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ON LATTICE OSCILLATOR-TYPE KIRKWOOD -SALSBURG
EQUATION WITH ATTRACTIVE MANYBODY POTENTIALS

PO I'PATKOBE PIBHAAHHS KIPKBYJA -3AJIbIIBYPTA
OCIIWJIATOPHOI'O TUILY 3 ITPUTAI'YBAJIBHUMMU
BATATOYACTUHKOBHUMMHA ITOTEHHIAJTAMHA

A lattice oscillator-type Kirkwood— Salsburg (KS) equation with a general one-body phase measurable space
and manybody interaction potentials is considered. For special choices of the measurable space, its soluti-
ons describe grand-canonical equilibrium states of lattice equilibrium classical and quantum linear oscillator
systems. We prove the existence of a solution of the symmetrized KS equation for manybody interaction
potentials which are either attractive (non-positive) and finite-range or infinite-range and repulsive (positive).
The considered symmetrization of the KS equation is new and is based on the superstability of manybody
potentials.

Posrsinaetsest rpatkoBe piBHsHHA Kipksyna —3ansudypra (KC) ocuusiaTopHOro TUIly 3 3aralbHUM (pa3oBHM
OJJHOYaCTMHKOBMM BUMIPHUM IPOCTOPOM Ta 0araTO4aCTMHKOBUMHM IOTeHIiadamMu B3aemopuii. [Ipu neBHOMY
BHOOpPI 1IbOTO BUMIPHOTO HpocTOpy po3B’s3ku KC piBHSHHS ONUCYIOTh KOpEINsLiiHI (yHKIIT BEIMKOro Ka-
HOHIYHOTO aHCAMOIIO IPATKOBHX DPIBHOBRKHUX KIACHYHHX Ta KBAHTOBHX CHCTEM OCHWIATODIB. JloBeneHO
iCHyBaHHs po3B’s3Ky cuMeTpu3oBaHoro KC piBHAHHS Ui 6araro4acTHHKOBHX TTOTEHIIAIIB B3a€MOL, sIKi a00
MPUTATYBaJIbHI (HEMOAATHI) Ta MAIOTh CKIHYEHHY Ai0, a00 BiJIIITOBXYBaJbHI (I07aTHI) Ta MalOTh HECKIHYECH-
Hy fito. Po3misanyBana cuMmerpu3allis HOBa 1 IPYHTYETBCS HA YMOBI CYNEPCTIMKOCTI Uil GararouacTHHKOBHX
MOTEHIIaiB.

1. Introduction and main result. In this paper we consider the oscillator-type lattice
Kirkwood - Salsburg (KS) equation with the one-body phase measurable space (2, PY),
an interaction potential energy U(wx), X C Z? and an external potential u(w), where
wx = (wy € Q,z € X). It is an resolvent-type equation satisfied by a sequence
of correlation functions p = {p(wx), X € Z?} and may describe grand canonical
classical and quantum oscillator systems with a potential energy generated by a pair and
manybody potentials uy (wy ), Y C Z¢ (|[Y| = 2 corresponds to a pair potential, |Y| is
a number of sites in V'), that is

U(wx) = Z Uy(bdy).

[Y[>2,YCX

The potential energy is an unbounded function and P°(Q2) = oo for oscillator-type or
abstract unbounded spin systems. The space 2 can be considered as a metric space (o-
algebra is associated with Borel sets), which is a discrete union of finite balls, and the
measure PP is finite on them.

The KS equation is written as follows

p=zKp+ za,

where a(wx) = d|x],1, Ok, is the Kroneker symbol. The KS operator K in its turn is
given by

(KF)(wx) = Z /K(Ww|X\z§wZ)|:F(wX\$UZ) —/P(dwas)F(wXuz) P(dwz),

ZCXe
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where the integrations are performed over the cartesian |Y|-fold product QY1 of the

measurable space and €2, for X = x the first term in the square bracket corresponding to

Z = & is equal to zero and P(dwy) = H oy e~ PFu2) PO(dy, ). The KS kernels are
Y

connected with the potential energy U(wx ) in the following way (x € X, X NY = 2)
e—ﬁW(wm\WX\qu) — Z K(wl|wx\a:’ws)7 W(wl‘wy) = U(WYUZ) — U(WY)

sCy
(1.1)
The expression for the kernel K will be derived in the beginning of the next section and
is given by (2.2) or (2.3). It has the same structure as the KS kernel for particle systems
[1,2].

A derivation of the KS equation with manybody potentials is very close to its deriva-
tion in the case of lattice gas proposed in [3]. We give it in the Appendix starting from
the expression of the grand canonical correlation functions in a compact set which is
enlarged to the whole Z¢. That is, the KS equation is related to the correlation functions
in the thermodynamic limit.

