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SARD’S THEOREM FOR MAPPINGS BETWEEN FRECHET
MANIFOLDS

TEOPEMA CAPIA JJI51 BIIOBPAJKEHb
MI’K MHOT'OBUJIAMMA ®PEIIE

We prove an infinite-dimensional version of Sard’s theorem for Fréchet manifolds. Let M and respectively
N be bounded Fréchet manifolds with compatible metrics dps (respectively dpy) modelled on Fréchet spaces
E (respectively F') with standard metrics. Let f: M — N be an M C¥®-Lipschitz-Fredholm map with
k > max{Ind f, 0}. Then the set of regular values of f is residual in N.

Jloseneso HeckiH4eHHOBMMIpHY Bepciio Teopemu Capma mus muoroBuais ®peme. [Mprnyctumo, mo M i
sinnmoeigHo N — obMesxeHi MHOTOBHOH i3 cyMiCHHMH MeTpHkamH dps (Bimmosimuo dpv), AKi 3MomensoBaHi
Ha npocropax ®pewe E (signosimio F) 3i crampapraumu Merpukamu. Hexait f: M — N 6yne MC*-
Binobpaxenuam Jlinumus - Gpegronsma 3 k > max{Ind f,0}. Toni MHOMKHHA perynipHux 3HaueHb [ €
JANMHUIKOBOIO B V.

1. Introduction. Sard’s theorem in infinite-dimensional spaces may fail as showed in
[1], by giving a counterexample of real smooth map on a Hilbert space with critical
values containing open set. However, in [2] Smale proved that if f: M — N is a
C*-Fredholm map between Banach manifolds with k > max{Ind f, 0}, then the set of
regular values of f is residual in V. The condition that f be Fredholm is necessary from
the counterexample in [1]. In this paper we generalize the Smale’s theorem for Fréchet
manifolds. To carry out this at first, we need to establish the stability of Fredholm
operators under small perturbation which requires to define an appropriate topology on
the space of linear continuous maps. But it seems that it is formidable to work with the
candidate topologies (cf. [3]), due to the fact that if F, F' and G are Fréchet spaces,
the evalution map is not continious for any vector space topology on the space L(E, F)
of linear maps, and if E is not normable or F is not empty then the composition
map 7: L(F,G) x L(E,F) — L(E,G) defined by m(¢,5) = ¢ o k, is not bilinear
continuous. An idea to remedy these problems could be to replace the space CL(E, F)
of all linear continuous maps between two Fréchet spaces (E,d) and (F,g) by the
space Ly 4(E, F) of all linear globally Lipschitz continuous maps. Then L4,4(E, F)
will have desired properties (see Remark 2.1, Proposition 2.1, and Proposition 2.2). In
addition, we have to restrict the class of maps that we use to those ones which for
them an inverse function theorem is avilable, we need this theorem to prove a local
representation theorem for Lipschitz— Fredholm maps which plays an essential role in
proving the main theorem. The class of maps that we will consider is the class of the
so-called M C*-maps introduced in [4, 5]. Because as mentioned there exists a suitable
topology on the space of linear globaly Lipshitz continuous maps and in this category
an inverse function theorem was obtained (see [4, 5]).

2. Preliminaries and notations. In this section we set up notations and conventions
which will be used. Most of the terminologies are taken from [5] but, we avoid differing
metric Fréchet space with Fréchet space.

2.1. Lipschitz maps and the space L4 4(FE, F'). Suppose (X,d) is a metric space.

We let BZ(z) to be an open ball centered at z with radius r, and _Ef(m) its closure. If
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X is a metrizable topological vector space, we set ||z|q = d(z,0), for z € X. Given a
linear map L: V' — W between vector spaces, we write L.z instead of L(z).

Fréchet space is a locally convex topological vector space F' whose topology can be
defined by a complete translational-invariant metric d on F. Recall that a neighbourhood
U C F of zero is absolutely convex if it is convex and balanced. In the case of real
Fréchet space, it makes balls to be invariant under reflections = +— —z. In the complex
case, they have to be invariant under multiplication with a complex unit. Every Fréchet
space F' admits a translational-invariant metric d defining the topology of F' with abso-
Iutely convex balls. If o, is an arbitrary sequence of positive real numbers converging
to zero and p, is any sequence of continuous semi-norms defining the topology of F.
Then

da,pt F X F —+ [0, c0),

pn(e— 1)

da, p(e, f) = sup anm

is a metric with absolutely convex balls. The metrics of the form do, , will be called
standard metrics.

