q % ()
q, w j (bd/e’ q )J ac
and then evaluating the inner sum with respect to 5 displayed in (12¢) by means of (8)
give rise to the following reduction formula.
Proposition 8 (well-posed reduction formula).
bd/e,bd/ace > la, c e b/e, dfe
bd/ae, bd/ce 1 Z b, d|! q 1 q w [T
’ 0o 4,j=0 L™ i+j i ’ j
xi(w;qz)j ba i bd T
(bd/e; q?); \ace ac)
s 4n—1
:Zq(zg)lfq bd/e |a, ¢, bfle, dfe o
1—bd/gqe |b, d, bd/ae, bd/ce .
bd 2n
ac
4. Nonterminating double series i’égzz This section is devoted to the transfor-
mation and well-posed reduction formulae for the @égi‘b series, which does not seem to
have appeared previously in literature.
Theorem 4. For an arbitrary sequence {Q(j)}, there holds the transformation
= [ ¢'bd T a c,e )
— Q@) = 14
q] 'Z<ace) lb)d q]._[q () (14a)
oo ©,J=0 i+j
00 _ op—1 ] n
3 (g Lo e [a’ ¢, bje, dfe, bd/ge (bd) «

[bd/e, bd/ace
q

bd/ae,bd/ce

g

~ 1—bd/qe q, b, d, bd/ae, bd/ce _\ac
(14b)
n . —-n n—1 T
g il q ™ q¢"'bd/e bd/ace )
xS (=1)igG) (12 0 14
j:O( )q (bd) e e | beare q j () (140
provided that both double series displayed above are absolutely convergent.
Proof. Rewriting the double sum in (14a) as
s ibd\"' [ a c,e )
> <q> [ q] [ q| Q)= (15a)
“— \ ace b,d R ] ,
1,j=0 i+7
o |a ¢a, ¢, e ¢@bd
= Q , . ;— 15b
]2:)0 @y 4 (JL3¢2[ b i |? ace] (15b)

and then reformulating the last 3¢o-series via (2a), (2b) as

¢ qj(l, G, € qud
52 b, ¢d e | T
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B ¢’bd/ae, q* bd/ce
B q*bd/e, ¢’ bd/ace

o 1 — ¢ 2~ pd /e
q] Z q /><

1—¢% Tbd/e
] (qud>i
q —_— =
-\ ac

> 17q2i+2j71bd/6
q] _2 1—bd/qe %
Jr=

bd/qe ¢'bd :
¢ | bd/ce 4 .\ ac
2 1427

o0 i=0

C(1)igl) | €7 e dla, ¢, q'dle, ¢'b/e
4, ¢’bd/ae, ¢*bd/ce, ¢'b,  ¢’d

| bd/ae,bd/ce
| bd/e,bd/ace

b,d,bd/ace
a,b/e,d/e

c
q
itj ¢

we get the following double sum expression

a, ble, dfe

x (=1l lb, d, bdjae

o0 1 — @22 1pd /e ) bd/ace _
Eq(14a) = —1) : Q0
q(14a) MX_::O( S b be.d/e qj (4) %
lc 1 [a, ble, dje 1 [bd/qe 1 <qud)i
X q q — .
q b, d, bd/ae . bd/ce ir2) ac

This leads to the transformation displayed in Theorem 4 after having changed the sum-
mation indices by n := i + j and then applied the relation
|
J

c . bd/qe . :(g>j ¢, bd/qe
q i bd/ce e c q, bd/ce

Theorem 4 is proved.

q—n’ qn—lbd/e
q*bd/ce, q'"/c

4.1. Specifying the Q(j) sequence in Theorem 4 by

] (5)

and then evaluating the inner sum with respect to j displayed in (14c) by means of the
q-Pfaff— Saalschiitz formula (6), we obtain the following reduction formula.

Proposition 9 (well-posed reduction formula).
ce @bd\" [ bd\’
¢ q ¢ ace a)
itj J

bd/ae, bd/ce > my 1 —q?"~1bd/e
e —1 n (2)7
[bd/e,bd/ace q] 2 (1" 1—bdjge

o| [l ()
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b/e,d/e,q/c?

