О. Ю. Дашкова (Киев. нац. ун-т им. Т. Шевченко)

ОБ ОДНОМ КЛАССЕ МОДУЛЕЙ НАД ЦЕЛОЧИСЛЕННЫМИ ГРУППОВЫМИ КОЛЬЦАМИ ЛОКАЛЬНО РАЗРЕШИМЫХ ГРУПП

We study the $\mathbb{Z}G$ -module A in the case where a group G is locally soluble and satisfies the condition \min naz, and its cocentralizer in A is not an artinian \mathbb{Z} -module. We prove that under above-mentioned conditions, the group G is soluble. The structure of the group G is studied in more details in the case where this group is not the Chernikov group.

Досліджено ${\bf Z}G$ -модуль A у випадку, коли група G ϵ локально розв'язною і задовольня ϵ умову min – naz, а $\ddot{\imath}$ коцентралізатор в A не ϵ артиновим ${\bf Z}$ -модулем. Доведено, що при виконанні вказаних умов група G ϵ розв'язною. Будову групи G вивчено більш детально у випадку, коли вона не ϵ черніковською.

1. Введение. Пусть F — поле, A — векторное пространство над полем F, GL(F,A) — группа всех F-автоморфизмов векторного пространства A. Группа GL(F,A) и все ее подгруппы называются линейными группами. В случае, когда векторное пространство A имеет бесконечную размерность над полем F, группа GL(F,A) исследовалась совсем мало.

Если H — подгруппа группы GL(F,A), то H реально действует на фактор-пространстве $A/C_A(H)$ естественным образом. Если размерность $\dim_F(A/C_A(H))$ конечна (бесконечна), говорят, что H имеет конечную (бесконечную) центральную размерность. Это определение впервые было введено в [1]. В [2] изучались линейные группы бесконечной центральной размерности и бесконечного ранга, у которых любая собственная подгруппа бесконечного ранга имеет конечную центральную размерность. В [1] изучались подгруппы G группы GL(F,A), которые обладают тем свойством, что семейство всех подгрупп группы G, имеющих бесконечную центральную размерность, удовлетворяет условию минимальности для подгрупп.

Если G — подгруппа группы GL(F,A), то A может быть рассмотрено как FG-модуль. Обобщением этой ситуации является случай RG-модуля, где R — коммутативное кольцо, достаточно близкое к полю (область целостности, дедекиндова область, область главных идеалов и т. д.). Одним из обобщений конечномерного векторного пространства являются R-модули с условием минимальности (артиновы модули). В настоящей работе исследуется $\mathbf{Z}G$ -модуль A такой, что фактормодуль $A/C_A(G)$ не является артиновым \mathbf{Z} -модулем. В этом случае будем говорить, что коцентрализатор группы G в модуле A не является артиновым \mathbf{Z} -модулем. Обозначим символом $L_{\text{паz}}(G)$ семейство всех подгрупп группы G, коцентрализаторы которых в модуле A не являются артиновыми \mathbf{Z} -модулями. Если $L_{\text{паz}}(G)$ удовлетворяет условию минимальности, будем говорить, что группа G удовлетворяет условию минимальности для подгрупп, коцентрализаторы которых в модуле A не являются артиновыми \mathbf{Z} -модулями, или, просто, что группа G удовлетворяет условию минимальности для подгрупп, коцентрализаторы которых в модуле A не являются артиновыми \mathbf{Z} -модулями, или, просто, что группа G удовлетворяет условию min – naz.

Основными результатами работы являются следующие теоремы 1.1 и 1.2.

Теорема 1.1. Пусть G — локально разрешимая группа, удовлетворяющая условию \min — \max . Если существует $\mathbf{Z}G$ -модуль A такой, что коцентрализатор G в A не является артиновым \mathbf{Z} -модулем, то G является разрешимой.

Теорема 1.2. Пусть G и A — те же, что и в теореме 1.1. Тогда G содержит нормальную нильпотентную подгруппу H такую, что фактор-группа G/H черниковская.

