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THE ESTIMATION OF A DISTRIBUTION FUNCTION
BY AN INDIRECT SAMPLE

OIIHIOBAHHS ®YHKIII PO3MOJILTY
3 BUKOPUCTAHHAM HEINPSAMOI BUBIPKH

The problem of estimation of a distribution function is considered when the observer has an access only to
some indicator random values. Some basic asymptotic properties of the constructed estimates are studied. In
this paper, the limit theorems are proved for continuous functionals related to the estimate of Fy,(x) in the
space Cla,1 —al,0 < a < 1/2.

Po3ristHyTO 3a]a4y OLIHIOBAHHS (YHKIIT PO3MOALTY y BUIIQAKY, KOJIH CIIOCTEpirad Mae JOCTYII JIMIIE 0 JSSIKUX
IH/IMKATOPHUX BUIAJKOBUX 3Ha4eHb. BUBYEHO nesiKi 6a30Bi ACUMNITOTHYHI BIACTUBOCTI no@\yaosax—mx OILIIHOK.
V crarTi 10BeNeHO IpaHHYHi TeOpeMH Ul HemepepBHHX (yHKUioHamB mono ouinku Fy,(z) y mpoctopi
Cla,1—al],0<a<1/2.

Let X1, Xo,..., X, be a sample of independent observations of a random non-negative
value X with a distribution function F'(z). In problems of the theory of censored obser-
vations, sample values are pairs Y; = (X; A t;) and Z; = I(Y; = X;), i = 1,n, where
t; are given numbers (¢; # t; for i # j) or random values independent of X;, i = 1, n.
Throughout the paper, I(A) denotes the indicator of the set A.

Our present study deals with a somewhat different case: an observer has an access
only to the values of random variables &; = I(X; < t;) with t; = cp 22; 1 ,1=1,n,
cp = inf{x > 0: F(z) =1} < c0.

The problem consists in estimating the distribution function F(z) by means of a
sample &1,&s,...,&,. Such a problem arises for example from a region of corrosion
investigations, see [1] where an experiment related to corrosion is described.

As an estimate for F'(x) we consider an expression of the form

0, x <0,
Fo(z) =1 Fin(z) - Fyl(z), 0<x<cp, 1)
17 T Z Cp,

1 & r—t;
Fln(x) = % K ( h J) fj,
=1

1 « T —t;
FQn(ZL’):% K( hj>,
j=1

where K (z) is a probability density (kernel), K (z) = K(—z), © € (—00,00), {h =
= h(n)} is a sequence of positive numbers converging to zero.

1. In this subsection we give the conditions of asymptotic unbiasedness and consis-
tency and the theorems on a limiting distribution F,, (z).
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Lemma 1. Assume that
1°. K (x) is a function of bounded variation. If nh — oo, then

| £ 7
DK™ 1<hj>F TH(ty) =
j=1

my— — mo— 1
_th/K 1( )F 1()du+0<nh), ()

uniformly with respect to x € [0, cp); m1, mo are natural numbers.
Proof. Let P(xz) be a uniform distribution function on [0,cp], and P,(z) be
an empirical distribution function of “the sample” ti,ts,...,t,, i.e., P,(z) =
n~t Z I(t; < x). It is obvious that

1 €T 1 x 1
su P,(x) — P(z)|= su —n—" = - < —. 3
s [Po) - Pla)l = s n[ - 2} - )
We have
1 « (-t .
. mi Fm2
nhz ( h ) ()
=1
1 7
o mq—1 € u Fm2 1 d _
CFh ( ) ( ) v
17
_ E/Kml’l (z;“) F™2 =1 () d(P, (u) — P(u)). 4)
0

Applying the integration by parts formula to the integral in the right-hand part of (4)
and taking (3) into account, we obtain (2).

Lemma 1 is proved.

Below it is assumed without loss of generality that the interval [0, cp] = [0, 1].

Theorem 1. Let F(x) be continuous and the conditions of the Lemma 1 be ful-
filled. Then the estimate (1) is asymptotically unbiased and consistent at all points
x € [0,1]. Moreover, F,,(x) has an asymptotically normal distribution, i.e.,

Vnh (ﬁn(x) - Eﬁn(z)) oM z) -% N(0,1),

o?(x) = F(z)(1 — F(x)) / K?(u) du

where d denotes convergence in distribution, and N(0,1) a random value having a
normal distribution with mean 0 and variance 1.