Q(j) = (~1Yq®) [ o b/ ace

Z (_1)jq(2) [b,d q, bd/ace

4,7=0

] lb/e,d/e,q/c2
q

oo n=0

bd/ge, a, q/c, bje,  dfe
X
q, b, d, bd/ae, bed/qge
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4.2. Instead, specifying the (j) sequence by
Q@) =

_ (L1)yig(h Lo bdjce Jar/e e bd/qee, bd/afe
- T TT wdjqee | q, aB)e, bdjae, bd/Be

b/e,d/e bd\’
1 | bd/ace ¢ \a
J J
and then evaluating the inner sum with respect to j displayed in (14c) by means of
Jackson’s g-analogue of Dougall’s 7 Fg-sum (cf. [5], 1I-22)
q; Q] =

a, Q\/aa 7q\/55 bv C, d7 €, qin
897
q] where ¢"t1a? = bede
n

\/&a _\/aa qa/ba qa/c, qa/da qa/€7 qn—i—la

| qa, qa/be, qa/bd, qa/cd
~ |qa/b, qafe, qa/d, qa/bed

we get from Theorem 4 another reduction formula.
Proposition 10 (well-posed reduction formula).

S o] L[] [

i,j=0
)1 —q¥""bd/ce 1—q*~tbd/ce | /c,B/c,bd/qce,bd/aBe
1—bd/qce q, aff/c, bd/ae, bd/Be

o (%) ()~
-

q] Z(_l)nq(’;)llfl_’;d/zfef/ex

oo n=0
1 (bd)"
q (%
ac

5. Nonterminating double series @}?Zﬁ Applying the two transformations for
3¢g-series (cf. [5], III-9 and III-10), Jia, Wang [7] studied systematically this <I>% ?;\L
series and found several reduction and summation formulae. Alternatively, we shall
employ (2a), (2b) to show a couple of new transformation theorems for this @%?2 series
and deduce from them four very strange reduction formulae, that differ substantially
from those due to Jia, Wang [7].

Theorem 5. For an arbitrary sequence {Q(j)}, there holds the transformation

x (1)l

bd/ae,bd/ce
bd/e,bd/ace

a, «a, B, ble, dfe, bd/qe, bed/afe
X
q, b, d, aB/c, bd/ae, bd/ae, bd/pBe

bd/e,bd/ace </ bd \* ce
P Q) = 16
[bd/ae,bd/ce q] z_: (ace) b q]( ‘L’d q 4 () (16a)
o0 1,5=0 i+J i
o} _ 2i+j5—1 ,b ,bd
=2 11qbd/bd/e la b/zd " ‘1] X (16b)
4,7 =0 —he/ae , bd/ce i+j
dfe bd\" Q)
BN . () _90) 16
"4 q,d,bd/ae qi ac (b/e;q)j ( C)

provided that both double series displayed above are absolutely convergent.
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Proof. Rewrite the double sum in (16a) as
< /bd\'|a c,e
2 \aee) 1519 |ga
i,j=0 ity LY
> N | @ qja, c, e
= Q .
Z (J) lb Q] '3¢2 [ b, d
Jj=0 j

According to (2a), (2b), the last 3¢2-series can be reformulated as

q

Q@) = (17a)

"ace

q; bd] . (17b)

da,ce bd bd/ae, ¢’ bd/ce i 1 —¢* T bd/e (i
3¢2 | G— | = »/ / gl D (-1 qfl/qb)x
b, d ace q¢’bd/e,bd/ace — 1—¢gi=1tbd/e

oo =0
@ tbd/e, ¢’a, c, ¢ble, dfe (bd)i
X , , =) =
q, bd/ae, ¢’bd/ce, d, @b ¢ . \ac

bd/ae,bd/ce
bd/e,bd/ace

b < | g2iti-1pd/e
—X
qL [a,b/e q} ,Z 1—bd/qe

j i=0
i () a,b/e,bd/qe ¢, dfe bd\"
x(—1)"q\2 q al \ — ] -
i LD d,bd/ae ,\ac

b, bd/ce
Substituting this expression into (17a), (17b) and then reordering the factors, we get the
transformation displayed in Theorem 5.