2. Предварительные результаты. Приведем некоторые элементарные факты о $\mathbb{Z}G$ -модулях, которые будут использоваться в дальнейшем. Отметим, что если $K \leq H \leq G$, и коцентрализатор подгруппы H в модуле A является артиновым \mathbb{Z} -модулем, то коцентрализатор подгруппы K в модуле A также является артиновым \mathbb{Z} -модулем. Если $U, V \leq G$ такие, что их коцентрализаторы в модуле A являются артиновыми \mathbb{Z} -модулями, то фактор-модуль $A/(C_A(U) \cap C_A(V))$ также является артиновым \mathbb{Z} -модулем. Следовательно, коцентрализатор подгруппы $\langle U, V \rangle$ в модуле A является артиновым \mathbb{Z} -модулем.

Предположим, что группа G удовлетворяет условию min – naz. Если $H_1 > H_2 > H_3 > \dots$ — бесконечный строго убывающий ряд подгрупп группы G, то существует натуральное число n такое, что коцентрализатор подгруппы H_n в модуле A является артиновым \mathbf{Z} -модулем. Кроме того, если N — нормальная подгруппа группы G и коцентрализатор подгруппы N в модуле A не является артиновым \mathbf{Z} -модулем, то фактор-группа G/N удовлетворяет условию минимальности для подгрупп.

Приведем следующие три леммы.

- **Лемма 2.1.** Пусть $A \mathbf{Z}G$ -модуль. Предположим, что G удовлетворяет условию $\min \max$, X, H nодгруппы группы G и Λ множество индексов, для которых выполняются следующие условия:
- i) $X=Dr_{\lambda\in\Lambda}X_{\lambda},$ где $1\neq X_{\lambda}-H$ -инвариантная подгруппа X для каждого $\lambda\in\Lambda;$
 - іі) $H \cap X \leq Dr_{\lambda \in \Gamma} X_{\lambda}$ для некоторого подмножества Γ из Λ .

Если множество $\Omega = \Lambda \setminus \Gamma$ бесконечно, то коцентрализатор подгруппы H в модуле A является артиновым **Z**-модулем.

Доказательство. Предположим, что множество Ω бесконечно и $\Omega_1 \supseteq \Omega_2 \supseteq \ldots$ — строго убывающий ряд подмножеств множества Ω . Поскольку $H \cap Dr_{\lambda \in \Omega} X_{\lambda} = 1$, ряд подгрупп $\langle H, X_{\lambda} \mid \lambda \in \Omega_1 \rangle > \langle H, X_{\lambda} \mid \lambda \in \Omega_2 \rangle > \ldots$ строго убывает. Отсюда следует, что для некоторого натурального числа d коцентрализатор подгруппы $\langle H, X_{\lambda} \mid \lambda \in \Omega_d \rangle$ является артиновым. Следовательно, коцентрализатор подгруппы H также является артиновым.

Лемма доказана.

Лемма 2.2. Пусть $A - \mathbf{Z}G$ -модуль, группа G удовлетворяет условию $\min - \max u H$, K - noдгруппы группы G такие, что K - нормальная подгруппа H. Предположим, что существует множество индексов Λ и подгруппы H_{λ} группы G такие, что $H/K = Dr_{\lambda \in \Lambda} H_{\lambda}/K$ и множество Λ бесконечно. Тогда коцентрализатор подгруппы H в модуле A является артиновым \mathbf{Z} -модулем.

Доказательство. Предположим, что множество Λ бесконечно. Пусть Γ и Ω — бесконечные непересекающиеся подмножества множества Λ такие, что $\Lambda = \Gamma \cup \Omega$. Пусть $U/K = Dr_{\lambda \in \Gamma} H_{\lambda}/K$, $V/K = Dr_{\lambda \in \Omega} H_{\lambda}/K$ и $\Gamma_1 \supseteq \Gamma_2 \supseteq \ldots$ — строго убывающий ряд подмножеств множества Γ . В результате получаем бесконечный убывающий ряд подгрупп

$$\langle U, H_{\lambda} \mid \lambda \in \Gamma_1 \rangle > \langle U, H_{\lambda} \mid \lambda \in \Gamma_2 \rangle > \dots$$

Из условия \min – naz следует, что коцентрализатор подгруппы U в модуле A является артиновым **Z**-модулем. Аналогично получаем, что коцентрализатор под-

46 О. Ю. ДАШКОВА

группы V в модуле A является артиновым ${\bf Z}$ -модулем. Из равенства H=UV следует, что коцентрализатор подгруппы H в модуле A также является артиновым ${\bf Z}$ -модулем.

