TAME COMODULE TYPE, ROITER BOCSES, AND A GEOMETRY CONTEXT FOR COALGEBRAS* РУЧНИЙ КОМОДУЛЬНИЙ ТИП, БОКСИ РОЙТЕРА I ГЕОМЕТРИЧНИЙ КОНТЕКСТ ДЛЯ КОАЛГЕБР

Dedicated to the memory of Andrey Vladimirovich Roiter

Abstract

We study the class of coalgebras C of $f c$-tame comodule type introduced by the author. To any basic computable K-coalgebra C and a bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, we associate a bimodule matrix problem $\mathbf{M a t}_{C}^{v}(\mathbb{H})$, an additive Roiter bocs \mathbf{B}_{v}^{C}, an affine algebraic K-variety $\operatorname{Comod}_{v}^{C}$, and an algebraic group action $\mathbf{G}_{v}^{C} \times \operatorname{Comod}_{v}^{C} \longrightarrow \operatorname{Comod}_{v}^{C}$. We study the $f c$-tame comodule type and the $f c$-wild comodule type of C by means of $\operatorname{Mat}_{C}^{v}(\mathbb{H})$, the category $\operatorname{rep}_{K}\left(\mathbf{B}_{v}^{C}\right)$ of K-linear representations of \mathbf{B}_{v}^{C}, and geometry of \mathbf{G}_{v}^{C}-orbits of $\mathbf{C o m o d}{ }_{v}^{C}$. For computable coalgebras C over an algebraically closed field K, we give an alternative proof of the $f c$-tame-wild dichotomy theorem. A characterisation of $f c$-tameness of C is given in terms of geometry of \mathbf{G}_{v}^{C}-orbits of $\mathbf{C o m o d}{ }_{v}$. In particular, we show that C is $f c$-tame of discrete comodule type if and only if the number of \mathbf{G}_{v}^{C}-orbits in $\operatorname{Comod}_{v}^{C}$ is finite, for every $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$. Вивчено клас коалгебр $C f c$-ручного комодульного типу, що введений автором. Кожну базову зліченну K-коалгебру C та дводольний вектор $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$ пов’язано з бімодульною матричною задачею $\operatorname{Mat}_{C}^{v}(\mathbb{H})$, адитивними боксами Ройтера \mathbf{B}_{v}^{C}, афінним алгебраїчним K-різновидом $\operatorname{Comod}_{v}^{C}$ та алгебраїчним груповим оператором $\mathbf{G}_{v}^{C} \times \operatorname{Comod}_{v}^{C} \longrightarrow \operatorname{Comod}_{v}^{C}$. Дослідження $f c$ ручного та $f c$-дикого комодульних типів C проведено з використанням $\operatorname{Mat}_{C}^{v}(\mathbb{H})$, категорії $\operatorname{rep}_{K}\left(\mathbf{B}_{v}^{C}\right)$ K-лінійних зображень \mathbf{B}_{v}^{C} та геометрії \mathbf{G}_{v}^{C}-орбіт $\operatorname{Comod}_{v}^{C}$. Для зліченних коалгебр C над алгебраїчно замкненим полем K наведено альтернативне доведення теореми про $f c$-ручну дику дихотомію Характеризацію $f c$-ручної властивості для C подано через геометрію \mathbf{G}_{v}^{C}-орбіт $\mathbf{C o m o d} v$. Показано, зокрема, що C належить до $f c$-ручного дискретного комодульного типу тоді і тільки тоді, коли кількість \mathbf{G}_{v}^{C}-орбіт в $\operatorname{Comod}_{v}^{C}$ скінченна для кожного $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$.

1. Introduction. Throughout this paper, we use the terminology and notation introduced in [21, 22, 28]. We fix a field K. Given a K-coalgebra C, we denote by C-Comod and C-comod the categories of left C-comodules and left C-comodules of finite K dimension. We recall that C is said to be basic if the left C-comodule ${ }_{C} C$ has a decomposition

$$
\begin{equation*}
{ }_{C} C=\bigoplus_{j \in I_{C}} E(j) \tag{1.1}
\end{equation*}
$$

into a direct sum of pairwise non-isomorphic indecomposable injective left comodules $E(j)$. Throughout this paper, given $j \in I_{C}$, we denote by $S(j)$ the unique simple subcomodule of $E(j)$. Hence, $\operatorname{soc} C=\bigoplus_{j \in I_{C}} S(j)$. Following [26], the coalgebra C is called Hom-computable (or computable, in short) if $\operatorname{dim}_{K} \operatorname{Hom}_{C}(E(i), E(j))$ is finite, for all $i, j \in I_{C}$. A left C-comodule M is said to be computable if $\operatorname{dim}_{K} \operatorname{Hom}_{C}(M, E(j))$ is finite, for all $j \in I_{C}$.

Given a computable comodule M, we denote by $\operatorname{lgth} M=\left(\ell_{j}(M)\right)_{j \in I_{C}} \in \mathbb{Z}^{I_{C}}$ the composition length vector of M, where $\ell_{j}(M)<\infty$ is the number of simple composition factors of M isomorphic to the simple comodule $S(j)$. It is clear that $\operatorname{lgth} M \in \mathbb{Z}^{\left(I_{C}\right)}$, if M is of finite K-dimension. We recall from [21] that the map

[^0]$M \mapsto \lg \operatorname{th} M$ defines a group isomorphism lgth: $K_{0}(C) \xrightarrow{\simeq} \mathbb{Z}^{\left(I_{C}\right)}$, where $K_{0}(C)=$ $=K_{0}(C$-comod $)$ is the Grothendieck group of the category C-comod and $\mathbb{Z}^{\left(I_{C}\right)}$ is the direct sum of I_{C} copies of \mathbb{Z}.

We recall from [21] and [25] that an arbitrary K-coalgebra C is defined to be of K-wild comodule type (or K-wild, in short), if the category C-comod of finite dimensional C-comodules is of K-wild representation type [18,21, 23] in the sense that there exists an exact K-linear representation embedding $T: \bmod \Gamma_{3}(K) \longrightarrow C$-comod, where $\Gamma_{3}(K)=\left(\begin{array}{cc}K & K^{3} \\ 0 & K\end{array}\right)$. A K-coalgebra C is defined to be of K-tame comodule type [25] (or K-tame, in short), if the category C-comod of finite dimensional left C-comodules is of K-tame representation type ([18], Section 14.4, [22]), that is, for every vector $v \in K_{0}(C) \cong \mathbb{Z}^{\left(I_{C}\right)}$, there exist C - $K[t]$-bicomodules $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$, that are finitely generated free $K[t]$-modules, such that all but finitely many indecomposable left C-comodules M with $\lg \operatorname{th} M=v$ are of the form $M \cong L^{(s)} \otimes K_{\lambda}^{1}$, where $s \leq r_{v}$ and

$$
\begin{equation*}
K_{\lambda}^{1}=K[t] /(t-\lambda), \quad \lambda \in K \tag{1.2}
\end{equation*}
$$

Equivalently, there exist a non-zero polynomial $h(t) \in K[t]$ and $C-K[t]_{h}$-bicomodules $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$, that are finitely generated free $K[t]_{h}$-modules, such that all but finitely many indecomposable left C-comodules M with $\lg \operatorname{th} M=v$ are of the form $M \cong$ $\cong L^{(s)} \otimes K_{\lambda}^{1}$, where $s \leq r_{v}$ and $K[t]_{h}=K\left[t, h(t)^{-1}\right]$ is a rational K-algebra, see [7] or [18] (Section 14.4). In this case, we say that $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$ form an almost parametrising family for the family $\operatorname{ind}_{v}(C$-comod) of all indecomposable C-comodules M with $\lg \operatorname{th} M=v$.

Here, by a C - $K[t]_{h}$-bicomodule ${ }_{C} L_{K[t]_{h}}$ we mean a K-vector space L equipped with a left C-comodule structure and a right $K[t]_{h}$-module structure satisfying the obvious associativity conditions. In [28], a K-tame-wild dichotomy theorem is proved for left (or right) semiperfect coalgebras and for acyclic hereditary coalgebras over an algebraically closed field K by reducing the problem to the $f c$-tame-wild dichotomy theorem [28] (Theorem 2.11) and, consequently, to the tame-wild dichotomy theorem for finite dimensional K-algebras proved in [7] and [3].

The aim of the paper is to study the classes of coalgebras C of $f c$-tame comodule type and of $f c$-wild comodule type introduced in [28]. We recall that C is of of $f c$-tame comodule type if, for every coordinate vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, the indecomposable finitely copresented C-comodules N such that $\operatorname{cdn}(N)=\left(v^{\prime} \mid v^{\prime \prime}\right)$ form at most finitely many one-parameter families, see Section 2 for a precise definition.