Definition 2.1. Suppose (E,d) and (F,g) are two Fréchet spaces. Define
Lag(E,F) to be the set of all globally Lipschitz linear maps, i.e., maps L: E — F
such that for them:

IZlag = sup 1Zlo <o
zeE\{0} llz]la
We abbreviate Lg(E) = Laa(E, E); |Llla = || L|la,a for L € La(E).
Remark 2.1 ([5], Remark 1.9). Lg4(E, F) and the functions ||.||q,q have the fol-
lowing useful properties:
() |Z-zllg < ||ILlla,g llz|lafor all z € E. Moreover, 0 € Lg,o(E, F) with || 0||a,g =

= 0. If L is not identically zero, then ||Lg,q|| > 0.
(ii) If (G, h) is another Fréchet space, then
[HoLllan < [Hllgn I Lllag:

for L€ Lgg(B,F), and H € Ly n(F,G).
(i) If L, H € Lq4(E, F), then

IZL+ Hlla,g < [|L]la,g + [ Hlla,g < 0.

(iv) If g is a standard metric, then

Dyg: Lig(E,F) x Lag(E,F) — [0,c0),

(0
(L, H) — ||IL — Hlla,g

is a translational-invariant metric on Lg 4(E, F') making it into an abelian topological
group.
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Proposition 2.1 ([5], Proposition 2.1). Let (E,d) and (F,g) be Fréchet spaces,
and g a standard metric. Then the following hold:

(i) La,g(E, F) is a vector subspace of the space of all maps from E to F.

(ii) The evaluation map

Lag(B, FYx B — F,

(L,z) — L.z

is bilinear continuous.
(iii) If (G, h) is another Fréchet space with standard metric, then the composition
map

‘Cd.g(}:: G) x ‘Cg.h(Eu F) Tk Ed.h(E) G)=
(B~ Lo E

is bilinear continuous.

(iv) The metric (1) is complete, and has absolutely convex balls.

(v) The group of automorphisms, Aut(E) is open in Lq(E) with respect to the
topology induced by the metric (1). And the inversion map Aut(E) — Aut(F), A —
— A~ is continuous.

Proposition 2.2. Let (E,d) and (F,g) be Fréchet spaces, and g a standard metric.
The set of isomorphisms of E to F, Iso (E, F') is open in Lq,4(E, F) with respect to the
topology induced by the metric (1).

Proof. Fix an isomorphism i: E — F. Define a map

i*: La(E) — Lay(E, F),

i*=iok, k€ Lq(E)

i* is bijective because 7 is isomorphism. The composition 7 o k is bilinear continuous
by Proposition 2.1 (iii). Thus, ¢* is homeomorphism by virtue of the open mapping
theorem. And since the group of automorphisms of E, Aut(E), is open in L4(E) by
Proposition 2.2 (v), it follows that its image under ¢* which is the group of isomorphisms
Iso (E, F), is openin L44(E, F).

Proposition 2.2 is proved.

2.2. Differentiation and M C*-maps.

Definition 2.2. Let E,F be two Fréchet spaces, U an open subset of E, and
P: U — F a continuous map. P is called differentiable at the point p iff there exists a
linear map d, P: E — F with

P(p+th) — P(p)
t

Jor all h € F. If P is differentiable at all points of U, and if h = dp, P(h) forallp e U
is a continuous mapping from E into F and finally if P': UXE — F, (u, h) — dy P(h)
is continuous in product topology, then P is called Keller-differentiable. By induction
we define P*+1): U x Ek+1 5 F by

¢ P(R) = jin
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P® (u+tfip1)(f1, .- -5 Fi) = PO W) (f1,. .., fr)
. )

P(k+1)(u) fl] e 1fk+1) == %i‘_l}%

In this sense P is called smooth, if P%) exists for all k € Ny.

Definition 2.3. Let (E,d) and (F,g) be two Fréchet spaces with standard metrics,
U an open subset of E. A map P: U — F is called b-differentiable if it is Keller-
differentiable, dy P € Ly 4(E,F) for all p € U and the induced map dp P: U —
— La,¢(B, F) is continuous. We say P is MC° if it is continuous. It is called MC*, if
it is b-differentiable. In this case we write P® = P and P®) = P'. Let L4,4(E, F)o be
the connected component of Lq,q(E, F') containing the zero map. If P is D-differentiable,
and if there exists a connected open neighbourhood V of xo in U for each such that
P'ly =P'(20): V = Lag(E, F)q is MC*1, then P is called an M C*-map. Define
P® gt zo by P®) |y= (P’ |y —P'(20))* " . The map P is MC® if it is MCF for
all k € No.