Proof. By Lemma | we have
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EFy,(x /K a:+ht)dt+0( ),
nh

)

1 1
FZn E/ (
0

and for n — oo

1

1 T —u

h/K< - )du—)Fg(x): )
0

K(t)F(z + th) dt — F(z)Fy().

x—1
h

Hence it follows that EF, () — F(z), z € [0,1] as n — oo.
Analogously, it is not difficult to show that

Var F, (z) =

- n; /K2 ("”‘2“) F(u)(1 — F(u))du+ O ((nz)rz) Fy2 ().

Hence we readily derive

nhVar F,,(z) ~ 02(z) = F(z)(1 — F(z)) / K2(u) du (6)

Let us now establish that ﬁn(a:) has an asymptotically normal distribution. Since, by

virtue of (5), Fy,(x) — F»(z), it remains for us to verify the condition of the Liapunov
central limit theorem for Fy,(x).
Let us denote

m=mta) =k () &

and show that

=" Eln; — En P (Var Py () 7178 — 0, 6> 0. 7)
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We have

n B n T — 1
> Eln; — Eng| T < 2M (nh) "GN " K (hJ> F(t;),
j=1 j=1

M = max K(x).
TzER

Hence, taking (2) into account, we find

S Elni — B+ < e1(nh) =0+, (®)

i=1

Using the relation (6) and the inequality (8), we establish that L,, = O((nh)*%), ie.,
(7) holds.

Theorem 1 is proved.

2. Uniform consistency. In this subsection we define the conditions, under which
the estimate F, (z) uniformly converges in probability (a.s.) to true F(z).

Let us introduce the Fourier transform of the function K ()

p(t) = 7 e K () dx

and assume that
20, (t) is absolutely integrable. Following E. Parzen [2], F,,(x) can be represented

as N
! R 1 - u
Fute) = g [ e oto) Yo
Thus
Fin(e) = BFe) = 5 76_”%(“)1 y (& — Flt)e™ 7 du
" " N J ] .
27rioo nh pt
Denote

dy = sup |Fy(z) — EF,(z)|, Qn=[h"1-h%, 0<a<l.
r€Q,

Theorem 2. Let K(x) satisfy conditions 1° and 2°.
(a) Let F(x) be continuous and nzh, — oo, then

D, = sup |F,(z) — F(z)] 0.
z€EQ,

(b) ]fzoo_1 n"IhTP < oo, p>2 then D, — 0 a.s.
Proof. We have

—ho1 S

1
sup 1—% K(m;“) du | < /K(u)du+/K(u)du—>0. )

TEQ,
ho—1

ISSN 1027-3190. Vip. mam. xcypn., 2010, m. 62, Ne 12



1646 E. NADARAYA, P. BABILUA, G. SOKHADZE

This and (5) imply that

sup |Fo,(z) — 1] — 0, (10)
TEN,

i.e., due to the uniform convergence for any g > 0, 0 < g9 < 1, and sufficiently large
n > ng, we have Fy,(z) > 1 — g9 uniformly with respect to x € ),,. Therefore,

dp < (1 —¢0)™" sup [Fin(2) — EFin(2)| <

zEQ,

< (1—c0) /| w)l Zm F du, =& - F(t;).

Hence, by Holder’s inequality, we obtain
%) n p o
., 1 _ iw b
<)o [ el [Smen#| | [lpwld]
2n)y 2

1 1
-+-=1, p>2.
p q

Thus

17 _
Bl < ) (o [ e[ Eeos (S5 ) )| dw )
oo g,k

where

(NS}

Qs

o) = (1=0)” o 7 4 ()] du

Denote

Then by (11) we write

/ lo(u)] [EA(w)| % du + / o) E|A() — EA@)[% du| . (12)

Using Whittle’s inequality [3] for moments of quadratic form, we obtain

P
2

E[A(u) — EA(u))|

gﬁpc( ) 5<Zcos (( _tk)U>7?(p)vi(p)>i7
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where

w@=mm%<Lc@=”rGy)