We study mainly computable $f c$-tame and $f c$-wild basic coalgebras C by means of a bimodule matrix problem $\operatorname{Mat}_{C}^{v}(\mathbb{H})$, the additive category $\operatorname{rep}_{K}\left(\mathbf{B}_{v}^{C}\right)$ of K-linear representations an additive Roiter bocs \mathbf{B}_{v}^{C}, an affine algebraic K-variety $\mathbf{M a p}{ }_{v}^{C}$, an algebraic (parabolic) group action $\mathbf{G}_{v}^{C} \times \operatorname{Map}_{v}^{C} \longrightarrow \operatorname{Map}_{v}^{C}$, and a Zariski open \mathbf{G}_{v}^{C} invariant subset $\operatorname{Comod}_{v}^{C} \subseteq \operatorname{Map}_{v}^{C}$, associated to C and to any bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$. It is shown in Section 4 that there is a bijection between the \mathbf{G}_{v}^{C}-orbits of $\mathbf{C o m o d}_{v}^{C}$ and the isomorphism classes of comodules in C - $\operatorname{Comod}_{f c}$. On this way, we get in Theorem 4.1 a characterisation of $f c$-tameness and $f c$-wildness of computable colagebras by means of $\operatorname{Mat}_{C}^{v}(\mathbb{H})$, the K-linear representations of the Roiter bocs \mathbf{B}_{v}^{C}, and in terms of geometry of the \mathbf{G}_{v}^{C}-orbits of $\operatorname{Comod}_{v}^{C}$.

We show in Section 4 that a computable colagebra C is $f c$-tame of discrete comodule type if and only if the number of \mathbf{G}_{v}^{C}-orbits in $\operatorname{Comod}_{v}^{C}$ is finite, for every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$. Moreover, we prove that a computable colagebra C is $f c$-tame if and only if, for every bipartite vector $v=$ $=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, there exists a constructible subset $\mathcal{C}(v)$ of the constructible set indComod ${ }_{v}^{C} \subseteq \operatorname{Comod}_{v}^{C}$ (defined by the indecomposable C-comodules) such that $\mathbf{G}_{v}^{C} * \mathcal{C}(v)=\operatorname{indComod}{ }_{v}^{C}$ and $\operatorname{dim} \mathcal{C}(v) \leq 1$, see Theorem 4.1.

We also give an alternative proof of the following $f c$-tame-wild dichotomy theorem proved in [28]: If C is a basic computable coalgebra over an algebraically closed field K then C is either $f c$-tame or $f c$-wild, and these two types are mutually exclusive.

We prove it in Section 3 by a reduction to the tame-wild dichotomy theorem of Drozd [7] for representations of additive Roiter bocses, by applying the bimodule problems technique introduced in [5] and developed in [3, 4, 9, 17, 19, 20].

Throughout this paper we freely use the coalgebra representation theory notation and terminology introduced in $[2,16,21,22,28]$. The reader is referred to $[1,8,10,18]$ for representation theory terminology and notation, and to [3, 4, 7, 9, 13] for a background on the representation theory of bocses.

In particular, given a ring R with an identity element, we denote by $\operatorname{Mod}(R)$ the category of all unitary right R-modules, and by $\bmod (R) \supseteq \operatorname{fin}(R)$ the full subcategories of $\operatorname{Mod}(R)$ formed by the finitely generated R-modules and the finite dimensional R modules, respectively. Given a K-coalgebra C and a left C-comodule M, we denote by soc M the socle of M, that is, the sum of all simple C-subcomodules of M

A comodule N in C-Comod is said to be socle-finite if N is a subcomodule of a finite direct sum of indecomposable injective comodules, or equivalently, $\operatorname{dim}_{K} \operatorname{soc} N$ is finite. We say that N is finitely copresented if N admits a socle-finite injective copresentation, that is, an exact sequence $0 \longrightarrow N \longrightarrow E_{0} \xrightarrow{\psi} E_{1}$ in C-Comod, where each of the comodules E_{0} and E_{1} is a finite direct sum of indecomposable injective comodules. If $E_{0}, E_{1} \in \operatorname{add}(E)$, for some socle-finite injective C-comodule E, the comodule N is called finitely E-copresented. We denote by C - $\operatorname{Comod}_{f c} \supseteq C$ - $\operatorname{Comod}_{f c}^{E}$ the full subcategories of C-Comod whose objects are the finitely copresented comodules and finitely E-copresented comodules, respectively. Here by $\operatorname{add}(E)$ we mean the full additive subcategory of C-Comod whose objects are finite direct sum of indecomposable injective comodules isomorphic to direct summands of E.
2. Preliminaries on $\boldsymbol{f} \boldsymbol{c}$-comodule types for coalgebras. Throughout we assume that K is an algebraically closed field and C is a basic K-coalgebra with a fixed decomposition (1.1). Following [28], given a finitely copresented C-comodule N in C-Comod ${ }_{f c}$, with a minimal injective copresentation $0 \longrightarrow N \longrightarrow E_{0}^{N} \xrightarrow{g} E_{1}^{N}$, we define the coordinate vector of N to be the bipartite vector

$$
\begin{equation*}
\operatorname{cdn}(N)=\left(\mathbf{c d n}_{0}^{N} \mid \operatorname{cdn}_{1}^{N}\right) \in K_{0}(C) \times K_{0}(C)=\mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)} \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{\operatorname { c d n }}_{0}^{N}=\lg \operatorname{th}\left(\operatorname{soc} E_{0}^{N}\right)$ and $\operatorname{cdn}_{1}^{N}=\lg \operatorname{th}\left(\operatorname{soc} E_{1}^{N}\right)$. We call a bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$ proper if $v^{\prime} \neq 0$ and $v^{\prime \prime}$ has non-negative coordinates. Note that an indecomposable comodule N in C - $\operatorname{Comod}_{f c}$ is injective if and only if the vector $\operatorname{cdn}(N)$ is proper and has the form $v=\left(e_{j} \mid v^{\prime \prime}\right)$, where $v^{\prime \prime}=0$ and e_{j} is the j th standard basis vector of $\mathbb{Z}^{\left(I_{C}\right)}$, for some $j \in I_{C}$.

The support of a bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$ is the finite subset $\operatorname{supp}(v)=\left\{j \in I_{C} ; v_{j}^{\prime} \neq 0\right.$ or $\left.v_{j}^{\prime \prime} \neq 0\right\}$ of I_{C}.

We recall from [28] that K-coalgebra C is defined to be of $f c$-wild comodule type (or $f c$-wild, in short), if the category C - $\operatorname{Comod}_{f c}$ of finitely copresented C comodules is of K-wild representation type [18, 23, 25] in the sense that there exists an exact K-linear representation embedding $T: \bmod \Gamma_{3}(K) \longrightarrow C$-Comod $_{f c}$, where $\Gamma_{3}(K)=\left[\begin{array}{cc}K & K^{3} \\ 0 & K\end{array}\right]$.

A C - $K[t]_{h}$-bicomodule ${ }_{C} L_{K[t]_{h}}$ is defined to be finitely copresented if there is a C - $K[t]_{h}$-bicomodule exact sequence $0 \rightarrow{ }_{C} L_{K[t]_{h}} \rightarrow E^{\prime} \otimes K[t]_{h} \xrightarrow{\psi} E^{\prime \prime} \otimes K[t]_{h}$, such that $E^{\prime}, E^{\prime \prime}$ are socle-finite injective C-comodules. If $E^{\prime}, E^{\prime \prime}$ are finitely E-copresented, we call ${ }_{C} L_{K[t]_{h}}$ finitely E-copresented.

A K-coalgebra C is defined to be of $f c$-tame comodule type (or $f c$-tame, in short), if the category C-Comod ${ }_{f c}$ is of $f c$-tame representation type [18] (Section 14.4), that is, for every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C) \cong \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$, there exist C - $K[t]_{h}$-bicomodules $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$, that are finitely copresented, such that all but finitely many indecomposable left C-comodules N in $C-\operatorname{Comod}_{f c}$, with $\mathbf{c d n}(N)=v$, are of the form $N \cong L^{(s)} \otimes K_{\lambda}^{1}$, where $s \leq r_{v}$,

$$
K_{\lambda}^{1}=K[t] /(t-\lambda),
$$

and $\lambda \in K$. In this case, we say that $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$ is a finitely copresented almost parametrising family for the family $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)$ of all indecomposable C comodules N with $\mathbf{c d n}(N)=v$. Obviously, one can restrict the definition to proper bipartite vectors $v=\left(v^{\prime} \mid v^{\prime \prime}\right)$.

We recall from [28] that the growth function $\widehat{\boldsymbol{\mu}}_{C}^{1}: K_{0}(C) \times K_{0}(C) \longrightarrow \mathbb{N}$ of C associates to any bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, the minimal number $\widehat{\boldsymbol{\mu}}_{C}^{1}(v)=r_{v} \geq 1$ of non-zero finitely copresented C - $K[t]_{h}$-bicomodules $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$ forming an almost parametrising family for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)$. We set $\widehat{\boldsymbol{\mu}}_{C}^{1}(v)=r_{v}=0$, if there is no such a family of bicomodules, that is, there is only a finite number of comodules N in $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)$, up to isomorphism.

An $f c$-tame coalgebra C is defined to be of $f c$-discrete comodule type if $\widehat{\boldsymbol{\mu}}_{C}^{1}=0$, that is, the number of the isomorphism classes of the indecomposable C-comodules N in C - $\operatorname{Comod}_{f c}$ with $\operatorname{cdn}(N)=v$ is finite, for every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in$ $\in K_{0}(C) \times K_{0}(C)$.