We should mention that an appropriate version of the Chain rule is available and
the composition of composable M C*-maps are again MC¥. Fréchet manifold is a
Hausdorff Second countable topological space with an atlas of coordinate charts taking
their values in Fréchet spaces, such that the coordinate transition functions are all smooth
maps between Fréchet spaces. If these Fréchet spaces are endowed with Fréchet metrics
we require those metrics to be standard and the transition functions to be globally
Lipschitz and M C®°. In this case, the manifold is called bounded Fréchet manifold.

Definition 2.4. A compatible metric on a Fréchet manifold M is a metric d on M
such that there is a Fréchet subatlas of M such that in each chart U, d is equivalent to
the Fréchet metric dy.

If a Fréchet manifold carries a compatible metric, then it is bounded ([4], Theorem
3.33). And since we need manifolds to carry a compatible metric, we only deal with
bounded Fréchet manifolds.

Suppose M is a bounded Fréchet manifold. Naturally, we define a bounded Fréchet
vector bundle over M, this is a Fréchet vector bundle whose total space is a bounded
Fréchet manifold. The tangent bundle TM is a bounded Fréchet vector bundle over
M whose coordinate transition functions are just the tangents T'P of the coordinate
transition functions P for M.

Definition 2.5. 4 map P: M — N is an MC* of bounded Fréchet manifolds
if we can find charts around any point in M and its image in N such that the local
representative of P in these charts is an MC¥-map of Fréchet spaces. It is called
MC® if the local representative in the charts is M C®.

For k > 1, an MC¥*-map P: M — N of bounded Fréchet manifolds induces a
tangent map T'P: T'M — TN of their tangent bundles which takes the fibre over f €
€ M into the fibre over P(f) € N and is linear on each fibre. The local representatives
for the tangent map T'P are just the tangents of the local representatives for P. The
derivative of P at f is the linear map

DP(f) Tﬂff —--—}TNP(JC)

induced by T'P on the tangent spaces. When the manifolds are Fréchet spaces this agrees
with Definition 2.3.
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3. Lipschitz - Fredholm maps and stability.

Definition 3.1. Let (E,d) and (F,g) be Fréchet spaces, and g a standard met-
ric. A map @ € Lg4(E,F) is called Lipschitz— Fredholm operator if it satisfies the
Jollowing conditions:

1. The image of p is closed.

2. The dimension of the kernel of @ is finite.

3. The co-dimension of the image of  is finite.

We denote by LF(E, F') the set of all Lipschitz—Fredholm operators from F into
F. For p € LF(E, F') we define the index of ¢ to be

Ind ¢ = dimker¢ — codim Img .

A subset G of a Fréchet space F' is called topologically complemented or split in F, if
F' is homeomorphic to the topological direct sum G & H, where H is a subspace of I
We call H a topological complement of G in F.

Theorem 3.1 ([4], Theorem 3.14). Let F be a Fréchet space. Then:

(i) every finite-dimensional subspace of F is closed,

(if) every closed subspace G C F with codim(G) = dim(F/G) < oo is topologi-
cally complemented in F,

(iii) every finite-dimensional subspace of F is topologically complemented,

(iv) every linear isomorphism between the direct sum of two closed subspaces and
F,G@® H — F, is a homeomorphism.

Theorem 3.2. LF(E,F) is open in Lq,4(E,F) with respect to the topology
defined by the metric (1). Furthermore, the function T — IndT is continuous on
LF(E, F), hence constant on connected components of LF(E, F).

Proof. Suppose @: E — F is a Lipschitz—Fredholm operator. We have to find a
neighbourhood N of ¢ in Lg44(F, F) such that N C LF(E,F). We can write E =
= ker @ G, where G is a topological complement of ker ¢ by Theorem 3.1 (iii). ¢
induces linear isomorphism of & into its image ¢ (G) by virtue of the open mapping
theorem, thus we can write F' = (G) @& H for some finite dimensional subspace H in
F. The map