S

Hence it follows that

E|A(u) — EA(u)|? = O(n?) (13)

uniformly with respect to u € (—o00, 00). It is also clear that
[BA(u)|? = O(n?) (14)

uniformly with respect to u € (—00, 00).
Having combined the relations (12), (13) and (14), we obtain

B =0 (). v

(v/nh)p
Therefore,
~ ~ C3
P{ap [P - B0 2 e} < -

Furthermore, we have

sup ‘Eﬁn(x) - F(x)‘ <
e,

<
1—80

(sup |EF1n(z) — F(x)| + sup |1 — an(x)> . (16)

€N, TEQ,

By virtue of (10), the second summand in the right-hand part of (16) tends to 0, whereas
the first summand is estimated as follows:

1
sup |EF171,(I) - F(l‘)| S Sln + SZTL + 0 (> ) (17)
€N, nh

Sin= swp |3 / (Fly) ~ F(x)K (“"hy) dy|
0

0<z<1

1
1 ]
Son = su 1—/K( )d ,
RS wo )

and, by virtue of (9),
Sopn — 0 (18)

as n — oo.
Let us now consider S1,,. Note that

>

0<z<1

Sin < sup /1|F<y>F<z>|1K(xhy) dy =
0
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f 1 U
= su Fle—u)—Flx)|-K|(—-) du <
p/ (0 )~ F(a)| 7 K () du <
< s 7F< )~ F(a)| 7 K (V) d (19)
u r—u)— X — — Uu.
_03121 h h

Assume that § > 0 and divide the integration domain in (19) into two domains
|u] <6 and |u| > 6. Then

1 U
Sin < Fle—u)—F —K(-)d
v s [P =) - )| K (f) dus
lui <6

+ sup / |F(x—u)—F(x)|lK(B) du <

0<z<1 h h
|u|>8
< sup sup |F(z —u) — F(x)| +2 / K(u) du. (20)
TER |u|<d

5
[ul >4+

By a choice of § > 0 the first summand in the right-hand part of (20) can be made
arbitrarily small. Choosing § > 0 and letting n — oo, we find that the second summand
tends to zero. Therefore,

lim S, = 0. 21

n—oo

Finally, from the relations (15)—(18) and (21) the proof of the theorem follows.
Remark 1. 1.1fK(z) =0, |z| > 1landa = 1,i.e., Q,, = [h, 1 =], then Sa,, = 0.
2. In the conditions of Theorem 2

sup |Bu(z) — F()] — 0
z€[a,b]

in probability (a.s.) for any fixed interval [a,b] C [0, 1] since there may exist ng such
that [a,b] C Q,, n > ng.
Assume that h = n~7, v > 0. The conditions of Theorem 2 are fulfilled: nzh, —

1
—>ooif0<’y<§,and

~ _» . -2
Znifh;p<oo if 0<fy<pT, p> 2.
P

n=1
3. Estimation of moments. In considering the problem, there naturally arises a
question of estimation of the integral functionals of F'(z), for example, moments i,
m > 1:
1
- m/tm_l(l _F(@) dt.
0

As estimates for ., we consider the statistics
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1-h

n

=N m 1 — t—t; _

H'nm:l_ngjE/t 1K( h])Fan(t)dt'
J=1 h

1649

Theorem 3. Let K(x) satisfy condition 1° and, in addition to this, K(x) = 0
outside the interval [—1,1]. If nh — o0 as n — 00, then [y is an asymptotically

unbiased, consistent estimate for (i, and moreover

\/ﬁ(ﬁnma— Elinm) _d, N(O,1), o®=m? /t2m*2F(t)(1 — F(t))dt.
0

Proof. Since K (z) has [—1,1] as a support, we establish from (5) that Fy,(x) =

1
=140 (h) uniformly with respect to = € [h, 1 — h].
n

Hence, by Lemma 1 we have

1-h

NSy e (P ety g —
j=1 h
1—h ) 1 )
_ t—u m—1 1y
=1 m/ h/K( - )F(u)du t dt—i—O(nh)—
h 0
1—h 1 )
:1—m/ /K(v)F(t-i—vh)dv tm_ldt—i-O(h):
n
h —1

1

=1 —m/tm_l jK(v)F(t+vh) dv| dt +O(h) + O (nlh>
0 —1

By the Lebesgue theorem on majorized convergence, from (22) we establish that

1
0

1
= m/tm_l(l — F(t))dt = ptyn, m>1.
0

Therefore, fi,,, is an asymptotically unbiased estimate for /i, .
Further, analogously to (22), it can be shown that

Var fipy, = TT:/IF(t)(l—F(t))tZ"L‘Q [IC (1;—1) K (1-2)} C it
0

w0(5) o (@)
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1650 E. NADARAYA, P. BABILUA, G. SOKHADZE

where

K(v) = / K (u) du.