By the main result in [28], the definition is left-right symmetric, for any computable coalgebra C. Note also that the K-tameness and K-wildness of a coalgebra are defined by means of finite dimensional comodules, but the $f c$-tame comodule type and $f c$-wild comodule type are defined by means of the category C - $\operatorname{Comod}_{f c}$ of finitely copresented comodules that usually contains a lot of infinite dimensional comodules.

In the proof of our main results, we need the following construction that associates to any $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$ and any finitely copresented C - $K[t]_{h}$-bicomodule ${ }_{C} L_{K[t]_{h}}$ a new one ${ }_{C} \widetilde{L}_{K[t]_{h}}$, called $f c$-localising v-corrected C - $K[t]_{h}$-bicomodule.

Construction 2.1. Let C be a basic K-coalgebra with a decomposition (1.1), and let $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)=\mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$ be a proper bipartite vector.

Let $U_{v}=\operatorname{supp}(v) \subseteq I_{C}$ be the support of $v=\left(v^{\prime} \mid v^{\prime \prime}\right)$. We call the socle-finite injective C-comodules

$$
\begin{equation*}
\mathbf{E}\left(v^{\prime}\right)=\bigoplus_{i \in I_{C}} E(i)^{v_{i}^{\prime}} \quad \text { and } \quad \mathbf{E}\left(v^{\prime \prime}\right)=\bigoplus_{j \in I_{C}} E(j)^{v_{j}^{\prime \prime}} \tag{2.2}
\end{equation*}
$$

the standard injective C-comodules with $\mathbf{c d n E}\left(v^{\prime}\right)=\left(v^{\prime} \mid 0\right)$ and $\mathbf{c d n E}\left(v^{\prime \prime}\right)=\left(v^{\prime \prime} \mid 0\right)$.
We fix a rational K-algebra $S=K[t]_{h}$ and note that

$$
\begin{equation*}
E_{v}=E_{U_{v}}=\bigoplus_{a \in U_{v}} E(a) \tag{2.3}
\end{equation*}
$$

is a socle-finite injective direct summand of ${ }_{C} C$.
Assume that ${ }_{C} L_{S}$ is a finitely copresented C - S-bicomodule with a fixed injective C - S-bicomodule copresentation

$$
\begin{equation*}
0 \longrightarrow{ }_{C} L_{S} \longrightarrow E_{0} \otimes S \xrightarrow{\psi} E_{1} \otimes S \tag{2.4}
\end{equation*}
$$

where E_{0}, E_{1} are socle-finite injective comodules such that $\mathbf{E}\left(v^{\prime}\right) \subseteq E_{0}$ and $\mathbf{E}\left(v^{\prime \prime}\right) \subseteq$ $\subseteq E_{1}$.

We construct in three steps a finitely E_{v}-copresented C - S-bicomodule ${ }_{C} \widetilde{L}_{S}$, called a localising $f c$-correction of ${ }_{C} L_{S}$ as follows.

Step 1°. Fix a decomposition $E_{0}=E_{0}^{\prime} \oplus E_{0}^{\prime \prime}$, where E_{0}^{\prime} is the injective envelope of the semisimple subcomodule $S(v)$ generated by the simple subcomodules of E_{0} that are isomorphic to $S(j)$, with $j \in U_{v}$. Obviously, every simple subcomodule S of $E_{0}^{\prime \prime}$ has the form $S \cong S(a)$, where $a \notin U_{v}$.

Step 2°. Define a C - S-subbicomodule ${ }_{C} L_{S}^{\prime}$ of ${ }_{C} L_{S}$ to be the kernel of the composite C-S-bicomodule homomorhism $E_{0}^{\prime} \otimes S \xrightarrow{u_{0}^{\prime} \otimes S} E_{0} \otimes S \xrightarrow{\psi} E_{1} \otimes S$, where $u_{0}^{\prime}: E_{0}^{\prime} \hookrightarrow E_{0}$ is the canonical embedding.

Step 3°. Let $e_{v}: C \rightarrow K$ be the idempotent of the algebra $C^{*}=\operatorname{Hom}_{K}(C, K)$ defined by the direct summand E_{v} of ${ }_{C} C$. An $f c$-localising correction of ${ }_{C} L_{S}$ is the C-S-bicomodule

$$
\begin{equation*}
{ }_{C} \widetilde{L}_{S}=e_{v} C \square_{e_{v} C e_{v}}\left[\operatorname{res}_{E_{v}}\left(C L^{\prime}\right)_{S}\right] \tag{2.5}
\end{equation*}
$$

where $\operatorname{res}_{E_{v}}: C$ - $\operatorname{Comod}_{f c} \longrightarrow e_{v} C e_{v}$ $^{\operatorname{Comod}_{f c}}$ is the exact restriction functor and $e_{v} C \square_{e_{v} C e_{v}}(-): e_{v} C e_{v}-\operatorname{Comod}_{f c} \longrightarrow C-\operatorname{Comod}_{f c}$ is the left exact cotensor product functor defined in [11] and [25] ((2.9), see also [29]).

The following $f c$-localising correction lemma is of importance.
Lemma 2.1. Let K be an algebraically closed field, C a basic K-coalgebra with the decomposition (1.1), $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)=\mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$ a proper bipartite vector, $S=K[t]_{h}$, and ${ }_{C} L_{S}$ a finitely copresented C-S-bicomodule with a fixed injective C-S-bicomodule copresentation (2.4) as in Construction 2.1.
(a) The C-S-bicomodule $C_{C} \widetilde{L}_{S}(2.5)$ has an injective C-S-bicomodule copresentation

$$
\begin{equation*}
0 \longrightarrow C \widetilde{L}_{S} \longrightarrow \widetilde{E}_{0} \otimes S \xrightarrow{\widetilde{\psi}} \widetilde{E}_{1} \otimes S \tag{2.6}
\end{equation*}
$$

and the comodules $\widetilde{E}_{0}=E_{0}^{\prime}, \widetilde{E}_{1}$ lie in $\operatorname{add}\left(E_{U_{v}}\right)$.
(b) If N is an indecomposable comodule in $C-\operatorname{Comod}_{f c}$ such that $\mathbf{c d n}(N)=v$ and $N \cong{ }_{C} L_{S} \otimes K_{\lambda}^{1}$, with $\lambda \in K$, then the restriction $\widehat{u}_{0}^{\prime}:{ }_{C} L_{S}^{\prime} \hookrightarrow{ }_{C} L_{S}$ of the splitting monomorphism $u_{0}^{\prime} \otimes S: E_{0}^{\prime} \otimes S \hookrightarrow E_{0} \otimes S$ to ${ }_{C} L_{S}^{\prime}$ is an embedding of C-S-bicomodules and induces isomorphisms ${ }_{C} \widetilde{L}_{S} \otimes K_{\lambda}^{1} \cong{ }_{C} L_{S}^{\prime} \otimes K_{\lambda}^{1} \cong N$ of C-comodules.

Proof. (a) By the construction, there are a decomposition $E_{0}=E_{0}^{\prime} \oplus E_{0}^{\prime \prime}$ and exact sequence

$$
0 \longrightarrow{ }_{C} L_{S}^{\prime} \longrightarrow E_{0}^{\prime} \otimes S \xrightarrow{\psi^{\prime}} E_{1} \otimes S
$$

of C-S-bicomodules, where $\psi^{\prime}=\psi \circ\left(u_{0}^{\prime} \otimes S\right)$ and $u_{0}^{\prime}=\left(\operatorname{id}_{E_{0}^{\prime}}, 0\right): E_{0}^{\prime} \hookrightarrow E_{0}=E_{0}^{\prime} \oplus E_{0}^{\prime \prime}$ is the canonical embedding into the direct summand E_{0}^{\prime} of E_{0}. We recall from [11] and [25] (Section 2) that the restriction functor $\operatorname{res}_{E_{v}}: C-\operatorname{Comod}_{f c} \longrightarrow e_{v} C e_{v}$ - $^{\operatorname{Comod}_{f c}}$ is exact and the cotensor product functor $e_{v} C \square_{e_{v} C e_{v}}(-): e_{v} C e_{v}$ - $^{\operatorname{Comod}_{f c}} \longrightarrow$ $\longrightarrow C$ - $\operatorname{Comod}_{f c}$ is left exact. Then we derive an exact sequence

$$
0 \longrightarrow C \widetilde{L}_{S} \longrightarrow \widetilde{E}_{0} \otimes S \xrightarrow{\psi^{\prime}} E_{1}^{\vee} \otimes S
$$

of C-S-bicomodules, where $\widetilde{E}_{0}=e_{v} C \square_{e_{v} C e_{v}} \operatorname{res}_{E_{v}}\left(E_{0}^{\prime}\right)$ and

$$
E_{1}^{\vee}=e_{v} C \square_{e_{v} C e_{v}} \operatorname{res}_{E_{v}}\left(E_{1}\right)
$$

Since E_{0} is a direct summand of $E_{U_{v}}$, then by [11] and [25] (Proposition 2.7 and Theorem 2.10), there is an isomorphism $\widetilde{E}_{0} \cong E_{0}$, the socle of $\operatorname{res}_{E_{v}}\left(E_{1}\right)$ is a finite dimensional subcomodule of the coalgebra $e_{v} C e_{v}$ and the socle of $E_{1}^{\vee}=$ $=e_{v} C \square_{e_{v} C e_{v}} \operatorname{res}_{E_{v}}\left(E_{1}\right)$ is a finite direct sum of comodules $S(a)$, with $a \in U_{v}$. It follows that the injective envelope $\widetilde{E}_{1}=E_{C}\left(E_{1}^{\vee}\right)$ of the C-comodule E_{1}^{\vee} lies in $\operatorname{add}\left(E_{U_{v}}\right)$. Hence we get the exact sequence (2.6) and (a) follows.
(b) The canonical embedding $u_{0}^{\prime}=\left(\operatorname{id}_{E_{0}^{\prime}}, 0\right): E_{0}^{\prime} \hookrightarrow E_{0}=E_{0}^{\prime} \oplus E_{0}^{\prime \prime}$ into the direct summand E_{0}^{\prime} of E_{0} induces the commutative diagram of C - S-bicomodules
with exact rows, where \widehat{u}_{0}^{\prime} is the restriction of the monomorphism $u_{0}^{\prime} \otimes S: E_{0}^{\prime} \otimes S \hookrightarrow$ $\hookrightarrow E_{0} \otimes S$ to ${ }_{C} L_{S}^{\prime}$. Obviously, \widehat{u}_{0}^{\prime} is an embedding of C - S-bicomodules.