7:GoH — p(G)®H=F,

?(z,y) > px+y

is a linear isomorphism. But the set of linear isomorphisms is open in the space of
linear Lipschitz maps, see Proposition 2.2. Now assume 9 € L4,4(E, F') is in an open
neighbourhood of ¢, say N, it is constructed as follows, consider the space of linear
maps L(G @ H, F'). Define the map o

a: Lag(E,F) = L(G® H, F),

(cod)(z,y) =Y.z +y.
Put N = a~*(Iso(G @ H, F)). Then the map
Vv:GeH—F,
P(z,y) =Yz +y
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is therefore, a linear isomorphism. It follows that dim ker 1) < dimker¢. Indeed, con-
sider the projection map v: E = G @ker ¢ — ker . Since 1) is isomorphism it follows
that GNker 4 = 0. But G' = ker <y, whence ker(y|kery) = ker yNker ¢ = Gnker ¢ = 0.
Thus 7|xery: kerty — kert is a monomorphism, whence dimkery < dimkery <

< co0. Now let us show that codim Img(%) = dim -'wiF—E) < oo . Let K be the com-

plement of ~y(ker®) in ker¢. Then dim K < oo, and there exists an isomorphism
E = G @ K @ker 9. Notice that 1| = P|(ge {0}) and we have natural identifications:

. S 75 . A V..
¥(G) P(Ga{0}) VGO K) P(E)
Then we have the following commutative diagram:
4 L
w—(—-)' —_— "
J{ﬁ ¢
F o A
P(G oK) " (E)
Since ¢ is onto and H has a finite dimension, we see that dim % < co. So P is

Lipschitz—Fredholm. Evidently,
dimkeré =dimkery =dim K and codimImgy = dim H — dim K.

Furthermore,
dimker ¢ = dim K + dimkery and codimImgey = dim H = dim K + dim %
So we have

Ind 9y = dimkerty — (dim H — dim K) =
=dimkery + dim K —dim H =
= dimkerp — dim H =

= Ind ¢.

Theorem 3.2 is proved.

Definition 3.2. Let M and respectively N be bounded Fréchet manifolds with
compatible metrics dps and respectively dy modelled on Fréchet spaces E and respec-
tively F with standard metrics. A Lipschitz— Fredholm map is an MC*-map f: M — N
such that for each x € M, the derivative D P(z): TMy — T Np(qg) is a Lipschitz—
Fredholm operator. The index of f denoted by Ind f, is defined to be the index of D P(z)
for some z. Since f is MC* and M is connected by Theorem 2.2, the definition does
not depend on the choice of x.

4. Sard’s theorem. Let M and respectively N be bounded Fréchet manifolds with
compatible metrics dys and respectively dy modelled on Fréchet spaces F and respec-
tively F' with standard metrics. Let f: M — N be any MC'-map. A point z € M is
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called a regular point of f if D P(z): TM; — TNp(y) is surjective, otherwise is
called critical. The images of the critical points under f are called the the critical values
and their complement the regular values. Note that if y € IV is not in image of f itis a
regular value. We denote the set of critical points of f by Cs and the set of regular values
by R(f) or Ry. In addition, for A C M we define Ry, by Ry|A = N\ f(C; N A).
In particular, if U C M is open, R¢|U = R(f|U).

Theorem 4.1 ([5], Proposition 7.1. Inverse function theorem for M C*-maps). Let
(F,d) be a Fréchet space, with standard metric. Suppose k > 1, and f: U C F — F
is an M C*-map on open subset U. Let f'(xo) € Aut (F), for zo € U. Then there exists
an open neighbourhood V. C U of xo such that f(V) is open in F and flv: V — f(V)
is an M C*-diffeomorphism.

Theorem 4.2 (Local representation theorem). Let f: U € E — F be an MC*,
k > 1, ug € U and suppose that D f(ug) has closed split image Fy with closed
topological complement Fy and split kernel Eo with closed topological complement Fy.
Then there are two open sets U' CU C E = E1® Fy and V C Fy ® E3 and an MC*-
diffeomorphism ¥: V. — U’, such that (f o ¥)(u,v) = (u,n(u,v)) for all (u,v) € V,
where n: V — By is an M C*-map.

Proof. Let f = f1 X fo, where f;: U — Fj, 1 = 1, 2. By virtue of the open mapping
theorem we have D; fi(ug) = f1(up)|s, € Iso(E1, F1). Define the map

g:UCE @ Ey — F) @ Es,

g(u1,u2) = (f1(u1,u2),u2)

therefore,

D g(u).(e1, €2) = (Du;l(u) D, fltu)) (81)

I Ey €2

for all u = (u1,uz) € U, e; € Ey, e3 € Ey. By hypothesis Fy = kerD f(up) =
= kerD fi(up) and hence Dy fi(ug) = Ds fi(ug)|g, = 0. Therefore, D g(up) €
€ Iso (E, & Eg).