Classical lattice oscillator systems are described by w = ¢ € R = Q, P%(dq) = dq
and quantum lattice oscillator systems by w = w € Q, P°(dw) = dgP? (dw) and

B8 B8
u(w) = 5 / w(w(r))dr,  Uwx) =" / Ulwx (r)dr,  wx(0) = gx,
0 0

where (2 is the space of all continuous paths, Pﬁ 4(dw) is the conditional Wiener mea-
sure concentrated on continuous paths, starting from ¢ and arriving into ¢ at a “time”
B (see [4, 5]). This Wiener measure is generated by the probability transition den-
(a—d)
4t
exp{td?}, where 9 is the operator of differentiation in the oscillator variable ¢. (2 can
be represented as the Cartesian product of R and the space €2y of continuous paths start-
ing from the origin due to the translation invariance (with respect to the starting point)
of the conditional Wiener measure (see the remark in the end of the paper). We assume

sity Pi(q — ¢') = (4mt)" /2 exp {— which coincides with the kernel of

that the mass of an oscillator is equal to 1 and the Plank constant is equal to the unity.

The lattice oscillator-type (or unbounded spin) KS equation is not well known even
for pair interaction contrary to the case of the particle KS equation considered by Ruelle
and Ginibre in [3, 5]. Classical and quantum systems of oscillators with pair interaction
were usually considered in the canonical ensemble (see [6—9]). A short-range ternary
interaction between quantum oscillators was considered in [10] also in the canonical
ensemble. The lattice KS equation for unbounded spins appeared earlier for the integer-
spin Ising systems with pair interaction in [11] and systems of classical and quantum
oscillators with finite-range positive (repulsive) manybody potentials in [12, 13].

It is known [1, 3] that to solve the particle KS equation at low activities one needs
to symmetrize it with respect to the stability condition if short-range pair potentials are
not positive. In this paper we show that in order to solve the lattice oscillator-type KS
equation one needs to symmetrize it with respect to a super-stability condition introduced
in [14] for classical lattice oscillator systems. In a general case it can be formulated as
follows: there exists a non-negative function v on 2 such that
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uy (w <J V(Wy ), Ny = eﬁ’“’lﬂ(‘“)P dw) < oo, (1.2)
YWY Y Yy
yeYy

where the constants [, ¢ are non-negative, the constant -y is positive, ||J|;1 =
= maxz Jy < oo and the summation is performed over subsets of Z¢ con-
x Y,zeY

taining a site . In the case of positive many-body finite-range potentials we used the
symmetrization with respect to the superstability condition for a pair potential in [12].
The idea of the symmetrization was used in [11] in a special way. For finite-range
manybody potentials we will be able to put { = 0 if

|uz,y(wm,wy)’ < Jpmy VU (we)v(wy). (1.3)

Such the condition was postulated by Kunz for proving of a convergence of a polymer
cluster expansion for gibbsian canonical correlation functions of a lattice system of os-
cillators interacting via a pair potential u, ,,. He employed this condition for an estimate
of the cluster functions, satisfying the KS recursion relation, in a way reminiscent of its
symmetrization.

We will consider the following four cases: (A) finite-range potentials; (B;) infinite-
range positive potentials; (B2) finite-range manybody potentials and infinite-range pair
potentials; (C) ¢ = 0, finite-range manybody potentials and infinite-range pair potentials
satisfying (1.3). The range of the potentials will be denoted by R.

We will find solutions of the KS equation for positive finite-range potentials and
symmetrized KS equation in other cases in the Banach spaces E¢, E¢ 5 (E; = E¢ ),
respectively. [E¢ ¢ is the linear space of sequences of measurable functions with the norm

1Flles = mac e esii“peXp{ 2 Je } [Ex(wx)l, f(w) =80 (w),

reX
We will use the following notations: P’(dw) = e/ P(dw), N§ = Ny *'No, Ny =
_ /U(M)Pl(dW), N, = /eﬁc‘”’P’(dw), Ny = /U(w)eﬁﬂ-bHlv(w)Pl(dw); co = ||J||1

(co = ||J2|l1) for general (positive finite-range manybody) potentials, the norm ||J||;
will be denoted by ||J2||1 if manybody potentials are zero and

[Tl =max |J|i(z),  [Jh(x)= > Jwzd?(Z]+1)7 1=1, o>1,
ZC(z)°

where the summation is performed over Z%\x. For the symmetrization we employ the
function

Wizlwx)= Y vlwy) > Juyovo', o>1.

yeX\z Y C(xUy)°

We have the following inequality:

Z W/(:U|WX) = Z wx Z Z JyUatUYU S

reX zeX yeX\z Y C(xUy)®
<> vwe) D Y Tyueuve T < TR v(wa). (1.4)
rzeX y€(z)e Y C(zUy)© rzeX
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It makes possible to symmetrize the KS equation with its respect with the help of the
related inequality