Лемма доказана.

Лемма 2.3. Пусть $A - \mathbf{Z}G$ -модуль и группа G удовлетворяет условию \min – \max . Если элемент $g \in G$ имеет бесконечный порядок, то коцентрализатор подгруппы $\langle g \rangle$ в модуле A является артиновым \mathbf{Z} -модулем.

Доказательство. Пусть p и q — различные простые числа, большие 3, и $u=g^p,\ v=g^q.$ Тогда существует бесконечный убывающий ряд подгрупп $\langle u \rangle > \langle u^2 \rangle > \langle u^4 \rangle > \dots$. Из условия \min -паz вытекает, что существует натуральное число k, для которого коцентрализатор подгруппы $\langle u^{2^k} \rangle$ в модуле A является артиновым **Z**-модулем. Аналогично, существует натуральное число l, для которого коцентрализатор подгруппы $\langle v^{3^l} \rangle$ в модуле A также является артиновым **Z**-модулем. Следовательно, коцентрализатор подгруппы $\langle g \rangle = \langle u^{2^k} \rangle \langle v^{3^l} \rangle$ в модуле A является артиновым **Z**-модулем.

Лемма доказана.

Следующий результат дает важную информацию о строении фактор-группы по ее коммутанту в случае выполнения условия min – naz.

Лемма 2.4. Пусть $A - \mathbf{Z}G$ -модуль и группа G удовлетворяет условию \min – \max . Если коцентрализатор группы G в модуле A не является артиновым \mathbf{Z} -модулем, то фактор-группа G/G' является черниковской группой.

Доказательство. Предположим, что фактор-группа G/G' не является черниковской группой. Обозначим через S семейство подгрупп H < G таких, что фактор-группа H/H' не является черниковской и коцентрализатор подгруппы H в модуле A не является артиновым **Z**-модулем. Поскольку $G \in S$, то $S \neq \emptyset$. Так как множество S удовлетворяет условию минимальности, оно содержит минимальный элемент, обозначим его через D. Если U и V — собственные подгруппы группы D такие, что D = UV и $U \cap V = D'$, то по крайней мере одна из подгрупп, например U, такова, что ее коцентрализатор в модуле A не является артиновым ${\bf Z}$ модулем. Из выбора подгруппы D следует, что фактор-группа U/U' черниковская. Отсюда и из изоморфизма $U/D' \simeq (U/U')/(D'/U')$ следует, что фактор-группа U/D' также является черниковской. Поскольку коцентрализатор подгруппы U в модуле A не является артиновым **Z**-модулем, абелева фактор-группа D/U также является черниковской. Следовательно, фактор-группа D/D' является черниковской. Противоречие с выбором подгруппы D. Отсюда вытекает, что фактор-группу D/D' нельзя представить в виде произведения двух собственных подгрупп. Следовательно, фактор-группа D/D' изоморфна подгруппе квазициклической группы $C_{q^{\infty}}$ для некоторого простого числа q. Противоречие.

Лемма доказана.

Пусть $A-\mathbf{Z}G$ -модуль и группа G удовлетворяет условию min – naz. Символом AD(G) обозначим множество элементов $x\in G$ таких, что коцентрализатор группы $\langle x\rangle$ в модуле A является артиновым \mathbf{Z} -модулем. Поскольку $C_A(x^g)=C_A(x)g$ для всех $x,g\in G$, отсюда следует, что AD(G) является нормальной подгруппой группы G.

Лемма 2.5. Пусть $A - \mathbf{Z}G$ -модуль, группа G удовлетворяет условию $\min - \max u$ ее коцентрализатор в модуле A не является артиновым \mathbf{Z} -модулем. Тогда либо группа G является периодической, либо G = AD(G).