By the inverse function theorem, there are open sets U’ and V and an M Cke-
diffeomorphism ¥: V' — U’ such that ug € U' C U C E, g(ug) € V C Fy & E», and
U1 = g|,s. Hence if (u,v) € V, then (u,v) = (go¥)(u,v) = g(¥1(u,v), ¥a(u,v)) =
= (f1 0 ¥1(u,v), ¥a(u,v)), where ¥ = ¥ x U,. This shows that U5(v,v) = v and
(f100)(u,v) = u. Define n = fool, then (fo¥)(u,v) = (f10¥ (u,v), foo¥(u,v)) =
= (u,n(u,v)).

Theorem 4.2 is proved.

A map f between topological spaces is called locally closed if for any point z in
the domain of f there exists an open neighbourhood U such that f|z is a closed map.

Lemma 4.1. Let f: E — F be a Lipschitz—Fredholm map between Fréchet
spaces with standard metrics. Then f is locally closed.

Proof. Since f is Fredholm it has split image F; with topological complement Fy
and split kernel E5 with topological complement E;. By the local representation theorem
there are two open sets U C E; @ Es and V C Fy @ F5 and an M C*-diffeomorphism
W: V — U such that (f o ¥)(u,v) = (u,n(u,v)) for all (u,v) € V, where n: V — Ey
is an M C*-map. Suppose U; C F; and U, C Ej are open subsets and Up is compact.
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Let U' = Uy x Uy C U so that U7 = Uy X Us and U’ C U. Suppose A C U’ is
closed, and a sequence {(¥;, z:) = (¥i,n(¥i,2:))} C f(A) converges to (y, z), where
{(ys,21)} is a sequence in A, we need to show that (y,2z) € f(A). By assumption we
have {z;} C Us, and since Us is a compact subset of a finite dimensional topological
vector space, we may assume z; — T € Ug. Then (y;, z:) — (y,z). Since A is closed,
(y,z) € A. By continuity of f we see that {f(v;, z;) = (yi, 2:)} converges to f(y,z),
but f(y,z) € f(A) thus, f(A) is closed.

Lemma 4.1 is proved.

Theorem 4.3. Let M and respectively N be bounded Fréchet manifolds with com-
patible metrics dar and respectively dy modelled on Fréchet spaces E and respectively
F with standard metrics. Let f: M — N be an M C*-Lipschitz—Fredholm map with
k > max{Ind f,0}. Then the set of regular values of f is residual in N.

Proof. 1t is enough to verify that every m € M has an open neighbourhood Z
such that R(f|Z) is open and dense in N. Since M is second countable we can find a
countable open cover {Z;} of M with R¢|Z; open and dense. Since Ry = (), R¢|Zi,
it will follows R is residual.

Choose m € M, we will construct a neighborhood Z of m so that R(f|Z) is open
and dense. By the local representation theorem we may find charts (U, ¢) at m and
(V1) at f(m) such that ¢(U) C E x R, (V) C E x RP, and local representative
fow = o fop~! of f has the form fyy(e, z) = (e,7(e, z)) for (e, z) € $(U), where
E is a Fréchet space, z € R, e € E, and n: ¢p(U) — RP. The index of T, f isn —p
and so k > max{n — p,0}. To show that R(f|U) is dense in NV, it is enough to show
that R(fgy) is dense in E x RP. For e € E, (e,z) € ¥(U), define ne(z) = n(e, z).
For each e, 7. is a C*-map defined on open set of R™ then by Sard’s theorem, R(7.) is
dense in R? for each e € E. But for (e,z) € ¥(U), we have

I 0
Dined)=({ poe):
So D fgy(e, ) is surjective if and only if D n.(z) is surjective, hence for e € E

{e} x R(ne) = R(fgp) N ({e} x RP).

And so R(fsy) intersects every plane {e} X RP in a dense set and is, therefore, dense
in E x RP. So R(f|U) is dense.

Since f is locally closed we can chose an open neighbourhood Z of m such that
Z C U and f|z is closed. Since Cy is closed in M, then f(Z NCy) is closed in N, and
so R(f|Z) = N\ f(ZNCy) is open in N. Since R(f|U) C R(f|Z) then R(f|Z) is
dense as well.

Theorem 4.3 is proved.
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