W (zlwx) < [Jhv(ws) (1.5)

in the following way. Let x.(wx) be the characteristic(indication) function of the set
D, where this inequality holds. Then (1.4) implies that U,c x D, = QXI or

Z Xo(wx) > 1
reX
since D, may intersect for different . It is more convenient to deal with
-1

Glwx) = [ Doxwwx) | xelwx), D Xilwx)=1. (1.6)

yeX rxeX

The symmetrized KS operator K is given by

(RP)wx) = 3 xilwx) 3 / K (s x5 w2) X

zeX ZCXe

[ Flosnaz) = [ Pldon)Faxuz)| Plawz)

where for X = x the first term in the square bracket corresponding to Z = & is equal
to zero. The symmetrized KS equation

p:zf(p—&—zoz

is derived after multiplying both sides of the KS equation for fixed X, « by the charac-
teristic functions i (wx) and applying (1.6). For all the cases except By one can put
o = 1. Our main result is formulated in the following theorem.

Theorem 1.1. Let either { > 0or( =0and v—co—|J|1 > 0,v—&B|J|1 +
+|IJ]1) = 0,7 —co — |J|1 — EN1||J2]l1 > 0, v > |J|1 for the four cases A, By, Ba, C,
respectively. Moreover, let 0 > 1 + Ny in the case By. Then there exists a continuous
positive function G(§) such that for the norm of the symmetrized KS operator in the
Banach space Eg ¢ the following bound holds ||K|¢.; < (6% 4 No)e©) and the
vector p from the space Ee¢ ¢

p= Zz"“f("oz (1.7)

n>0

determines the unique solution of the symmetrized KS equations in Ey ¢, respectively,
if |z| < ||I~(||g; If the potentials are positive and finite-range then these conclusions
hold for f = 0, the KS operator and the solution of the KS equation if K is substituted
instead of K in the right-hand side of (1.7).

This theorem will be proven with the help of our basic bound for the function

Fowx)= 3 §|Y‘/|K(wx\wx\w;wy)P’(dwy),

YCXe
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P'(dwy) = exp { > f(wz)} P(dwy).

z€Y

For the norm of the KS operator we have the following inequality:
1Blle.s < (674 + No) maxess sup K (wf),
wx

) (1.8)
K(wx|f) = ZX wx)e f(‘“’”)Kw(wX).

rzeX

We will show that NV is divergent at zero § for classical and quantum oscillator systems
with mild restrictions on the potential energy (see the proof of Proposition 4.2). This
implies that the convergence radius of series in (1.7) shrinks to zero at zero 3. This is a
result of the facts that U, u are unbounded functions and P° is an unbounded measure.
The results of the proposed paper generalize the results of our papers [12, 13].

The case corresponding to positive infinite-range potentials (B;) will be treated by
us separately starting from the second representation of the KS kernels. Our result for
this case may be considered as a nontrivial generalization of the Ruelle’s result in [3]
concerning the existence of a solution of the KS equation for lattice gas with many-
body interaction potentials. Remark that The lattice gas is equivalent to the Ising model,
i.e., the simplest lattice system of finite-valued spins. Oscillator systems are systems
with unbounded spins which are more complicated than the bounded spin systems. All
our results presented in this paper and previous ones in [12, 13] lead to the conclu-
sion: to have a solution in B¢ ¢ the lattice oscillator-type KS equation needs a special
symmetrization if potentials are not positive and finite-range.

Our paper is organized as follows. In the next section we write down two expressions
for the KS kernels and the basic bound in Theorem 2.1, which prove Theorem 1.1, and
comment on an optimal choice of £ which trivializes the expression for G. In the third
section we prove the basic bound. In the fourth section we adapt our result for quantum
lattice oscillator systems and establish the character of dependence of G at the zero (.

2. KS Kkernels and the basic bound. The first representation for the KS kernels cab
be derived with the help of the purely algebraic relation

= > ()P F(ws). 2.1

SCX S'CS

It is derived from the simple equality

n=[X], Y (=3 (-1'c, =0 sz=u(nniz>r

SeX =0

Indeed, let’s consider the coefficient before F'(wx\,) in the right-hand side of the pre-
vious equality for arbitrary x. It corresponds either for the case S = X or S = X\z
and S = X\x . The signs are different before F' for these options and this coefficient is
equal to zero. Further one has to take S = X, S = X\z1, S = X\u2, S = X\ Uz,
S" = X\z1 Uz and check that the coefficient before F'(wx\z, Uz, ), i-€., the last equal-
ity for n = 2, is equal to zero. In the same fashion one has to calculate the coefficients
before F(wx\z,Ug,...uz, ), corresponding for the choice S = X\zy Uap U... Uz,
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1692 W. I. SKRYPNIK

and check that it coincides with the above sum with the binomial coefficients. As a
result (1.1) follows from (2.1) with

K (welwx\miwy) = Y (=) \SlemWlealoxieos), 2.2
Sy

The second representation for the KS kernels is found from the standard arguments
whose analog in the case of the lattice gas can be seen in [3]. Let

W(wx;wylz) = Z uzuy (Wzuy),
zeZCX

W(wx,wy|m Z Z uzus(wzus) Z W(wx;wsla).