Доказательство. Предположим противное. Пусть группа G не является периодической и $G \neq AD(G)$. Обозначим через S семейство подгрупп $H \leq G$ таких, что H не является периодической и $H \neq AD(H)$. S не является пустым. Если $H \neq AD(H)$, то существует элемент $h \in H$, для которого фактор-модуль $A/C_A(h)$ не является артиновым **Z**-модулем. Следовательно, $S\subseteq$ $\subseteq L_{\text{naz}}(G)$, и поэтому S удовлетворяет условию минимальности. Пусть D минимальный элемент множества S и L=AD(D). Отметим, что $L\neq 1$, так как D не является периодической подгруппой. Если $L \leq S \leq D$ и $S \neq D$, то S = AD(S), и поэтому $S \le L$. Следовательно, D/L имеет порядок q для некоторого простого числа q. Пусть $x \in D \setminus L$. Если элемент a имеет бесконечный порядок, то из выбора D следует, что $\langle x, a \rangle = D$. Отсюда вытекает, что L конечно порождена, и поскольку L=AD(L), фактор-модуль $A/C_A(L)$ является артиновым **Z**-модулем. Поскольку подгруппа L нормальна в группе $D, C = C_A(L)$ является **Z**D-подмодулем модуля A. Если $R = C_D(A/C)$, то R — нормальная подгруппа группы D, и фактор-группа D/R изоморфна подгруппе группы GL(r,M), где M является конечной прямой суммой колец $Z_{p^{\infty}}$ целых р-адических чисел, возможно, по различным простым числам р. Следовательно, фактор-группа D/R финитно аппроксимируема. Пусть U — нормальная подгруппа конечного индекса группы D. Подгруппа U не является периодической, и поэтому подгруппа $\langle U, x \rangle$ также непериодическая и $\langle U, x \rangle \neq AD(\langle U, x \rangle)$. Из выбора D следует, что $D = \langle U, x \rangle$, и поэтому фактор-группа D/U абелева. Если E — конечный резидуал группы D, то фактор-группа D/E абелева. Отсюда с учетом включения E < R вытекает, что фактор-группа D/R также абелева. Следовательно, фактор-группа $D/(R\cap L)$ абелева. Подгруппа $R\cap L$ является подгруппой стабилизатора ряда длины 2, и поэтому она абелева. Отсюда следует, что D является конечнопорожденной метабелевой группой. По теореме Φ . Холла (теорема 9.51 [3]) группа D финитно аппроксимируема. Как и ранее, устанавливаем, что D абелева. Поскольку $D=U\langle x\rangle$ для любой подгруппы U конечного индекса, группа D — бесконечная циклическая. Согласно лемме 2.3, D = AD(D). Противоречие с выбором подгруппы D.

Лемма доказана.

3. Локально разрешимые группы с условием \min — \max . Если группа G локально разрешима и фактор-модуль $A/C_A(G)$ является артиновым \mathbf{Z} -модулем, то фактор-группа $G/C_G(A/C_A(G))$ изоморфна локально разрешимой подгруппе группы GL(r,M), где M является конечной прямой суммой колец $\mathbf{Z}_{\mathbf{p}^{\infty}}$ целых p-адических чисел, возможно, по различным простым числам p. Поскольку M является целостным кольцом, его можно вложить в поле F. Отсюда следует, что факторгруппа $G/C_G(A/C_A(G))$ изоморфна некоторой локально разрешимой подгруппе линейной группы GL(r,F). Следовательно, согласно следствию 3.8 [4], факторгруппа $G/C_G(A/C_A(G))$ разрешима, и, поскольку централизатор $C_G(A/C_A(G))$ абелев, отсюда следует разрешимость группы G. Поэтому при изучении локально разрешимых групп G, для которых фактор-модуль $A/C_A(G)$ не является артиновым \mathbf{Z} -модулем.

48 О. Ю. ДАШКОВА

Доказательство. Предположим противное. Пусть группа G не удовлетворяет условию минимальности и $G \neq AD(G)$. Обозначим через S семейство подгрупп $H \leq G$ таких, что H не удовлетворяет условию минимальности и $H \neq AD(H)$. Тогда $S \neq \varnothing$ и удовлетворяет условию минимальности. Пусть D — минимальный элемент S и L = AD(D). Существует бесконечный строго убывающий ряд подгрупп группы D:

$$H_1 > H_2 > H_3 > \dots$$

Поскольку группа D удовлетворяет условию \min – naz, существует натуральное число d такое, что коцентрализатор подгруппы H_d в модуле A является артиновым **Z**-модулем. Следовательно, $H_d \le L$, и поэтому L не удовлетворяет условию минимальности. Отсюда вытекает, что если $x \in D \setminus L$, то $\langle x, L \rangle = D$ в силу выбора подгруппы D. Следовательно, фактор-группа D/L имеет порядок q для некоторого простого числа q. Заменяя x, если это необходимо, подходящей степенью, можно положить, что x имеет порядок q^{T} для некоторого натурального числа r. Так как группа D не является черниковской, согласно теореме Д. И. Зайцева [5], D содержит $\langle x \rangle$ -инвариантную абелеву подгруппу $B = Dr_{n \in \mathbb{N}} \langle b_n \rangle$, и можно считать, что элементы b_n имеют простые порядки для каждого $n \in \mathbf{N}$. Пусть $1 \neq c_1 \in B$ и $C_1 = \langle c_1 \rangle^{\langle x \rangle}$. Тогда C_1 конечна и существует подгруппа E_1 такая, что $B=C_1\times E_1$. Пусть $U_1=core_{\langle x\rangle}E_1$. Тогда U_1 имеет конечный индекс в B. Если $1 \neq c_2 \in U_1$ и $C_2 = \langle c_2 \rangle^{\langle x \rangle}$, то C_2 — конечная $\langle x \rangle$ -инвариантная подгруппа и $\langle C_1, C_2 \rangle = C_1 \times C_2$. Продолжая это построение, можно построить семейство подгрупп $\{C_n \mid n \in \mathbf{N}\} = Dr_{n \in \mathbf{N}}C_n$. Из леммы 2.1 следует, что $x \in L$. Противоречие. Лемма доказана.

Из лемм 2.5 и 3.1 вытекает справедливость следующей теоремы.

Теорема 3.1. Пусть $A - \mathbf{Z}G$ -модуль, группа G локально разрешима, удовлетворяет условию \min – \max u ее коцентрализатор s модуле A не является артиновым \mathbf{Z} -модулем. Тогда либо группа G удовлетворяет условию минимальности для подгрупп, либо G = AD(G).

Лемма 3.2. Пусть $A - \mathbf{Z}G$ -модуль, группа G локально разрешима, удовлетворяет условию \min -пах и коцентрализатор группы G в модуле A не является артиновым \mathbf{Z} -модулем. Тогда либо группа G разрешима, либо G имеет возрастающий ряд нормальных подгрупп $1 = S_0 \le S_1 \le \ldots \le S_\omega = \cup_{n \in \mathbb{N}} S_n \le G$ такой, что коцентрализатор подгруппы S_n в модуле A является артиновым \mathbf{Z} -модулем, факторы S_{n+1}/S_n абелевы для $n \ge 0$, а фактор-группа G/S_ω — разрешимая черниковская группа.

Доказательство. Покажем сначала, что группа G гиперабелева. Для этого достаточно показать, что каждый нетривиальный гомоморфный образ G содержит нетривиальную нормальную абелеву подгруппу.

Пусть H — собственная нормальная подгруппа группы G. Предположим сначала, что коцентрализатор подгруппы H в модуле A не является артиновым **Z**-модулем. Тогда фактор-группа G/H удовлетворяет условию минимальности для подгрупп. Следовательно, она является черниковской и поэтому имеет нетривиальную нормальную абелеву подгруппу. Рассмотрим теперь случай, когда коцентрализатор подгруппы H в модуле A является артиновым **Z**-модулем. По теореме A. И. Мальцева (см., например, следствие к теореме B.23 [3]), G/H имеет нормальную систему с абелевыми факторами:

$$S = \{ \Lambda_{\sigma}/H, V_{\sigma}/H \mid \sigma \in \Sigma \}.$$

Пусть Σ_1 — подмножество, состоящее из тех σ , для которых коцентрализаторы Λ_σ не являются артиновыми ${\bf Z}$ -модулями, Σ_2 — соответствующее подмножество для V_σ . Поскольку G удовлетворяет условию min – naz, множества $\{\Lambda_\sigma \mid \sigma \in \Sigma_1\}$ и $\{V_\sigma \mid \sigma \in \Sigma_2\}$ имеют минимальные элементы. Обозначим их Λ_μ и V_ν соответственно. Ранее отмечалось, что локально разрешимые группы, коцентрализаторы которых в модуле A являются артиновыми ${\bf Z}$ -модулями, разрешимы. Следовательно, Λ_σ , $\sigma < \mu$, и V_σ , $\sigma < \nu$, разрешимы. Отсюда вытекает, что фактор-группа G/H содержит нетривиальную нормальную абелеву подгруппу. Следовательно, группа G гиперабелева.