Alternatively, permuting the parameters of 3¢o-series gives
¢a, ¢, e bd ¢, e, ¢a bd
3¢>2[ T ;1:3¢2[7 : G —| -
ace

¢’b, d @b, d
Applying the formula (2a), (2b) to the 3¢o-series on the right-hand side yields

¢, e da bd bd/ac,bd/ae >0 1 —¢* bd/a (i
302 : G—| = al > (-1 (Ii/q(?)><
¢b, d ace bd/a,bd/ace = 1—bd/qa
bd/qa7 ¢, €, b/O/, q_Jd/CL <qud>l
X , 7)) =
q, bd/ac, bdjae, d, @b 1 S\ ce

bd/ac,bd/ae
bd/a,bd/ace

= 1—¢* 'bd/a 2(2)
q} Z 1—bd/qa ¢

o0 i=0

[b,qa/d; q); (wﬁi
q — ] .
. (0i@)ivj(qa/d; q)j—i \ace
Substituting this expression into (17a), (17b) and then reordering the factors, we obtain
another transformation formula.

Theorem 6. For an arbitrary sequence {Q(j)}, there holds the transformation

> bd \' |a c,e

‘J] > () [b 4_ _ [q,d
i+7J

oo ¢,j=0
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bd/qa, c, e, b/a
q,bd/ac,bd/ae,d

Q@)= (18a)

%

q

bd/a,bd/ace
bd/ac,bd/ae
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P 1 g2l , e, bla, bd
520 —bd/qa |q,d,bd/ac,bd/ae .
) 2\ ¢
2(%) (bd> a,9a/dial; .
Xq 8c
ace ) (b Q)i+j(qa/d§ Q)jfi U) (18¢)

provided that both double series displayed above are absolutely convergent.

For the two equations displayed in Theorems 5 and 6, our efforts have failed to
reduce the double sums on the right-hand side. However, we do succeed in figuring out
two instances in which their corresponding left double sums can be expressed in single
ones, that lead us to four remarkable reduction formulae.

5.1. Rewrite the double sum in (16a) or the same (18a) as

> la, ¢ e bd \* X [ qla
Sl G S lm

i—0 LD
For the Q(j) sequence specified by
b J
] ()
J

the sum with respect to j displayed in (19) can be evaluated via (10) as

[B, g'a b] [b/a,qib/ﬁ‘
201 , ; =

Q] Q) (19)

q

Q@) = [

gb | T ag| = | ¢ib,bjaB

4,5=0

Xq(;) ¢, dfe
q,d,bd/ae

Proposition 12 (reduction formula).

o0

Z 1—¢*'bd/a | c, e, b/a, bd/qa
1—bd/qa |q,d,bd/ac,bd/ae

Then Theorems 5 and 6 under the last specification for the 2(j) sequence give rise
respectively to the following two reduction formulae.
Proposition 11 (reduction formula).
i 1— ¢®+i-1pd/e [a,b/e,bd/qe ]
1—bd
/qe b, bd/ce "
o) Looe 1, () -
e \ac q,b/e ¢ \aB)
7 J
_|b/a,b/B,bd/e,bd/ace s a, ¢, e bd
| b,b/aB, bd/ae,bd/ce ¢ 003 2 d, b/p T ce |
1,7=0 i
. 2\ ¢ el J
2 g2(0) (bd) 8, a, qa/d; q]; <b> _
ace ) (g:4);(b; q)i+j(qa/d; q)j—i \aB
B b/a,b/B,bd/a,bd/ace p a, ¢, ¢ bd
| b,b/aB,bd/ac,bd]ae ¢ 003 2 d, b/B3 & e |
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5.2. Alternatively, letting 2(j) be the sequence
: ga/biq); ( b\’
() = L0 (2
(:9); a

and then evaluating the corresponding sum with respect to j displayed in (19) by means
of the g-Kummer sum (cf. [5], I1-9)

ia, q'b? /a; ¢*) o

[q"b, _b/a’; q]oo

qia, qa/b
201 [ /

¢ —b/a] = (¢ @)oo lg

we derive from Theorems 5 and 6 the following respective reduction formulae.
Proposition 13 (reduction formula).
] ( bd)i
q — ] x
-\ ac
1+7

i 1—¢**=1bd/e [a,b/e,bd/qe

= 1—bd/qe b, bd/ce
ol © d/e qa/b ( b)j
xq\2 — | =
1 q,d,bd/ae 1 . q,b/e 1 s\a

|4 a bd/e, bd/ace
| =b/a,b,bd/ae,bd/ce

| Tl

s i=0 LD

] lqib2/a 2] (bd>i
q i q — ] -
| d'a ace

t,j=0 qu
9 (35) o (o) =
st 1 £ e
"], | da |" ] \ace

—b/a,b,bd/ac, bd/ae ,
6. Nonterminating double series @33;3 Finally in this section, we are going to

Proposition 14 (reduction formula).