2€ZCX @ASCY @#SCY
Then
W(wzlwx\z, wy) = W(wz|lwx\z) + W(wx;wy|z)
and

e~ BW (wxswy|z) _ H (1 + (e—ﬁW(wx;ws\m) _ 1)) — Z Ko (wx;ws),
PASCY sCY

K,(wx;wg) =1,
where
n
= (wx;wy) Z Z H —AW wxiwy;|z) 1).
n=1UY;=Y,Y; %2 j=1

As a result we obtain the second representation for the KS kernels
K(welwx\z;wy) = e_BW(””IwX\x)Kz(wX;wy) (2.3)

which will be used only for positive infinite-range potentials.
Proposition 2.1. Let all the potentials be finite-range except the pair one and
have the range R. Then the following equality holds for X NY =@, x € X

K(welwx\z;wy) = E K (welwx\a; ws )X B, (r) (S")G(we lwy\ s/ )X Be () (Y\S'),
S'CY
2.4)

where B, (R) is the hyper-ball with the radius R centered at x, BS(R) = Z4\B,(R),

G(wz|ws) = Z (=1)15\8"lg=AWalwelwsr) — H<e—ﬁu(w,y)(wl,wy) 1)

s'CSs y€eS

and Wo(wy|lws') = Z

e Uz y (Wa, Wy ).
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Proof. The manybody potentials have the finite range R, that is for an arbitrary
z € X, | X| > 2 the following quality holds ux(wx) =0, |t — 2’| > R, 2’ € X\z and
| — 2’| is the Euclidean distance between two lattice sites. We demand also

W(we| x\a» ws) = W(we|wx\z, ws\s,) + Wa(welws, ), (2.5)
where y ¢ B, (R) if y € S5. Here one has to take also into account the equality
Wa(we|ws) = Wa(wa|ws, ) + Wa(we|ws\s,)-
Let’s substitute the equality

1= T[] Bery®) + X5.c00 @) = Y X5. () (S)XBe(R)(Y\S')
yey S'CY

into the expression for the KS kernel and apply (3.8). This results in

D (—n)Slem AW eloxiaws) Ny g 1) (S XBe(r) (Y\S') =

SCy s'CYy

= Z Z(—1)‘Y\S|€_Bw(w”IwX\““wS)XBm(R)(S/)XB;(R)(Y\S/) =
S/CY SCY

= Z Z Z (_1)(|Y\—|51\—\52|)X

S'CY S, CY\S’ 51C57

w e BIW (Walwx\a,ws; )+W2(w|wsz)]XBz(R) (S))xBe(r)(Y\S') =

= Y XBaw (S (Y\S') D (~1)(IS = IS1Dem AW (s e wsi)
S'CY S1CS’

x Z (—=1) (¥ =18 I=182D) g =BWa(welwsy)
SeCY\S’

Proposition 2.1 is proved.
Theorem 1.1 will be proven with the help of (1.5), (1.6) and the following theorem.
Theorem 2.1. The following inequality holds:

K. (wx) < exp{écr + Beav(ws) + Eesy/ Bu(ws) + feaW (z|lwx)}, ¢ >0, (2.6)

where co = c3 = ¢4 = 0, ¢c1 = 2|Bo(R)|No hold for positive finite-range potentials;
c3 # 0 except for C; ca = 2§, co = £(|J)1 + ||J||1), for B; and ca = 1 for the rest
three cases. The constant ci takes the following values in the four remaining cases,
respectively,

2|Bo(R)|N1, BNylJl2, 2|Bo(R)|Ny+ Nof|Jall1,  2|Bo(R)|Ni.

For the constant co the following expression is true co = © + &', where ® = cq, for

A, By; ¢ =0for A, C; ¢! = Ny||J2||1 for B and v — |J|1 > if v — |J|1 > 0 for C.
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For positive finite-range potentials Theorem 2.1 and (1.8) yield immediately that
G(&) = &cq in Theorem 1.1. That is, the KS operator is bounded in E,. The inequali-
ties (2.6) and (1.5), (1.6) yield the bound

I_((wx\f)Seclgesssupexp{—f(w)—&—6(02—1—04\J|1)v(w)+503 ﬁv(w)}. 2.7

This bound and (1.8) imply that the symmetrized KS operator is bounded in the Banach
space E¢ ¢ for (,v > 0 and G in Theorem 1.1 is given by

Cs

G(&) = er + By ¢ (

1+¢

(1+0)/¢
) , c5 = ca + el J .

v>0 14+¢
the condition v — ¢o — ¢4]J|1 > 0 corresponds to the conditions stated in Theorem 1.1
for the three first cases and then