Пусть $1=H_0\leq H_1\leq\ldots\leq H_\alpha\leq\ldots\leq G$ — возрастающий нормальный ряд с абелевыми факторами и α — наименьшее порядковое число, для которого коцентрализатор подгруппы H_α в модуле A не является артиновым ${\bf Z}$ -модулем. Тогда, как и ранее, подгруппа H_β разрешима для всех $\beta<\alpha$. Кроме того, факторгруппа G/H_α удовлетворяет условию минимальности для подгрупп и поэтому является разрешимой черниковской группой.

Предположим сначала, что α — непредельное порядковое число. Отсюда следует, что подгруппа H_{α} разрешима, и поэтому разрешима группа G. Предположим теперь, что α — предельное порядковое число и группа G не является разрешимой. Для каждого положительного целого числа d существует порядковое число β_d такое, что $\beta_d < \alpha$, H_{β_d} имеет ступень разрешимости, не превышающую d. Более того, можно считать, что $\beta_i < \beta_{i+1}$ для каждого положительного целого числа i. Для каждого i положим $T_i = H_{\beta_i}$. Поэтому группа G имеет возрастающий ряд нормальных подгрупп $1 = T_0 \le T_1 \le \ldots \le G$. Подгруппа $T_{\omega} = \cup_{n \in \mathbb{N}} T_n$ не является разрешимой, и поэтому $T_{\omega} = H_{\alpha}$. Нужный ряд $1 = S_0 \le S_1 \le \ldots \le S_{\omega} = \cup_{n \in \mathbb{N}} S_n \le G$ может быть получен уплотнением ряда $1 = T_0 \le T_1 \le \ldots \le T_{\omega} \le G$.

Лемма доказана.

Лемма 3.3. Пусть $A - \mathbf{Z}G$ -модуль, группа G удовлетворяет условию \min -naz, коцентрализатор группы G в модуле A не является артиновым \mathbf{Z} -модулем и G = AD(G). Тогда фактор-группа G/G^{\Im} конечна.

Доказательство. Предположим противное. Пусть фактор-группа G/G^{\Im} бесконечна. Тогда группа G имеет бесконечный убывающий ряд нормальных подгрупп $G \geq N_1 \geq N_2 \geq \ldots$ такой, что фактор-группы G/N_i конечны для каждого номера i. Следовательно, существует номер k, для которого фактор-группа G/N_k конечна, и коцентрализатор подгруппы N_k в модуле A является артиновым \mathbf{Z} -модулем. Поскольку G = AD(G), можно выбрать подгруппу H такую, что H = AD(H) и $G = HN_k$. Следовательно, коцентрализатор группы G в модуле A является артиновым \mathbf{Z} -модулем. Противоречие.

Лемма доказана.

Лемма 3.4. Пусть $A-\mathbf{Z}G$ -модуль, группа G удовлетворяет условию \min -naz u ее коцентрализатор ε модуле A не является артиновым \mathbf{Z} -модулем. Если G имеет возрастающий ряд нормальных подгрупп $1=S_0\leq S_1\leq \ldots \leq S_n\leq \ldots \leq U_{n\geq 1}S_n=G$ такой, что коцентрализатор каждой подгруппы S_n ε модуле A является артиновым \mathbf{Z} -модулем u каждый фактор S_{n+1}/S_n абелев, то группа G разрешима.

Доказательство. Поскольку фактор-модуль $A/C_A(S_k)$ является артиновым **Z**-модулем, существует конечный ряд **Z**G-подмодулей $A=A_0 \geq A_1 \geq \ldots \geq A_{n(k)}=C_A(S_k)$, каждый фактор которого является либо конечным **Z**G-модулем, либо квазиконечным **Z**G-модулем. Поскольку коцентрализатор подгруп-

50 О. Ю. ДАШКОВА

пы S_{k+1} в модуле A является артиновым \mathbf{Z} -модулем, можно продолжить построенный ряд $\mathbf{Z}G$ -подмодулей $A=A_0\geq A_1\geq \ldots \geq A_{n(k)}\geq \ldots \geq A_{n(k+1)}=$ $=C_A(S_{k+1})$, каждый фактор которого является либо конечным $\mathbf{Z}G$ -модулем, либо квазиконечным $\mathbf{Z}G$ -модулем. Продолжая это построение, получаем ряд $\mathbf{Z}G$ -подмодулей $A=A_0\geq A_1\geq A_2\geq \ldots \geq A_\omega=C_A(G)$, каждый фактор которого является либо конечным $\mathbf{Z}G$ -модулем, либо квазиконечным $\mathbf{Z}G$ -модулем.