Let N be an indecomposable comodule in $C-\operatorname{Comod}_{f c}$ such that $\operatorname{cdn}(N)=v=$ $=\left(v^{\prime} \mid v^{\prime \prime}\right)$ and $N \cong{ }_{C} L_{S} \otimes K_{\lambda}^{1}$, with $\lambda \in K$. Then N has a minimal injective copresentation $0 \longrightarrow N \longrightarrow \mathbf{E}\left(v^{\prime}\right) \xrightarrow{g} \mathbf{E}\left(v^{\prime \prime}\right)$. Recall that $\mathbf{c d n E}\left(v^{\prime}\right)=\left(v^{\prime} \mid 0\right)$ and $\operatorname{cdn} \mathbf{E}\left(v^{\prime \prime}\right)=\left(v^{\prime \prime} \mid 0\right)$. Then we get a commutative diagram of C-comodules in C - Comod $_{f c}$

with exact rows. Since the upper row is a minimal injective copresentation of N, then f_{0} and f_{1} are monomorphisms, and f_{0} has a factorisation $\mathbf{E}\left(v^{\prime}\right) \xrightarrow{f_{0}^{\prime}} E_{0}^{\prime} \otimes K_{\lambda}^{1} \xrightarrow{u_{0}^{\prime} \otimes S} E_{0}^{\prime} \otimes K_{\lambda}^{1}$ through the subcomodule $E_{0}^{\prime} \otimes K_{\lambda}^{1}$ of $E_{0} \otimes K_{\lambda}^{1}$, because the socle of $E_{0}^{\prime \prime} \otimes K_{\lambda}^{1}$ contains no simple comodules $S(a)$, with $a \in U_{v}$. It follows that f_{0}^{\prime} restricts to a monomorphism
$\widehat{f_{0}^{\prime}}: N \rightarrow{ }_{C} L^{\prime} \otimes_{S} K_{\lambda}^{1}$ such that the composite map $N \xrightarrow{\widehat{f}_{0}} L^{\prime} \otimes_{S} K_{\lambda}^{1} \xrightarrow{\widehat{u}_{0}^{\prime}}{ }_{C} L \otimes_{S} K_{\lambda}^{1}$ is an isomorphism. Consequently, $\widehat{f_{0}^{\prime}}: N \rightarrow{ }_{C} L^{\prime} \otimes_{S} K_{\lambda}^{1}$ is an isomorphism of C-comodules. Hence, in the notation of Construction 2.1, we get the isomorphisms

$$
\begin{gathered}
C L \otimes_{S} K_{\lambda}^{1}=\left[e_{v} C \square_{e_{v} C e_{v}} \operatorname{res}_{E_{v}}\left({ }_{C} L^{\prime}\right)\right] \otimes_{S} K_{\lambda}^{1} \cong \\
\cong e_{v} C \square_{e_{v} C e_{v}}\left[\operatorname{res}_{E_{v}}\left(C L^{\prime} \otimes_{S} K_{\lambda}^{1}\right)\right] \cong e_{v} C \square_{e_{v} C e_{v}}\left[\operatorname{res}_{E_{v}}(N)\right] \cong N
\end{gathered}
$$

of C-comodules, because N is finitely $E_{U_{v}}$-copresented and [25] (Theorem 2.10 (d)) applies to N.

The lemma is proved.
3. $\boldsymbol{f} \boldsymbol{c}$-Tameness, $\boldsymbol{f} \boldsymbol{c}$-wildness and Roiter bocses for coalgebras. We show in this section how the study of $f c$-tame and $f c$-wild coalgebras can be reduced to the study of bimodule matrix problems in the sense of Drozd [5], to representations of additive Roiter bocses [3-7], and to the study of propartite modules over a class of bipartite algebras [19, 20].

To formulate our main results on $f c$-tame and $f c$-wild computable coalgebras, we recall some notation, see [25] and [26]. Given a socle-finite injective direct summand

$$
\begin{equation*}
E=E_{U}=\bigoplus_{u \in U} E(u) \tag{3.1}
\end{equation*}
$$

of ${ }_{C} C=\bigoplus_{j \in I_{C}} E(j)$, with a finite subset U of I_{C}, we define the category C - $\operatorname{Comod}_{f c}^{E_{U}}$ to be $f c$-tame if for every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U}$, there is a finitely E-copresented almost parametrising family for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f_{c}}^{E_{U}}\right)$.

We start with the following $f c$-parametrisation correction lemma.
Lemma 3.1. Let K be an algebraically closed field, C a basic K-coalgebra with the decomposition (1.1), and $E=E_{U}$ a socle-finite injective direct summand (3.1) of $C_{C} C$.
(a) If C is $f c$-tame then the category C - $\operatorname{Comod}_{f c}^{E_{U}}$ is $f c$-tame.
(b) If $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)=\mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$ is a proper bipartite vector, $S=K[t]_{h}$, and $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$ is a finitely copresented almost parametrising family of C-S-bicomodules for $\operatorname{ind}_{v}\left(C\right.$ - $\left.\operatorname{Comod}_{f_{c}}^{E_{U}}\right)$ then the $f c$-localising v-corrected C -S-bicomodules $\widetilde{L}^{(1)}, \ldots, \widetilde{L}^{\left(r_{v}\right)}$ in the sense of Construction 2.1 form a finitely E_{U} copresented almost parametrising family for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E_{U}}\right)$.

Proof. It is sufficient to prove (b), because (a) is a direct consequence of (b). Assume that $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)=\mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$ is a proper bipartite vector and $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$ is a finitely copresented almost parametrising family for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E_{U}}\right)$. Assume that $r_{v} \geq 0$ is a minimal number of such non-zero bimodules. If $r_{v}=0$ then there is nothing to prove, because the number of the isomorphism classes of indecomposable comodules in $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f_{c}}^{E_{U}}\right)$ is finite.

Assume that $r_{v} \geq 1$. Then, for each $1 \leq j \leq r_{v}$, there is an indecomposable comodule N such that $\mathbf{c d n}(N)=v$ and $N \cong L^{(j)} \otimes_{S} K_{\lambda(j)}^{1}$, for some $\lambda(j) \in K$. Then N has a minimal injective copresentation $0 \longrightarrow N \longrightarrow \mathbf{E}\left(v^{\prime}\right) \xrightarrow{g} \mathbf{E}\left(v^{\prime}\right)$.

Since ${ }_{C} L_{S}^{(j)}$ is a finitely copresented C - S-bicomodule then it has an injective C - S bicomodule copresentation

$$
0 \longrightarrow C L_{S}^{(j)} \longrightarrow E_{0}^{(j)} \otimes S \xrightarrow{\psi^{(j)}} E_{1}^{(j)} \otimes S
$$

where $E_{0}^{(j)}, E_{1}^{(j)}$ are socle-finite injective C-comodules. Since $N \cong L^{(j)} \otimes_{S} K_{\lambda(j)}^{1}$ then there are C-comodule monomorphisms $\mathbf{E}\left(v^{\prime}\right) \subseteq E_{0}$ and $\mathbf{E}\left(v^{\prime \prime}\right) \subseteq E_{1}$, because the sequence

$$
0 \longrightarrow C_{C} L^{(j)} \otimes_{S} K_{\lambda(j)}^{1} \longrightarrow E_{0}^{(j)} \otimes K_{\lambda(j)}^{1} \xrightarrow{\widehat{\psi}^{(j)}} E_{1}^{(j)} \otimes K_{\lambda(j)}^{1}
$$

induced by the previous one is exact and is a socle-finite injective copresentation of $N \cong L^{(j)} \otimes_{S} K_{\lambda(j)}^{1}$. Then the Construction 2.1 applies to ${ }_{C} L_{S}^{(j)}$, for $j=1, \ldots, r_{v}$.

By applying Lemma 2.1 to the finitely copresented C - S-bicomodule $L^{(j)}$ we get a finitely E_{U}-copresented C - S-bicomodule $\widetilde{L}^{(j)}$ such that the $f c$-localising v-corrected C-S-bicomodules $\widetilde{L}^{(1)}, \ldots, \widetilde{L}^{\left(r_{v}\right)}$ form a finitely E_{U}-copresented almost parametrising family for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E_{U}}\right)$.