- a (1+6)/¢
Here we used the formula maxe™ T = exp < ¢ ( ) .If ¢ = 0 then

G(§) =&, ¢=0. (2.8)

For the fourth case C we have v — co — ¢4|J|1 = v — ¢® — |J]1 and derive, taking
into account the last statement in Theorem 2.1 (c° depends on 7), for v > |J|; (this
condition is required in Theorem 1.1 for ¢ = 0)

G(§) = &ar + Ecs. (2.9)

The optimal choice of £ will be such that G(£) is less than a constant or a function with
a simple dependence on 3. Such a choice is obvious if G(§) is given either by (2.8)
or (2.9). Then either £ = cfl and G(§) = 1l or & = (01 + \/%)_1 and G(§) < 2.
The same choice is possible for ( > 0 and A with G proportional to 5 (c5 does not
depend on &). For By, ¢ > 0 one can put £ = (¢; +3|J|1 + HJH1)71 and obtain G(¢§) <
(14+0)/¢
<14 ¢y e (ch) . For By, ¢ > 0 one can put £ = (N1HJ2||1 + cl)_1
co + |J‘1 (1+0)/¢
1+¢ > '

3. Proof of Theorem 2.1. We have the following inequalities which are analogs of

the inequalities for the KS kernels for the lattice gas systems from [1]

and this means that G(&) < 14 ¢By~ /¢ (

Z gIY'/|KJD(WX;WY)|P'(do.)y) <

YCXe¢
Y] !
< TS N L[ P ) =
YCXe =1 UY;=Y j=1

n l
=Y X 3 Y T i) <

n>0  |Y|=n,YCX¢ =1 UY;=Y j=1
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n

n>0 = |YCXe

=exp| ¢ Z \/|673W(WX;UJY|$) — 1| P/ (dwy)

YCXxe

Hence for positive potentials uy > 0 one derives from (2.3) the following estimate:

> € [ 1K waloyaion) P (day) <

YCXxe

<expq¢s 3o [ IWlwxiorl)lPdor) b G.1)

yCXe

For positive short-range potentials (case B1) we have to make estimates of W (w,|wx\z)
and the integral in (3.1) using (1.2)

|W(wx;wylz)| < Z luzuy (wzuy)| < Z Jzuy Z v(wy) =

2€ZCX 2€ZCX yCZUY
= Z Jzuy Z v(wy) + Z v(wy) +v(wz) | - (3.2)
r€ZCX yey yeEZ\x

The last inequality yields

/ W (wx:wy [2)| P (dwy) <

Y
<NYUST eozoy [NOYTH Y wlwy) +o(ws) | =
ZCX\z yeZ\x

= NS Taozoy [NIY ]+ v(ws)] +
ZCX\z

-I-Néy‘ Z v(wy) Z JyuzuzUy -
yeEX\z ZCX\(zUy)

Here we utilized the equality

NN Fysy) = Y. > F(Yuyy). (32)

YCAyeYy yeA\X YCA\y

As a result

3 /|W(wX;wy | 2P (dwy) < N a4 ho(ws)+ W' (2 |wy), o > 14 No.
YCXe
(3.3)
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1696 W. I. SKRYPNIK

We also obtain from (1.2) and (3.2")

(W (ws | wx\a)| < Z luz(wz)| <
t€ZCX

< Z Jzus Z v(wy) < W'(wy | wx\z) + | ]10(ws). (3.4)
ZCX\z yeEZUz

The previous two inequalities prove Theorem 2.1 for the case B;. The proof of the
remaining part of Theorem 1.1 will be based on the inequality

Ky (wx) < MW erlox)teonten) TT(14¢K, ,), (3.5)
YYFT

where he product is taken over Z?\z. If all the potentials have range R then
K(wx | WX\:JL’;WY) = K(Ww | WX\CC;WY)XBI(R)(Y)' (36)

Here one has to apply (2.5) with y = Sp, Wa(wz|wy) = 0 and check that the left-hand
side of the last equality is zero since the term with S = S’ in (2.2) has the opposite sign
to the term with S = S”\y. For positive finite-range potentials (3.6) and (2.2) result in

K(Wac | wX\z;WY) < 2‘Y|XBI(R)(Y)7

Ko(wx) < Y (26N Ixp, () (V) =
Y,ugY

- H (14 26 Nox B, () (1)) < 2| Bo(R)|ENo
Y, TFY

Hence Theorem 2.1 holds for positive finite-range manybody potentials potentials (the
simplest subcase of A).
For positive (infinite-range) many-body potentials we have