By the same Lebesgue theorem we see that

1
n Var fip, ~ o = m? /tQm—ZF(t)(l — F(t))dt. (24)

0

Therefore (23) and (24) imply that [i,,,, N Lo -

To complete the proof of the theorem it remains to show that the statistics v/ (i —
— Elinm,) have an asymptotically normal distribution with mean 0 and dispersion o.
For this it suffices to show that the Liapunov fraction L,, — 0. Indeed,

Ln _ n7(2+5)m2+5 ZE|£] o F(tj)|2+5x

j=1
h 245
1 m—1pr (L= 1\ 1 S y=(143)
x| K - F; () dt (Var finm) z) <
h

~ ~ _ s
< con” TN Ble; — F(ty)PH(Var i) "8 <
j=1

< e Y (Var flym) "2 = O(n™

Theorem 3 is proved.

4. Limit theorems of functionals related to the estimate ﬁ'n(x) In this subsection
the kernel K () > 0 is chosen so that it would be a function of finite variation and
satisfy the conditions

K(—u) = K(u), /K(u) du =1,
K(u) =0 for |u| > 1.

1
Theorem 4. Let g(x) > 0,z € [a,1 —a], 0 < a < 3 be a measurable and

bounded function.
(@) If F(a) > 0 and nh? — 0o as n — oo, then

~

l1—a
T, =+vn / o1 (@) {ﬁn(m) - EFn(:v)} dz ~%5 N(0,02), (25)

where

91(x) = g(@)(F(x)), (t) = W
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(b) If F(a) > 0, nh? — 0o, nh* — 0 as n — oo and F(z) has bounded derivatives
up to second order, then as n — o0

Remark 2. We have introduced a > 0 in (25) in order to avoidAthe boundary effect
of the estimate F;, () since near the interval boundary the estimate F,,(x) being a kernel
type estimate behaves worse in the sense of order of bias tendency to zero than on any
inner interval [a,1 —a] C [0,1],0 < a < %

Proof of Theorem 4. We have

S R R C PO

where
gon(u) = g1(u)Fy, (u)
Hence
o2 =VarT, =
1 n 1 1—a 2
=2y (5 [ K (U5 ) e 6)

Since K(u) has [—1,1] as a support and 0 < @ < u < 1 — q, it can be easily verified
that

1 1
Fo,(u)=1+0 (nh) and g2, (u) = g1(u) + O (nh)
uniformly on u € [a, 1 — a]. Therefore, from (26) we have

1—a 2

aiziéww(m) F () ) o ().

a

By virtue of Lemma 1, we can easily show that

/1¢2(F(t))dt ;/K(“ht> g1(u) du +O(n22).
0
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Therefore,
1—a 1 l1—a 2
—t
o2 = /wfz(F(t))dt h_/K<uh )gl(u)du +
+e) +@ 10 L 27
" " nh? /)’
a 1—a 2
eV :/w_Q(F(t)) dt % / K <u}:t> gr(uw)du | ,
1 . 1-a 2
e® = /qp_Q(F(t))dt % / K(u;t) g1(u) du
1—a a
Since by F(u)(1 — F(u)) < i () < cs and