Пусть $H = \bigcap_{j \geq 0} C_G(A_j/A_{j+1})$. Согласно лемме 16.19 [6], для каждого j факторгруппа $G/C_G(A_i/A_{i+1})$ почти абелева. Поскольку G/H вкладывается в декартово произведение фактор-групп $G/C_G(A_i/A_{i+1}), G/H$ является расширением абелевой группы с помощью финитно аппроксимируемой. Кроме того, группа G является объединением подгрупп, коцентрализаторы которых в модуле A являются артиновыми **Z**-модулями. Следовательно, G = AD(G). По лемме 3.3 фактор-группа G/Hпочти абелева. Пусть K/H — нормальная абелева подгруппа фактор-группы G/Hтакая, что фактор-группа G/K конечна. Так как G = AD(G), коцентрализатор подгруппы K в модуле A не является артиновым **Z**-модулем. Если коцентрализатор подгруппы H в модуле A является артиновым \mathbf{Z} -модулем, то, поскольку подгруппа H локально разрешима, фактор-группа $H/C_H(A/C_A(G))$ изоморфна локально разрешимой подгруппе группы GL(r, M), где M является конечной прямой суммой колец $\mathbf{Z}_{\mathbf{p}^{\infty}}$ целых p-адических чисел, возможно, по различным простым числам p. Поскольку M является целостным кольцом, его можно вложить в поле F. Отсюда следует, что фактор-группа $H/C_H(A/C_A(H))$ изоморфна некоторой локально разрешимой подгруппе линейной группы GL(r, F). Согласно следствию 3.8 [4], фактор-группа $H/C_H(A/C_A(H))$ разрешима. Поскольку подгруппа $C_H(A/C_A(H))$ является подгруппой стабилизатора ряда длины 2, она абелева. Следовательно, H разрешима, и поэтому разрешима группа G.

Рассмотрим теперь случай, когда коцентрализатор подгруппы H в модуле Aне является артиновым ${\bf Z}$ -модулем. Покажем, что и в этом случае подгруппа Hразрешима. Положим $L_j = C_H(A/A_j), j = 1, 2, \dots$ Пусть $H \neq L_j$ для некоторого j. Предположим сначала, что существует номер t, для которого фактор-группа H/L_t бесконечна. Тогда найдется номер $k \geq j, \ k \geq t$, для которого среди факторов ряда $A/A_k = A_0/A_k \ge A_1/A_k \ge A_2/A_k \ge ... \ge A_i/A_k \ge ... \ge A_k/A_k$ есть бесконечные. Тогда в силу результатов главы 8 [7] Н имеет нильпотентный непериодический образ. Отсюда следует, что в H можно выбрать нормальную подгруппу H_1 , для которой фактор-группа H/H_1 — нильпотентная непериодическая группа, и поэтому найдется нормальная подгруппа H_2 , для которой фактор-группа H/H_2 абелева группа без кручения. Противоречие с леммой 2.4. Следовательно, $H=L_{j}$ для любого номера $j, j = 1, 2, \dots$. Пусть теперь для любого номера $j, j = 1, 2, \dots$, фактор-группа H/L_{i} конечна. Предположим, что существует номер j, для которого коцентрализатор подгруппы L_j в модуле A является артиновым \mathbf{Z} -модулем. Пусть j — наименьший номер с указанным свойством, и поэтому коцентрализатор подгруппы L_{i-1} в модуле A не является артиновым **Z**-модулем. Поскольку факторгруппа L_{i-1}/L_i конечна и G = AD(G), коцентрализатор подгруппы L_{i-1} в модуле A является артиновым \mathbf{Z} -модулем. Противоречие. Следовательно, коцентрализатор каждой подгруппы L_i в модуле A не является артиновым **Z**-модулем. Поскольку Hудовлетворяет условию \min – naz, существует номер m, для которого $L_j = L_m$ для всех $j \geq m$. Отсюда с учетом выбора L_j следует, что подгруппа L_m разрешима. Так как фактор-группа H/L_m конечна, H также разрешима.