o0

Z 1—¢*Ybd/a | c, e b/a, bd/qa
1—bd/qa |q,d,bd/ac,bd/ae

o0 i=0

investigate the <I>3j§iﬁ series and prove one transformation theorem plus two interesting
reduction formulae.
Theorem 7. For an arbitrary sequence {Q2(j)}, there holds the transformation

>y [ace ¢bd\’
q} 2 [b7d;Q]i+j[ q]( ) = o

oo ©,J=0 q

bd/e,bd/ace
bd/ae,bd/ce

X1 _ 2251 bd 7
_ oy Lo bdje | bfae el oy
i,j=0 L= bd/qe bd/ae, b/ce ivo; L9 i
.o | D/, dfe bd\" (bd/ace;q)s; -,
(5)+2is 20 V0/ac )24 g 20
4 b, d e Lo\ ac [b/e,d/e;ql; () (20c)
]

provided that both double series displayed above are absolutely convergent.
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Proof. Rewrite the double sum in (20a) as

= Q) |ace ¢bd\' Q) a,c,e
Z [b,d: dliv; [ qL( ace ) _Z [b,d;(ﬂjg@ [qu,qjd

4,j=0 bv d, q]i—i—j q =0

q;
ace

g% bd]

21
According to (2a), (2b), we can reformulate the above 3¢o-series as

a, ¢ e q*bd q*bd/ae, ¢*bd/ce 1 it 1pg e
32 ‘ g | v T2 2j q Z 251 X
b, ¢’d ace ¢*bd/e,q¥bd/ace | | = 1—q* " bd/e
. (i 2j71bd/6 a c jd/e jb/e 2jbd i
7 q ’ ’ i q , q q
% (-1l 2j 2j j iqg | ( > -
q, q*'bd/ae, q*bd/ce, ¢, ¢d \ac

bd/ae,bd/ce
bd/e,bd/ace

b, d; q];(bd/ace; q)2j ~~ 1 — ¢* T2~ 1bd /e
[b/e,d/e;ql; =  1—bd/qe

] [a,c ] [ bd/qe ] (bd)i
q q q .
i L4 . bd/ae,bd/ce ip2; \OC

Substituting this last expression into (21) and then simplifying the resulting equation,
we get the transformation displayed in Theorem 7.

By specifying the Q(j) sequence and then expressing the double sum (20a) as single
series, we can prove two quite interesting reduction formulae.

6.1. Letting b = —d = /« and replacing e by —e, we can reformulate the double
sum in (20a) as

b/e, dfe

o Y

— |a. ¢ —€ o\ e Q) 2ij
iz:; q, \/av _\/a q],(m) jz::O(qua;qz)jq " (22)

Specifying the Q(j) sequence in Theorem 7 by

7| (&)

and then evaluating the inner sum with respect to j displayed in (22) by means of the
g-Gauss sum (10), we get the following reduction formula.
Proposition 15 (reduction formula).

. ﬁ?
Q@) = l q;

>© 11— q2i+2j71a/6 a/qe a/ez )
z‘;:o 1—a/qge [a/ae,a/ee q] 2 [ a |1 LH 8
() | @€ o i a/ace; q)o; b 2 = j =
xXq [ q Q]i ( ac ) ( / aq)2j lqg’a/eg q ‘|j (ﬂ'}/)
_a/Bia/y | 4| |a/e,aface o [a, ¢, —e;qli(a/By;¢%)i [ a \
- [a,a/ﬁ’y ] la/ae,a/ce q]m; (¢;9)ila/ B,y a/v; ¢%)i (ace) '
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6.2. Instead, specifying the 2(j) sequence in Theorem 7 by
8, /8 1

) o | ] (@ ta)
q, —q j

Q@) =

and then evaluating the inner sum with respect to j displayed in (22) by means of the
g-analogue of Bailey’s 2F1(%) sum (11), we obtain another reduction formula.
Proposition 16 (reduction formula).

i 1— g% +2-1g/e a/qe aje | a,c () s
s . q q| 4

1 —
P a/qe afae,afce v L @ i L ;

o\ [8.4*/8 o| (aface;q)ay 4 ;i
X(“) afe? 1 j((fT‘l)jj(qj o)’ =

/B o, aje,a/ace =~ ac,—esqli | d¥aB |, a i
BERE - a/ae, afce Z(q;q)i(a/ﬁ;qz),— *a/B (ace>'
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