1
VW) € o Fi el

a<u<l-—a,

it follows that g; (u) < c¢g, we have
2

a 1—Z—t
e < ¢y / dt / K(u)du | , (28)
0 a—t

h
where a —t > 0 and 1 — a — ¢t > 0. The first inequality is obvious, whereas the second

one follows from the inequalities 0 <t < g and 0 < a < 3

Therefore,

By the Lebesgue theorem on bounded convergence, from the latter expression and
(28) we obtain

e 50 as n — . (29)
Analogously,
e® 50 as n— oo (30)
Now let us establish that
l1—a l—a 2 l—a
-2 1 u—t 2 2
Y 2(F(t))dt 7 K 5 guwdu]| — o= [ g°(u)du
a a a

as n — oQ.
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We have
1—a 1—a 2 1—a
-2 1 u—t -2 2
pRE@) a5 (0K () du | — [0 (F@)eR) | <
l1—a 1—a
u—t
§011/¢—2(F(t))dt /gl(u)K( - )du—gl(t) <
1—a l1-a l1—a
— 1
< 19 /dt — [ gi(u)K (Ut> du—g; (t) / EK (Ut> du| +
l1—al 1—a
1 U
+cC13 / K( ) du— 1| dt = Aln +A2n (31)
Since
1—a
1 u—t
- K 1
/ . ( . ) du —>
forallt € (a,1 — a), we have
Agp — 0 as n — 0. (32)

Further, we continue the function g; (u) so that that outside [a, 1 — a] it has zero values
and denote the continued function by g, (u). Then

1 oo
1 T
Anzen|[| [mesn-awld) ;& (5)| <
0 —0o0
1 o)
<es [ [ g+ un) — g dy | K du =

-1 —o0

1
:015/w(uh)K(u) du — 0 as n — oo, (33)

21

where
w(y) = / [ (y +x) — ()| dx.

The (33) holds by virtue of the Lebesgue theorem on majorized convergence and
the fact that w(uh) < 2[|g||L, (—00,00) and w(uh) — 0 as n — oco. Thereby, taking
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(27)-(33) into account, we have proved that
02 — o= / g*(u) du. 34)

Now let us verify the fulfillment of the conditions of the central limit theorems for
the sums

We have

W R Ol
Ln = e =0(n3),
(v/VarT,)2+o
since a;, < c16, B|& — F(¢;)|?T° <1 forall 1 <j <nand VarT,, — o2.
Finally, the statement b) of the theorem follows from a) if we take into account that

Vi / 01(2) [BFu(2) — F(2)] do =

= ﬁ/m(w) /[K(u)(F(m—uh)—F(m))] du| dx =

—1

ORI 40 (wl;h) . (35)

Theorem 4 is proved.
Lemma 2. 1. In the conditions of the item (a) of Theorem 4,

vl

1—a

ET,|° <ecir / glwydu| , s>2. (36)

a

2. In the conditions of the item (b) of Theorem 4,

Wl

1—a
E|T,|° < cis / gluydu| , s>2. (37)

a

Proof. T, is the linear form of 1; = &; — F(t;), En; = 0, 1 < j < n. Hence to
prove (36) we use Whittle’s inequality [3].
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It is obvious that E|n;|* < 1, j = 1, n. Therefore by Whittle’s inequality

S
1—a 27 2

_ 1 <« u—t;
E|T,|° < 25 | K J

a

where ga, (u) = g1(u)Fy, (u).
This, by virtue of Lemma 1, yields

1
E|T,|° < c(s)2° /
0

S
=
/~

+0 <n}12> / gon(u) du . (38)

Further, since

o) <000 [ ap) [0 ()] =

<cg(u), a<u<1—a,

from (38) it follows that

E|T,|* < ¢y | sup

1 u—t
K| — n(w)du | X
oeton h/ ( A )92()

Z_
QU
~
| =

N
<

=
oy

N———
Q
[ V)

3
—
&
QU
<
+
Q

N\

>~

[ V]

N—
|

—7

o o
[ V)

3
<

N—
QU
<

N|w

IN

0 a a
1—a ; l1—a ;
< oy / gluydu | [1+0(1)] < coo / glwydu| , s>2.
Next we obtain
1—a S

BT <27 | BT+ Vi [ o) [ERaw) - Fw)] dul | <

1—a

<on| [gwdn] +lowar) [gudi <e| [ g

a

M
-
|
S]

@
—

Lemma 2 is proved.
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Let us introduce the following random processes:

Theorem 5. 1°. Let the conditions of the item (a) of Theorem 4 be fulfilled. Then
for all continuous functionals f(-) on Cla,1 — a], the distribution f(T,,(t)) converges
to the distribution f(W(t — a)) where W (t — a), a <t <1 — a, is a Wiener process
with a correlation function r(s,t) = min(t —a,s —a), W(t —a) =0, t = a.