The lemma is proved.
Following [25, 26, 28] given a socle-finite injective direct summand $E=E_{U}$ (3.1), we consider the K-algebra

$$
\begin{equation*}
R_{E}=\operatorname{End}_{C} E=\bigoplus_{u \in U} e_{u} R_{E} \tag{3.2}
\end{equation*}
$$

where $e_{u} R_{E}=\operatorname{Hom}_{C}(E, E(u))$ is viewed as an indecomposable projective right ideal of R_{E} and e_{u} is the primitive idempotent of R_{E} defined by the summand $E(u)$ of E. Since the set U is finite then $\sum_{u \in U} e_{u}$ is the identity of R_{E}. It is easy to see that the Jacobson radical $J\left(R_{E}\right)$ of R_{E} has the form $J\left(R_{E}\right)=\left\{h \in \operatorname{End}_{C} E ; h(\operatorname{soc} E)=0\right\}$. It follows that the algebra R_{E} is semiperfect and pseudocompact with respect to the K linear topology defined by the left ideals $\mathfrak{a}_{\beta}=\operatorname{Hom}_{C}\left(E / V_{\beta}, E\right) \subseteq R_{E}$, where $\left\{V_{\beta}\right\}_{\beta}$ is the directed set of all finite dimensional subcomodules of E. Since $E=\bigcup_{\beta} V_{\beta}$, then there are isomorphisms

$$
\begin{equation*}
R_{E}=\operatorname{End}_{C} E \cong \lim _{\leftarrow} \operatorname{Hom}_{C}\left(V_{\beta}, E\right) \cong \lim _{\leftarrow} R_{E} / \mathfrak{a}_{\beta} \tag{3.3}
\end{equation*}
$$

Following [3, 7, 28], we consider the homomorphism category $\mathcal{M a p}_{1}(E)$ whose objects are the triples $\left(E_{0}, E_{1}, \psi\right)$ with E_{0}, E_{1} comodules in $\operatorname{add}(E)$ and $\psi: E_{0} \longrightarrow E_{1}$ a homomorphism of C-comodules such that $\psi\left(\operatorname{soc} E_{0}\right)=0$; and whose morphisms are the pairs $\left(f_{0}, f_{1}\right)$, where $f_{0}: E_{0} \longrightarrow E_{0}^{\prime}, f_{1}: E_{1} \longrightarrow E_{1}^{\prime}$ and $\psi^{\prime} \circ f_{0}=f_{1} \circ \psi$. Denote by $\mathcal{M a p}_{2}(E)$ the full subcategory of $\mathcal{M a p}_{1}(E)$ whose objects are the triples $\left(E_{0}, E_{1}, \psi\right)$ such that $\operatorname{soc} \operatorname{Im} \psi=\operatorname{soc} E_{1}$. or equivalently, $\psi: E_{0} \longrightarrow E_{1}$ has no non-zero direct summand of the form $0 \longrightarrow E^{\prime \prime}$. We define the coordinate vector of $\left(E_{0}, E_{1}, \psi\right)$ to be the bipartite vector

$$
\begin{equation*}
\operatorname{cdn}\left(E_{0}, E_{1}, \psi\right)=\left(\lg \operatorname{th}\left(\operatorname{soc} E_{0}\right) \mid \lg \operatorname{th}\left(\operatorname{soc} E_{1}\right)\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U}=K_{0}\left(R_{E}\right) \times K_{0}\left(R_{E}\right) \tag{3.4}
\end{equation*}
$$

Following [7], [3] (Section 6) and [28], we denote by $\mathcal{P}_{1}\left(R_{E}^{o p}\right)$ the category whose objects are the triples $\left(P_{1}, P_{0}, \phi\right)$ with P_{0}, P_{1} finitely generated projective left $R_{E^{-}}$ modules and $\phi: P_{1} \longrightarrow \operatorname{rad}\left(P_{0}\right)=P_{0} J\left(R_{E}\right)$ a homomorphism of left R_{E}-modules; and whose morphisms are the pairs $\left(g_{1}, g_{0}\right)$, where $g_{0}: P_{0} \longrightarrow P_{0}^{\prime}, g_{1}: P_{1} \longrightarrow P_{1}^{\prime}$ and $\phi^{\prime} \circ g_{1}=g_{0} \circ \phi$. Denote by $\mathcal{P}_{2}\left(R_{E}^{o p}\right)$ the full subcategory of $\mathcal{P}_{1}\left(R_{E}^{o p}\right)$ whose objects are the triples $\left(P_{1}, P_{0}, \phi\right)$ with $\operatorname{Ker} \phi \subseteq \operatorname{rad}\left(P_{1}\right)$. or equivalently, $\phi: P_{1} \longrightarrow P_{0}$ has no
non-zero direct summand of the form $P \longrightarrow 0$. We define the coordinate vector of $\left(P_{1}, P_{0}, \phi\right)$ to be the bipartite vector

$$
\mathbf{c d n}\left(P_{1}, P_{0}, \phi\right)=\left(\operatorname{lgth}\left(\operatorname{top} P_{1}\right) \mid \operatorname{lgth}\left(\operatorname{top} P_{0}\right)\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U}=K_{0}\left(R_{E}^{o p}\right) \times K_{0}\left(R_{E}^{o p}\right)
$$

We call $\boldsymbol{\operatorname { c d n }}(\operatorname{Coker} \phi)=\boldsymbol{\operatorname { c d n }}\left(P_{1}, P_{0}, \phi\right)$ the coordinate vector of the R_{E}-module Coker ϕ.

We start with the following important result. Here we freely use the terminology and notation introduced in [3] (Section 6), [7], and [28].

Theorem 3.1. Let K be an algebraically closed field, C a basic K-coalgebra with the decomposition (1.1), E a socle-finite injective direct summand (3.1) of ${ }_{C} C$, and assume that the K-algebra $R_{E}=\operatorname{End}_{C} E$ (3.2) is finite-dimensional. Let $\mathbf{B}_{E}=$ $=\left(A,{ }_{A} V_{A}\right)$ be the additive Roiter bocs associated to the K-algebra $R_{E}^{o p}$ in [3] (Proposition 6.1). Then there is a commutative diagram

where H_{E} and $h_{E}^{\bullet}=\operatorname{Hom}_{C}(\bullet, E)$ are K-linear contravariant equivalences of categories, G is a covariant K-linear equivalence of categories, h_{E}^{\bullet} is an exact functor, $\operatorname{ker}_{E}\left(E_{0}, E_{1}, \psi\right)=\operatorname{Ker} \psi, \operatorname{cok}_{E}\left(P_{1}, P_{0}, \phi\right)=\operatorname{Coker} \phi$, and the following conditions are satisfied.
(a) The functors $\mathbf{c o k}_{E}$ and $\mathbf{k e r}_{E}$ are full dense and restrict to the representation equivalences $\operatorname{ker}_{E}: \mathcal{M a p}_{2}(E) \longrightarrow C-\operatorname{Comod}_{f c}^{E}$ and $\mathbf{c o k}_{E}: \mathcal{P}_{2}\left(R_{E}^{o p}\right) \longrightarrow \bmod \left(R_{E}^{o p}\right)$. The right-hand part in the diagram is defined as in [7] (Section 5) and [3, p. 476, 478], with $R_{E}^{o p}, G, \operatorname{cok}_{E}$ and Λ, Ξ, cok interchanged.
(b) If N is an indecomposable comodule in $C-\operatorname{Comod}_{f_{c}}^{E}$ then there exists a unique, up to isomorphism, indecomposable object $\left(E_{0}, E_{1}, \psi\right)$ in $\mathcal{M a p}_{1}(E)$ such that $\operatorname{ker}_{E}\left(E_{0}, E_{1}, \psi\right) \cong N$. In this case $\left(E_{0}, E_{1}, \psi\right)$ lies in $\mathcal{M a p}_{2}(E)$ and

$$
\left.\boldsymbol{\operatorname { c d n }}(N)=\mathbf{c d n}\left(E_{0}, E_{1}, \psi\right)=\sigma\left(\mathbf{c d n} H_{E}\left(E_{0}, E_{1}, \psi\right)\right)=\underline{\operatorname{dim}} G^{-1} H_{E}\left(E_{0}, E_{1}, \psi\right)\right),
$$

where we set $\sigma\left(v^{\prime} \mid v^{\prime \prime}\right)=\left(v^{\prime \prime} \mid v^{\prime}\right)$.
(c) If the category C - $\operatorname{Comod}_{f c}^{E}$ is not of K-wild representation type (shortly, K wild) then the additive category $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ of the K-linear representations of \mathbf{B}_{E} is not wild and, given a non-negative vector

$$
v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U} \subseteq \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)} \cong K_{0}(C) \times K_{0}(C)
$$

there exist minimal bocses $\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$, with $\mathbf{B}_{i}=\left(B_{i}, W_{i}\right)$, finitely E-copresented C - B_{i}-bicomodules T_{i} and full functors $F_{i}: \operatorname{rep}_{K}\left(\mathbf{B}_{i}\right) \longrightarrow C$-Comod ${ }_{f c}$ which reflect isomorphisms such that
$\left(\mathrm{c}_{1}\right) F_{i}(X)=T_{i} \otimes_{B_{i}} X$, for all representations X in $\operatorname{rep}_{K}\left(\mathbf{B}_{i}\right)$,
$\left(\mathrm{c}_{2}\right)$ every indecomposable comodule N in $C-\operatorname{Comod}_{f c}^{E}$, with $\mathbf{c d n}(N)=v$, is isomorphic to $F_{i}(X)$, for some i and some representation X in $\operatorname{rep}_{K}\left(\mathbf{B}_{i}\right)$,
$\left(\mathrm{c}_{3}\right)$ the functors F_{i} induce group homomorphisms $K_{0}\left(\mathbf{B}_{i}\right) \longrightarrow \mathbb{Z}^{U} \subseteq \mathbb{Z}^{\left(I_{C}\right)} \cong$ $\cong K_{0}(C)$ taking the dimension vector $\underline{\operatorname{dim}}(X)$ of X to $\operatorname{cdn} F_{i}(X)$.