’K(ww | WX\a:%‘/JY)’ < PWa(walwx o)+ J2lliv(ws) H (1+ eBI\lellv(Wy))_ (3.6")

yey

It is a consequence of the inequality

K (we | wx\oiwy)| < Y e PWalenloxieus) <
Sy

S S*BWZ(Wzl‘*’X\mUS) H (1 + e*ﬁuz,y(wzmwy))
yey

derived from the first representation (2.2) for the KS kernels and (1.2) for the pair
potential.
Now let the potentials be non-positive. From (2.2) it follows that

| K (w | wx\oiwy)| < Y efWeeloxiows)l, (3.7
SCy
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Let’s estimate the function under the sign of the exponent of the last inequality starting
from the equality

W, [wxvaoy) = Y, uzlwz)— Y, uglwz)= Y, uglws)

ZCXUY z@ZCXUY z€ZCXUY

An employment of (1.2) and changing orders of summations yield

’W(ww | Wx\zuy)| < Z luz(wz)| <

$€ZCXUY
© Y BYe- Y der X -
t€ZCXUY  yCZ ZCXUY\z yCZUz
- Z U(Wy) Z JzUyUZ + U(wm) Z JIUZ -
yeYUX\z ZCXUY \(zUy) ZCXUY \z
= Z v(wy) Z Jnyuz-f—ZU(Wy) Z Jeoyuzt+
yeX\z ZCXUY\(zUy) yey ZCXUY\(zUy)

+v(ww) Z quz.

ZCXUY\z

For the third summand in the right-hand side of the last inequality we have

v(wm) Z JmUZ S U(wx) Z JmUZ S U(WI)HJHl

ZCXUY\z ZC(z)e

For the second and first summands we have, respectively

Z v(wy) Z Jeoyuz < Z v(wy) Z Jzoyuz < ||| Z v(wy),

yey ZCXUY\(zUy) yey ZC(yux)e yey
Z U(wy) Z Ja:UyUZ S Z U(wy) Z J;L'UyUZ~
yeX\z ZCXUY \(zUy) yeX\z ZC(zUy)e
As a result

(W (wa | wxveuy)| < I17l1v(ws) + W (welwx) + [l > v(w,).  (3.8)
yeyY

From (3.7), (3.8) one deduces the analog of (3.6")

K (e | wxrgiwy)| < PV @elox)+1hvw) T 1+ eI, (3.9)
yey

So, let the potentials have the range R and be non-positive (case A). From (3.6) and
(3.9) it follows that Theorem 2.1 is true (the series in the expression for K, into a
product as in the formula before (3.6")) since (3.5) is true with

K:v,y = 2XBJ(R) (y)Nl .
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Let the pair potential be infinite-range. Then taking absolute values of the summands
and dropping X e (g)(Y'\S") in (2.4) one deduce from it and (3.9) that

’K(wm | WX\atawY)’ <
< W' (welwx)+H T hv(we) H [Glwelwy) + X5, (r) (W) (1 + LI (3.10)
yey

From (3.6) it follows that for positive manybody potentials the analogous inequality
holds with Jo substituted instead of J. The last inequality gives rise to (3.5) with

Kyy = Key + 2xB,(r)(Y) N1, (3.11)
where K, , = e~ At (Warwy) _ 1|P'(dw,). But using (1.2) for the pair potential
with Jg , = J,_, one obtains

Ky < ﬁ/ |uz7y(ww7Wy)|€ﬁ|um’y(wm7wy)|P/(dwy) <

< BJe_y(N1v(w,) + No)ePTe-vvws), (3.12)
The last inequality and (3.5) show that Theorem 2.1 is true for B,. Here one has to use

the inequality 1 + £BJ,—y (N1v(wz) + Na) < exp {{BJp—y (N1v(wz) + Na) }.
Let the pair potential satisfy (1.3) (case C). This inequality implies

K,y < /P’(dw)(eﬁ"“y\/”(“’z)\/”(w) —1)dw.

For arbitrary a > 0 we have

Koy < / (em%/vwz)\/v(w) _ e—wx—y\/vmh/v(w)) P'(dw) =
— PR () / Ba*v(w) (efma (@) —(20) " Ty /o(@2))? _

_e—ﬂ(a\/v(w)-‘r(?a)71Jm—y\/“(wm))2)P’(dw).

For the function in the round brackets we have the bound (b = (2a) ™' J,—y\/v(ws) )
—Blay/o@)=b)? _ j=Blay/o@)+b))?

a2 / e~k g2ikay/Bu(w) (62“)\/5 — 6_2“’\/3) ’ dk <
S 7-‘__1/2/e_k2 (‘BQibk\/ﬁ . 1’ + |e—2ibk\/g _ 1|) dk S 77_1/28b\/51€0,

KO = /e*’@2|k|dk.
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Here we used the inequality |ei* — 1| < 2|z|, z € R. Let B%(a) = [ %% P/ (dw).
Then the last and previous bounds yield the generalized IN bound [11]