Лемма доказана.

Из полученных результатов вытекает справедливость теоремы 1.1.

Доказательство теоремы 1.2. Отметим, что по теореме 1.1 группа G разрешима. Для доказательства теоремы достаточно рассмотреть случай, когда группа G не является черниковской.

Пусть $G=D_0\geq D_1\geq D_2\geq\ldots\geq D_n=1$ — произвольный ряд подгруппы S. Согласно лемме 2.4, существует номер m такой, что коцентрализатор подгруппы D_m в модуле A не является артиновым ${\bf Z}$ -модулем, а коцентрализатор подгруппы D_{m+1} в модуле A является артиновым ${\bf Z}$ -модулем. По лемме 2.4 факторгруппы $D_i/D_{j+1},\ i=0,1,\ldots,m$, являются черниковскими. Пусть $U=D_{m+1},$ тогда фактор-группа G/U черниковская. Положим $C=C_A(U)$. C является ${\bf Z}G$ -подмодулем модуля A. Поскольку коцентрализатор подгруппы U в модуле A является артиновым ${\bf Z}$ -модулем, фактор-модуль A/C является артиновым ${\bf Z}$ -модулем, и поэтому существует ряд подмодулей

$$0 = C_0 \le C = C_1 \le C_2 \le \ldots \le C_t = A$$
,

у которого каждый фактор $C_{i+1}/C_i,\ i=1,\ldots,t-1,$ является либо конечным, либо квазиконечным $\mathbf{Z}G$ -модулем. Отсюда с учетом леммы 16.19 [6] следует, что фактор-группы $G/C_G(C_{i+1}/C_i),\ i=1,\ldots,t-1,$ почти абелевы. Поскольку фактор-группа G/U черниковская и $U\leq C_G(C_1),$ фактор-группа $G/C_G(C_1)$ также является черниковской. Следовательно, $G/C_G(C_1)$ — почти абелева группа. Пусть $H=C_G(C_1)\cap C_G(C_2/C_1)\cap\ldots\cap C_G(C_t/C_{t-1}).$ Отметим, что фактор-группа G/H почти абелева. Обозначим через V/H нормальную абелеву подгруппу фактор-группы G/H такую, что фактор-группа G/V конечна. С учетом теоремы 3.1 получаем, что коцентрализатор подгруппы V в модуле A не является артиновым \mathbf{Z} -модулем. По лемме 2.4 фактор-группа V/H черниковская. Следовательно, G/H также черниковская. Подгруппа H действует тривиально в каждом факторе ряда $0=C_0\leq C=C_1\leq C_2\leq\ldots\leq C_t=A.$ Следовательно, H нильпотентна.

Теорема доказана.

- 1. Dixon M. R., Evans M. J., Kurdachenko L. A. Linear groups with the minimal condition on subgroups of infinite central dimension // J. Algebra. 2004. 277, № 1. P. 172 186.
- Dashkova O. Yu., Dixon M. R., Kurdachenko L. A. Linear groups with rank restrictions on the subgroups of infinite central dimension // J. Pure and Appl. Algebra. – 2007. – 208, № 3. – P. 785 – 795.
- 3. Robinson D. J. R. Finiteness conditions and generalized soluble groups. Berlin etc.: Springer, 1972. Vols 1, 2. 464 p.
- 4. Wehrfritz B. A. F. Infinite linear groups. New York etc.: Springer, 1973. 229 p.
- Зайцев Д. И. О разрешимых подгруппах локально разрешимых групп // Докл. АН СССР. 1974.
 214, № 6. С. 1250 1253.
- Kurdachenko L. A., Otal J., Subbotin I. Ya. Artinian modules over group rings. Basel etc.: Birkhäuser, 2007. – 248 p.
- 7. Φ укс Л. Бесконечные абелевы группы. М.: Мир, 1973. Т. 1. 229 с.

 $\begin{tabular}{ll} $\Pi \mbox{олучено} & 08.04.08, \\ $\Pi \mbox{осле доработки} - 11.07.08 \end{tabular}$