Proof. By our assumption, the injective comodule $E=E_{U}$ is socle-finite and the K-algebra $R_{E}=\operatorname{End}_{C} E$ is finite dimensional. Let $D: \bmod R_{E}^{o p} \longrightarrow \bmod R_{E}$ be the standard duality given by $L \mapsto D(L)=\operatorname{Hom}_{K}(L, K)$, for any L in $\bmod R_{E}^{o p}$. We define the contravariant functor h_{E}^{\bullet} by setting $h_{E}^{(-)}=\operatorname{Hom}_{C}(-, E)$. Since E is injective, the functor h_{E}^{\bullet} is exact and, by [26] (Proposition 2.13), h_{E}^{\bullet} is an equivalence of categories such that $(\operatorname{lgth} N)_{u}=\left(\underline{\operatorname{dim}} h_{E}^{N}\right)_{u}=\operatorname{dim}_{K}\left(h_{E}^{N}\right) e_{u}$, for any comodule N in C-Comod ${ }_{f c}^{E_{U}}$ and all $u \in U$, where $\underline{\operatorname{dim}} N^{\prime}$ is the dimension vector of a left R_{U}-module N^{\prime}. This means that $\operatorname{res}_{U}(\operatorname{lgth} N)=\underline{\operatorname{dim}} h_{E}^{N}$, for any comodule N in C - $\operatorname{Comod}_{f_{c}}^{E_{U}}$, where $\operatorname{res}_{U}: \mathbb{Z}^{\left(I_{E}\right)} \longrightarrow \mathbb{Z}^{U}$ is the restriction homomorphism.

We define the functor H_{E} on objects by setting $H_{E}\left(E_{0}, E_{1}, \psi\right)=\left(h_{E}^{E_{1}}, h_{E}^{E_{0}}, h_{E}^{\psi}\right)$, and on morphisms by setting $H_{E}\left(f_{0}, f_{1}\right)=\left(h_{E}^{f_{1}}, h_{E}^{f_{0}}\right)$. A direct calculation shows that $\left(h_{E}^{E_{1}}, h_{E}^{E_{0}}, h_{E}^{\psi}\right)$ belongs to $\mathcal{P}_{1}\left(R_{E}^{o p}\right)$, if $\left(E_{0}, E_{1}, \psi\right) \in \mathcal{M a p}_{1}(E)$ and that H_{E} is well defined.

For a purpose of next steps of the proof (and in order to see a nature of $\mathcal{M a p} p_{1}(E)$ as the bimodule problem in the sense of Drozd [5], see also [4, 17]), we give a different detailed proof of the above fact.

Let $\mathbb{K}=\operatorname{add}(E)$ be the full additive subcategory of C-Comod formed by finite direct sums of the injective C-comodules $E(u)$, with $u \in U$, and let $\mathbb{H}=\mathbb{H}^{E}$ be the \mathbb{K} - \mathbb{K}-bimodule $\mathbb{H}(-, \cdot)=\mathbb{H}^{E}(-, \cdot): \mathbb{K}^{o p} \times \mathbb{K} \longrightarrow \bmod K$ defined by the formula

$$
\mathbb{H}\left(E^{\prime}, E^{\prime \prime}\right)=\left\{g \in \operatorname{Hom}_{C}\left(E^{\prime}, E^{\prime \prime}\right) ; \psi\left(\operatorname{soc} E^{\prime}\right)=0\right\} \subseteq \operatorname{Hom}_{C}\left(E^{\prime}, E^{\prime \prime}\right)
$$

with $E^{\prime}, E^{\prime \prime} \in \mathbb{K}$. Note that $\mathbb{H}(E, E)=\left\{\psi \in \operatorname{End}_{C} E ; \psi(\operatorname{soc} E)=0\right\}=J\left(R_{E}\right)$ is the Jacobson radical of the algebra R_{E}.

We construct H_{E} as the composite functor

$$
\begin{equation*}
\operatorname{Map}_{1}(E) \underset{\simeq}{H^{\prime}} \operatorname{Mat}\left(\mathbb{K}_{\mathbb{K}} \mathbb{H}_{\mathbb{K}}^{E}\right) \xrightarrow[\simeq]{H^{\prime}} \mathcal{P}_{1}\left(R_{E}^{o p}\right) \tag{3.6}
\end{equation*}
$$

where $\operatorname{Mat}\left({ }_{\mathbb{K}} \mathbb{H}_{\mathbb{K}}^{E}\right)$ is the additive K-category of $\mathbb{K}_{\mathbb{K}} \mathbb{H}_{\mathbb{K}}^{E}$-matrices in the sense of Drozd [5], see also [4], [10], [18] (Chapter 17), [20] (Section 2) for details. Recall that the objects of $\operatorname{Mat}\left({ }_{\mathbb{K}} \mathbb{H}_{\mathbb{K}}^{E}\right)$ are the triples $\left(E^{\prime}, E^{\prime \prime}, \psi\right)$, where $E^{\prime}, E^{\prime \prime} \in$ obK \mathbb{K} and $\psi \in \mathbb{H}\left(E^{\prime}, E^{\prime \prime}\right)$, and morphisms are defined in a natural way.

The functor H^{\prime} is defined by attaching to any object $\left(E_{0}, E_{1}, \psi\right)$ of $\mathcal{M a p}(E)$, with $\psi \in \operatorname{Hom}_{C}\left(E_{0}, E_{1}\right)=\mathbb{H}\left(E_{0}, E_{1}\right)$ and $E_{0}, E_{1} \in \mathbb{K}$, the triple $H^{\prime}\left(E_{0}, E_{1}, \psi\right)=$ $=\left(E_{0}, E_{1}, \psi\right)$, viewed as an object of $\operatorname{Mat}\left(\mathbb{K}_{\mathbb{K}} \mathbb{H}_{\mathbb{K}}^{E}\right)$. Given a morphism $\left(f_{0}, f_{1}\right)$: $\left(E_{0}, E_{1}, \psi\right) \longrightarrow\left(E_{0}^{\prime}, E_{1}^{\prime}, \psi^{\prime}\right)$, we set $H^{\prime}\left(f_{0}, f_{1}\right)=\left(f_{0}, f_{1}\right)$. It is easy to see that H^{\prime} is a K-linear equivalence of categories.

Now we construct the functor $H^{\prime \prime}$. In the notation of [20] (Section 2), we denote by R_{E}-pr the category of finitely generated projective left R_{E}-modules and we define the Nakayama equivalence $\omega: \mathbb{K} \xrightarrow{\simeq}\left(R_{E}-\mathrm{pr}\right)^{o p}$ that associates, to any object x of \mathbb{K}, the finitely generated projective left R_{E}-module $\omega(x)=h_{E}^{x}=\operatorname{Hom}_{C}(x, E)$. Hence, by applying the formula (2.9) in [20] to $\mathbf{K}=\mathbf{L}=\mathbb{K}=\operatorname{add}(E)$ and the bimodule $\mathbf{M}=\mathbb{H}$, we conclude that, for any pair $x=E^{\prime}, y=E^{\prime \prime}$ of objects in \mathbb{K}, the (contravariant!) functor ω induces the natural isomorphisms

$$
\mathbb{H}\left(E^{\prime}, E^{\prime \prime}\right)=\mathbb{H}(x, y) \cong \operatorname{Hom}_{R_{E}}\left(h_{E}^{y}, \mathbb{H}(x, E)\right) \cong
$$

$$
\begin{gather*}
\cong \operatorname{Hom}_{R_{E}}\left(h_{E}^{y}, \mathbb{H}(E, E) \otimes_{R_{E}} h_{E}^{x}\right) \cong \\
\cong \operatorname{Hom}_{R_{E}}\left(h_{E}^{y}, J\left(R_{E}\right) \otimes_{R_{E}} h_{E}^{x}\right) \cong \\
\cong \operatorname{Hom}_{R_{E}}\left(h_{E}^{y}, \operatorname{rad} h_{E}^{x}\right)=\operatorname{Hom}_{R_{E}}\left(h_{E}^{E^{\prime \prime}}, \operatorname{rad} h_{E}^{E^{\prime}}\right) \cong \\
\cong \operatorname{Hom}_{R_{E}}\left(J\left(R_{E}\right)^{+} \otimes_{R_{E}} h_{E}^{y}, h_{E}^{x}\right) \cong \\
\cong \operatorname{Hom}_{R_{E}}\left(J\left(R_{E}\right)^{+} \otimes_{R_{E}} h_{E}^{E^{\prime \prime}}, h_{E}^{E^{\prime}}\right), \tag{3.7}
\end{gather*}
$$