20, Let the conditions of the item (b) of Theorem 4 be fulfilled. Then for all continu-
ous functionals f(-) on Cla,1 — a), the distribution f(T,(t)) converges to the distribu-
tion f(W(t — a)).

Proof. First we will show that the finite-dimensional distributions of processes T',, (t)
converge to the finite-dimensional distribution of a process W(t — a), t > a. Let us
consider one moment of time ¢;. We have to show that

To(t)) -5 W(t1 — a). (39)

To prove (39), it suffices to take g(z) = Ijq4,)(®) in (25). Then, by virtue of
Theorem 4,

1—a

To(t1) -5 N |0, / gy (@) dz | = N(0,t1 — a).

a

Let us now consider two moments of time ¢, to, t; < to. We have to show that
(To(tr), T(t)) 5 (W(ty — a), W (ts — a)). (40)
To prove (40), it suffices to take in (25)
9(z) = (A + A2)[,1,) () + Aoy, 1) (@),
where A1 and Ao are arbitrary finite numbers. Then, by virtue of Theorem 4,
AT (t1) + AT (t2) —5 N (0, (A1 + A0)2(t — a) + A(ta — t1)) .
On the other hand,
MWt —a) + MW (ta —a) =
= A1+ X)[W(t1 —a) = W(0)] + A [W(t2 — a) — W(t1 — a)]

is distributed as N (0, (A1 + A2)(t1 — @) + A3(t2 — t1)) . Therefore (40) holds. The
case of three and more number of moments is considered analogously. Therefore the
finite-dimensional distributions of processes T',,(t) converge to the finite-dimensional
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distributions of a Wiener process W (t — a), a <t < 1 — a with a correlation function
r(t1,t2) = min(ty — a,t2 —a), Wt —a)=0, t=a.

Now we will show that the sequence {7, (t)} is dense, i.e., the sequence of the
corresponding distributions is dense. For this it suffices to show that for any ¢1,ts €
€la,1 —a]andalln

E‘Tn(tl)—Tn(tg)r §625|t1—t2‘%7 S>2.

Indeed, this inequality is obtained from (36) for g(x) = Iy, 4,)(x).

Further, taking (35), (37) and the statement b) of Theorem 4 into account, we easily
ascertain that the finite-dimensional distributions of processes 7,,(t) converge to the
finite-dimensional distributions of a Wiener process W (¢ — a), and also that

E ‘Tn(tl) — Tn(t2)|s < 026|t1 — tg‘%, s> 2.

Hence, from Theorem 2 of the monograph [3, p. 583] the proof of the theorem follows.
Application. By virtue of Theorem 5 and the Corollary of Theorem 1 from [3,
p- 371] we can write that

P{T+ = max T,(t) > )\} —

n a<t<l—a

— G\ = da

mie’q’{ 1—2a)}

. . 1
a is a prescribed number, 0 < a < 2) as n — oo.
This result makes it possible to construct tests of a level o, 0 < a < 1, for testing
the hypothesis Hy by which
Hy: lim EF,(z) = Fy(z), a<z<1—a,

n—oo

in the alternative hypothesis

/ Y(Fo(z)) (7}51;10 EF,(z) — FO(:I:)) dz > 0.

Let A, be the critical value, G(\,) = a. If as a result of the experiment it turns out
that 7,7 > )\, then the hypothesis Hy must be rejected.

Remark 3. Let t; be the partitioning points of an interval [0, cr], cp = inf{z >
27 —1

>0: F(x) =1} < oo, chosen from the relation H(¢;) = o

x) = ]h(u) du
0

h(u) is some known density of a distribution on [0,¢p| and h(z) > p > 0 for all
x € [0,cr]. In that case, by a reasoning analogous to that used above we can obtain a
generalization of the results of the present study.

, j = 1,n, where

ISSN 1027-3190. Vip. mam. scypn., 2010, m. 62, Ne 12



1658 E. NADARAYA, P. BABILUA, G. SOKHADZE

Remark 4. Some ideas of the proof of Theorem 4 are borrowed from the interesting
paper by A. V. Ivanov [5].
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