K%y < SIQOBO(CL)(2&)7166(2‘1)_2‘]5—?/1)(“)1)Jm_y /ﬁv(wx)7
L+ &(Kyy + 2xB,(r) (¥)N1) <
< B2a) P2 v(we)+8r° (20) T oy \/BY(we) BY (@)6+2x 8, () (W) N1E

(3.5), (3.11) and the last bound prove the basic bound (2.6) with
= =2a) 23, s =8k°(2a) 71| e[| B®(a). (3.13)
We determine a from the equality
y= b= =y =T = 2a0) I3 = 0(2a)7%, 0> 0,
and put By(a) = N’ for this choice. This means that for v — [J|; > 0
(20)* = (v = [J) O+ 173]1),  co =07 (4" T2 1 N') (3.14)

If in addition manybody finite-range potentials are positive then all the above equalities
for ¢; are true if one substitutes ||.Jz||1 instead of ||J||;. Note that for classical systems,

. n .

the choice § = 7%, — < s<1— —O, where 2n, 2n are the degrees of the polynomials
n n

u, v, respectively, allows one to prove that cg tends to a finite limit (zero) if S tends to

>2)
zero |s > — |.

n

4. Quantum systems. In this section we show that all the integrals in our theorems
are well defined for quantum lattice oscillator systems.

Proposition 4.1. Let (1.2), (1.3) hold for classical systems. Then (1.2), (1.3) hold
Sor quantum systems and the norms N;, Ny, N’ are finite.

Proof. Obviously, the first inequality in (1.2) for quantum systems is satisfied with

Bu(w) = / v(w(7))dr. From the Schwartz inequality it follows that (1.3) holds for
0
quantum systems. From the Helder inequality

8 1+¢

B
ﬁvpr((w) =p5"¢ /U(w(T))dT < /U1+C(w(T))dT

0 0

and the Golden - Thompson inequality Tr eA*5 < Tre4e? one derives the bound
Ny = / dq / ¢~ PH S PO (guy) —
— Ty B0 —utr' ™) (47T/3)—1/2/e—B[u(q)—’v’vl“(q)}dq. 4.1)

Here we took into account that ¢#9” (q,q) = (4w3)~1/2. By the same arguments
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N, < (47T5)—1/2/e—,@’[’u(cz)—’wl“(q)—cw(q)]agq7
4.2)
Ny < (4n )12 / =B lu@) =1 (@) —co (@)} +o(a) gy

B%(a) < (47B)1/? / e~ Blu@—(rra®)e(@) g, (4.3)

where we used the elementary inequality v(w) < e’(®) . The bound Ny > 0 is derived
from the bounds v > 0, u(w(r)) < ug, |w(T)] < R, 0 < 7 < B, where up is a
constant. These bounds show that Ny, N; < oo, Ny < N, < oo and N§, N’ < 0.
Proposition 4.1 is proved.
The reduced density matrices p(gx|¢) are given by

plaxldx) = /eiﬁzmex D pwx) Py (dw),

where the sequence {p(w x), X C Zd} is the solution of the (symmetrized) KS equation
determined in Theorem 1.1. The following bound is valid for the them

plaxld) < ¥ ples T[ [eouertipy , (du,) =
rzeX

= g‘X‘”p”&f H P'B(qm(I;)a
zeX

where P?(q.;q,) is the kernel of the semigroup whose infinitesimal generator is 9% —
—u-+ ’yvlJrC.

The following proposition clarifies a dependence of the above norms on S in a
neighborhood of the origin.

Proposition 4.2. Letn_¢*"—7 < u(q) < niq¢®+1,v(q) = ¢ +1,1+( < iy

no
Let also 0 = 37% and s <1 — "0 Then
n
N; < B—(1+n)/2an’ Ny < g=1/2=no/n=1/2n

N(/] < B—no/n]\’[(l)7 N’ < ﬂ—(1+n)/2an7

where j = 0,1 and all the norms in the right-hand sides of the inequalities are finite on
a finite interval in f3.
Proof. The proof is based on an application of the Helder inequality

no/n

B

B
/wQ"O(T)dT < gl=mo/n /wZ"(T)dT
0

0

It and the bound |z|" < lel®! give

Ny — Ny < 5in0/n(471717)7n0/nc?10/n / eiﬂa(w)dqpf,q(dw),
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n—
4
by 371/?" in the integrals in the bounds (4.1), (4.2) for Ny, N, one sees the inequalities
for Ny, N7 in the proposition are true. They imply also the similar inequality for N,
after an application for the Golden — Thompson inequality. The inequality for N’ follows
from (4.3) and the inequality (4.1) for V;.