where $J\left(R_{E}\right)^{+}=\operatorname{Hom}_{R_{E}}\left(J\left(R_{E}\right), R_{E}\right)$ is viewed as an $R_{E}-R_{E}$-bimodule.
Hence, if $\left(E_{0}, E_{1}, \psi\right)$ is an object of $\operatorname{Map}_{1}(E)$ (or of $\operatorname{Mat}\left({ }_{\mathbb{K}} \mathbb{H}_{\mathbb{K}}\right)$) then $\psi \in$ $\in \mathbb{H}\left(E^{\prime}, E^{\prime \prime}\right)$ and its image $\widehat{\psi}: h_{E}^{E^{\prime \prime}} \longrightarrow \operatorname{rad} h_{E}^{E^{\prime}}$ under the composite isomorphism (3.7) is such that $h_{E}^{\psi}=u \cdot \widehat{\psi}$, where $u: \operatorname{rad} h_{E}^{E^{\prime}} \hookrightarrow h_{E}^{E^{\prime}}$ is the embedding. It follows that $\left(h_{E}^{E^{\prime \prime}}, h_{E}^{E^{\prime}}, h_{E}^{\psi}\right)$ lies in $\mathcal{P}_{1}\left(R_{E}\right)$ if and only if $\left(E_{0}, E_{1}, \psi\right)$ lies in $\mathcal{M a p}_{1}(E)$. We define $H^{\prime \prime}$ (and H_{E}) on objects $\left(E_{0}, E_{1}, \psi\right)$ by setting

$$
H^{\prime \prime}\left(E_{0}, E_{1}, \psi\right)=H_{E}\left(E_{0}, E_{1}, \psi\right)=\left(h_{E}^{E^{\prime \prime}}, h_{E}^{E^{\prime}}, h_{E}^{\psi}\right)
$$

and on morphisms $\left(f_{0}, f_{1}\right)$ by $H^{\prime \prime}\left(f_{0}, f_{1}\right)=H^{E}\left(f_{0}, f_{1}\right)=\left(h_{E}^{f_{1}}, h_{E}^{f_{0}}\right)$. Obviously, $H=H^{\prime \prime} \circ H^{\prime}$. Since, up to isomorphism, all objects of $\mathcal{P}_{1}\left(R_{E}\right)$ are of the form $\left(h_{E}^{E^{\prime \prime}}, h_{E}^{E^{\prime}}, h_{E}^{\psi}\right)$, with $\left(E_{0}, E_{1}, \psi\right) \in \mathcal{M} a p_{1}(E)$, then the functors $H^{\prime \prime}$ and H_{E} are equivalences of categories making the square in (3.5) commutative.
(a) The fact that the functors ker and cok are full and dense follows immediately form the definitions. It is easy to see that $\left(P_{1}, P_{0}, \phi\right)$ is an object of $\mathcal{P}_{1}\left(R_{E}\right)$ if and only if $P_{1} \xrightarrow{\phi} P_{0} \rightarrow \operatorname{Coker} \phi \rightarrow 0$ is a minimal projective presentation of Coker ψ in $\bmod \left(R_{E}^{o p}\right)$. Analogously, $\left(E_{0}, E_{1}, \psi\right)$ is an object of $\mathcal{M a p} p_{1}(E)$ if and only if $0 \rightarrow \operatorname{Ker} \psi \rightarrow E_{0} \xrightarrow{\psi} E_{1}$ is a minimal injective E-copresentation of $\operatorname{Ker} \psi$. Hence easily follows that the functors cok_{E} and ker_{E} restrict to the representation equivalences $\operatorname{ker}_{E}: \mathcal{M a p}_{2}(E) \longrightarrow C-\operatorname{Comod}_{f c}^{E}$ and $\operatorname{cok}_{E}: \mathcal{P}_{2}\left(R_{E}^{o p}\right) \longrightarrow \bmod \left(R_{E}^{o p}\right)$. The remaining statements in (a) follow from the definitions and [3] (Section 6).
(b) Let N be an indecomposable comodule in $C-\operatorname{Comod}_{f c}^{E}$. Then N admits a minimal injective E-copresentation $0 \rightarrow N \rightarrow E_{0} \xrightarrow{\psi} E_{1}$ in C-Comod, with $E_{0}, E_{1} \in \operatorname{add}(E)$ and, therefore, $\left(E_{0}, E_{1}, \psi\right)$ is an object of $\mathcal{M a p}_{1}(E)$. It follows that

$$
H_{E}\left(E_{0}, E_{1}, \psi\right)=\left(h_{E}^{E_{1}}, h_{E}^{E_{0}}, h_{E}^{\psi}\right) \in \mathcal{P}_{2}\left(R_{E}\right)
$$

and, hence, $h_{E}^{E_{1}} \xrightarrow{h_{E}^{\psi}} h_{E}^{E_{0}} \longrightarrow h_{E}^{N} \rightarrow 0$ is a minimal projective presentation of h_{E}^{N} in $\bmod R_{E}^{o p}$. Hence the equalities $\mathbf{c d n}(N)=\mathbf{c d n}\left(E_{0}, E_{1}, \psi\right)=\sigma\left(\boldsymbol{\operatorname { d n }} H_{E}\left(E_{0}, E_{1}, \psi\right)\right)$ easily follow. The equality $\left.\sigma\left(\boldsymbol{\operatorname { c d n }} H_{E}\left(E_{0}, E_{1}, \psi\right)\right)=\underline{\operatorname{dim}} G^{-1} H_{E}\left(E_{0}, E_{1}, \psi\right)\right)$ is proved in [7] (Section 5) and [3] (Section 6).
(c) First we show that the functor G in (3.5) is the composite functor

$$
\begin{equation*}
\mathcal{P}_{1}\left(R_{E}^{o p}\right) \underset{\simeq}{\stackrel{G^{\prime}}{\simeq} \widehat{R}_{E}-\bmod _{p r}^{p r} \frac{G^{\prime \prime}}{\simeq} \operatorname{rep}_{K}\left(\mathbf{B}_{E}\right), ~, ~ . ~} \tag{3.8}
\end{equation*}
$$

where $\widehat{R}_{E}-\bmod _{p r}^{p r}$ is the additive K-category of finite dimensional propartite left modules over the finite dimensional bipartite K-algebra

$$
\widehat{R}_{E}=\left[\begin{array}{cc}
R_{E} & J\left(R_{E}\right)^{+} \tag{3.9}\\
0 & R_{E}
\end{array}\right]
$$

in the sense of [20], with $J\left(R_{E}\right)^{+}=\operatorname{Hom}_{R_{E}}\left(J\left(R_{E}\right), R_{E}\right)$. First we note that if $X=$ $=\left(X^{\prime}, X^{\prime \prime}, \xi: J\left(R_{E}\right)^{+} \otimes_{R_{E}} X^{\prime} \longrightarrow X^{\prime \prime}\right)$, is a propartite left \widehat{R}_{E}-module then, up to isomorphism, the projective left R_{E}-modules $X^{\prime}, X^{\prime \prime}$ have the forms $X^{\prime}=h_{E}^{E^{\prime \prime}}$, $X^{\prime \prime}=h_{E}^{E^{\prime}}$, where $E^{\prime}, E^{\prime \prime} \in \operatorname{add}(E)$. Then, in view of the isomorphisms

$$
\begin{gathered}
\operatorname{Hom}_{R_{E}}\left(J\left(R_{E}\right)^{+} \otimes_{R_{E}} h_{E}^{E^{\prime \prime}}, h_{E}^{E^{\prime}}\right) \cong \\
\cong \operatorname{Hom}_{R_{E}}\left(h_{E}^{E^{\prime \prime}}, J\left(R_{E}\right) \otimes_{R_{E}} h_{E}^{E^{\prime}}\right) \cong \operatorname{Hom}_{R_{E}}\left(h_{E}^{E^{\prime \prime}}, \operatorname{rad} h_{E}^{E^{\prime}}\right)
\end{gathered}
$$

given in (3.7), we can view X as the triple $X=\left(X^{\prime}, X^{\prime \prime}, \widetilde{\xi}\right)$, where $\widetilde{\xi}=u \circ \bar{\xi}$ is the composition $h_{E}^{E^{\prime \prime}} \xrightarrow{\bar{\xi}} \operatorname{rad} h_{E}^{E^{\prime}} \xrightarrow{u} h_{E}^{E^{\prime}}$ of the image $\bar{\xi}$ of $\xi \in \operatorname{Hom}_{R_{E}}\left(J\left(R_{E}\right)^{+} \otimes_{R_{E}}\right.$ $h_{E}^{E^{\prime \prime}}, h_{E}^{E^{\prime}}$), under the composite isomorphism, with the canonical embedding u. In other words, the triple $G^{\prime}(X)=\left(X^{\prime}, X^{\prime \prime}, \phi\right)=\left(h_{E}^{E^{\prime \prime}}, h_{E}^{E^{\prime}}, \phi\right)$ is an object of $\mathcal{P}_{1}\left(R_{E}^{o p}\right)$. This defines the equivalence G^{\prime}, and we set $G^{\prime \prime}=G \circ\left(G^{\prime}\right)^{-1}$. It is clear that the functor $T_{K}=\left(G^{\prime \prime}\right)^{-1}$ is the equivalence $T_{K}: \widehat{R}_{E}-\bmod _{p r}^{p r} \xrightarrow{\simeq} \operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ defined in [20] ((4.11)).