To estimate accurately N} on has to obtain an accurate bound from above for Ny
starting from the inequalities

B
where u(w) = u(w) — cpv(w)) — f(w) — / w?"(7)dr. By rescaling the variables
0

B8
u(w) < /gt /w2"(7')d7' +d, 0<n <n,
0

B
No > eiﬁal/dq/exp fn’/wQ”(T)dT Pqu(dw),
0

where o’ is a constant. The first inequality is a result of the inequality ¢! < eq® + e,
k >1,q >0, e <1. From the Jensen inequality it follows that

B
No = e P (4m) "1/ / dgexp { —n'\/473 / P’ (dw / w?(r)dr
0

Here we took into account /Pfq(dw) = (476) /2. Further

B
/Pﬁ (dw) /w dT—//PO q ’Q"POﬁ (¢ — q)dq'dT <
0

B
<2 / / P5(q) (g™ + ¢*) Py (¢)dg'dr = (4m) V2 \/B(29)*" + ¢,
0

Here we used the inequality (¢ — q + q)?" < 22"(¢*" + (¢ — ¢')*"), the semigroup
property of P!(q) and the equality P%(0) = (478)~'/2. ¢, does not depend on ¢ and
is finite for a finite 3 since

8
¢, = 22" / / P (d)d*" Py (¢ )dq'dr <
0

B 1/2 1/2
< 22n/ (/ 2 /2ndq) </(P(§3—T(q/))2q/2ndq/> dr =
0
B
= (4m)~12%" </ eqz/2q2"dq) / n/sz
0
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Here we applied the Schwartz inequality. A a result

~1
Nyt < \/arpevi™ cptBa (/ dqe"/B(Qq)2n> =

-1
_ m51/2+1/2n6\/ﬁc;+5a' (/dqen/@q)%’) )

Taking into account that NO < N, the bound for Ny and the last bound one derives
N} < B~m0/™Nj. This concludes the proof of the proposition.

Remark. For the choice P°(dw) = dgP,(dw), where P,(dw) is the conditional
Wiener measure, concentrated on continuous paths starting from ¢, solutions of the
KS equation may correspond to correlation functions of a stochastic dynamics of lattice
oscillators. The result of the proposed paper may be applied without difficulty for a proof
of an existence of solutions of the BBGKY-type hierarchy for the stochastic dynamics
of oscillators interacting via manybody potentials (in [15] only pair interaction was
considered). A scheme for a proof of the local convergence of the finite-volume grand-
canonical correlation functions to the solution of the KS equation can be found in [15].

5. Appendix. To derive the KS equation one has to start from the expressions for
the grand canonical correlation functions in a compact set A

Pwx) = xa(X)=4! Z zlYUX‘/P(dwy)e_ﬂU(“’XUY), (5.1)
YCA\X

where the grand partition function =, coincides with the numerator of the right-hand
side of (5.1) for empty set X. Substituting U(wxuy) = U(wxuy\o)+ W (we | wx\zuy)
and the first equality in (1.1) into the expression of the finite volume grand canonical
correlation functions one obtains

PMwx) =

==\ (X) Z Y OXI /P(dwy)e*BU(“’XUY\m) Z K(we | wx\g;ws) =
YCA\X scy

= EX1XA(X) Z ZlYUX‘ Z /P(dOJy)K(wm ‘WX\x;ws)e_BU(wXUY\”") —
YCA\X sCy

=z Z /P(dwz)K(wm | wx\ziwz) 23 XA (X U Z)x
ZCA\X

% Z LYUXUZ|-1 /P(dwy)e_ﬁU(wX\z7WY)'
Y CA\(ZUX)

The equality

PA(UJX\I) :EX1XA(X\$) Z Z|YUX\—1/P(dwy)e—BU(wx\z,wy)
Y C(A\X)Uz
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leads to

EXl)(A(X U Z) Z Z\YUXUZ|71 /P(dwy)e*BU(wX\m,wy) —
Y CA\(ZUX)

— A @) (0 wxravz) — / Pldw, )" (wxoz)).

It’s clear that the terms with x € Y in the sum, representing the first term in the round
brackets, are canceled by the same terms in the sum representing the second term in the
brackets. This concludes the derivation of the KS equation if one takes also into account
that p* (wg) = 1. That, is the KS equation is given for x € X, | X| > 1 by

Alwx) = 2xal) 3 / K (s w2) [0 (@3 000) —
ZCA\X

- [ Pldwn)p wxuz)|Pldoz) (52)

and for X = z by

PMwa) = 2xal@)d 1 / M (w2) Plduss) +

+ Y /K(wx|wZ)|:pA(wZ)/P(dwm)PA(WZUm) P(dwz)

1Z1>1,Z2CA\a

Let a(wx) = 6)x|,1- Let, also, the KS operator K be given for A = 7% by the right-
hand side of (5.2), if | X| > 1 and the right-hand side of without the unity if X = x. As
a result the finite volume and infinite volume KS equations in an abstract form look like

pa = 2Kppa + 2xa0, p=zKp+ za,

where K5 = xaK xa, xa is the operator of multiplication by the characteristic function
Of AI (XAF)X(WX) = XA(X)FX(WX)
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