Following an observation of Drozd [7] (see also [3] and [20, p. 44, 45]), given a finitely generated K-algebra S, the category $\operatorname{rep}\left(\mathbf{B}_{E}, S\right)$ of right S-module representations of the bocs $\mathbf{B}_{E}=\left(A,{ }_{A} V_{A}\right)$ has as objects the A-S-bimodules ${ }_{A} X_{S}$ in $\bmod _{f p}\left(A \otimes S^{o p}\right)$ (the category of finitely presented left $\left(A \otimes S^{o p}\right)$-modules), which are finitely generated projective, when viewed as right S-modules, see [7], [3] and [20, p. 44, 45] for details. We set $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)=\operatorname{rep}\left(\mathbf{B}_{E}, K\right)$.

By [20] (Proposition 4.9), there is an equivalence of categories

$$
\begin{equation*}
T_{S}:\left(\widehat{R}_{E} \otimes S^{o p}\right)-\bmod _{p r}^{p r} \xrightarrow{\simeq} \operatorname{rep}\left(\mathbf{B}_{E}, S\right) \tag{3.10}
\end{equation*}
$$

for any finitely generated K-algebra S, where

$$
\left(\widehat{R}_{E} \otimes S^{o p}\right)=\left[\begin{array}{cc}
R_{E} \otimes S^{o p} & J\left(R_{E}\right)^{+} \otimes S^{o p} \\
0 & R_{E} \otimes S^{o p}
\end{array}\right]
$$

The objects of $\left(\widehat{R}_{E} \otimes S^{o p}\right)$ - $\bmod _{p r}^{p r}$ are \widehat{R}_{E}-S-bimodules that are $\left(R_{E} \otimes S^{o p}\right)-\left(R_{E} \otimes S^{o p}\right)$ propartite and finitely generated projective as left S-modules.

Following the above construction of the functor G^{\prime}, we can construct equivalences of categories

$$
\begin{equation*}
\mathcal{P}_{1}\left(\left(R_{E} \otimes S^{o p}\right)^{o p}\right) \stackrel{G_{E, S}^{\prime}}{\longleftarrow}\left(\widehat{R}_{E} \otimes S^{o p}\right)-\bmod _{p r}^{p r} \stackrel{G_{E, S}^{\prime \prime}}{\leftrightarrows} \operatorname{rep}\left(\mathbf{B}_{E}, S\right), \tag{3.11}
\end{equation*}
$$

and we extend the diagram (3.5) to the following commutative diagram

where $G_{E, S}=G_{E, S}^{\prime} \circ G_{E, S}^{\prime \prime}$ and $T_{S}^{-1}=G_{E, S}^{\prime \prime}$. We set $\widehat{C}=C \otimes S^{o p}$ and view it as an $S^{o p}$-coalgebra with the comultiplication $\widehat{\Delta}=\Delta \otimes S^{o p}$ and the counit $\widehat{\varepsilon}=\varepsilon \otimes S^{o p}$. Then $\widehat{E}=E \otimes S^{o p}$ is an injective object in the category \widehat{C}-Comod of left \widehat{C}-comodules, which is projective, when viewed as a right S-module.

We define \widehat{C}-Comod ${ }_{f c}^{\widehat{E}}=\left(C \otimes S^{o p}\right)$ - $\operatorname{Comod}_{f c}^{E \otimes S^{o p}}$ to be the full subcategory \widehat{C}-Comod whose objects are the finitely \widehat{E}-copresented \widehat{C}-comodules, that is, finitely $E \otimes S^{o p}$-copresented \widehat{C}-bicomodules. The categories $\mathcal{M} a_{1}\left(E \otimes S^{o p}\right), \mathcal{P}_{1}\left(R_{E} \otimes S^{o p}\right)$, and the functors $\mathbf{k e r}=\operatorname{ker}_{E \otimes S^{o p}}, \mathbf{c o k}=\operatorname{cok}_{R_{E} \otimes S^{o p}}$ are defined in an obvious way.

We only prove that the functor $h_{S}^{\bullet}:\left(C \otimes S^{o p}\right)-\operatorname{Comod}_{f c}^{E \otimes S^{o p}} \longrightarrow \bmod \left(\left(R_{E} \otimes\right.\right.$ $\left.\left.\otimes S^{o p}\right)^{o p}\right)$ in (3.12) defined by $Z \mapsto h_{S}^{Z}=\operatorname{Hom}_{\widehat{C}}(Z, \widehat{E})$, is an equivalence of categories. The fact that $H_{E, S}$ is an equivalence of categories can be proved by applying the properties of h_{S}^{\bullet} and the isomorphism

$$
\begin{equation*}
\chi_{E^{\prime}, E^{\prime \prime}}: \operatorname{Hom}_{C}\left(E^{\prime}, E^{\prime \prime}\right) \otimes S^{o p} \longrightarrow \operatorname{Hom}_{\widehat{C}}\left(E^{\prime} \otimes S^{o p}, E^{\prime \prime} \otimes S^{o p}\right), \tag{3.13}
\end{equation*}
$$

with $E^{\prime}, E^{\prime \prime} \in \operatorname{add}(E)$, given by $g \otimes s \mapsto\left[(g \otimes \mathrm{id}) \cdot s: E^{\prime} \otimes S^{o p} \longrightarrow E^{\prime \prime} \otimes S^{o p}\right]$, because the bimodule problem arguments used above extend almost verbatim to our situation. The homomorphism $\chi_{E^{\prime}, E^{\prime \prime}}$ is an isomorphism of S-modules, for each pair $E^{\prime}, E^{\prime \prime}$ of comodules in $\operatorname{add}(E)$, because it is functorial with respect to homomorphisms $E^{\prime} \rightarrow E_{1}^{\prime}$ and $E^{\prime \prime} \rightarrow E_{1}^{\prime \prime}$ of C-comodules and it is proved in [28] ((2.10)) that $\chi_{E^{\prime}, E^{\prime \prime}}$ is bijective, for $E^{\prime}=E^{\prime \prime}=E$, if the algebra R_{E} is finite dimensional.

Hence easily follows that a left \widehat{C}-comodule Z lies in $\left(C \otimes S^{o p}\right)$ - $\operatorname{Comod}_{f c}^{E \otimes S^{o p}}$ if and only if there is an exact sequence $0 \longrightarrow Z \longrightarrow E_{0} \otimes S^{o p} \longrightarrow E_{1} \otimes S^{o p}$, with $E_{0}, E_{1} \in \operatorname{add}(E)$. By applying $\operatorname{Hom}_{\widehat{C}}\left(-, E \otimes S^{o p}\right)$ and the isomorphism $\chi_{E^{\prime}, E^{\prime \prime}}$, we get the exact sequence

$$
h_{E}^{E_{1}^{\prime}} \otimes S^{o p} \longrightarrow h_{E}^{E_{0}} \otimes S^{o p} \longrightarrow h_{S}^{Z} \longrightarrow 0
$$

of left $\left(R_{E} \otimes S^{o p}\right)$-modules, that is a projective presentation of $h_{S}^{Z}=\operatorname{Hom}_{\widehat{C}}\left(Z, E \otimes S^{o p}\right)$. Hence, we conclude that the functor h_{S}^{\bullet} in (3.12) is an equivalence of categories. It follows that the functor $H_{E, S}$ in (3.12) is an equivalence of categories making the diagram (3.12) commutative.

Note that, by [20] (Proposition 4.9(b)) and the definition of the functors $G_{E, S}, H_{E, S}$ in (3.12) and the functors G_{E} and H_{E} in (3.5), for every module L in the category fin $\left(S^{o p}\right)$ of finite dimensional left S-modules and every $\widehat{R}_{E}-S$-bimodule $\widehat{R}_{E} X_{S}$ in the category $\mathcal{R}_{1}\left(\left(R_{E} \otimes S^{o p}\right)^{o p}\right)$ there exist isomorphisms

$$
G_{E}^{-1}\left(\widehat{R}_{E} X \otimes_{S} L\right) \cong G_{E, S}^{-1}\left(\widehat{R}_{E} X_{S}\right) \otimes_{S} L
$$

and

$$
H_{E}^{-1}\left(\widehat{R}_{E} X \otimes_{S} L\right) \cong H_{E, S}^{-1}\left(\widehat{R}_{E} X_{S}\right) \otimes_{S} L
$$

that are functorial with respect to the S-module homomorphisms $L \rightarrow L^{\prime}$ and $\widehat{R}_{E}-S_{-}$ bimodule homomorphisms $\widehat{R}_{E} X_{S} \rightarrow \widehat{R}_{E} X_{S}^{\prime}$.

By applying the diagram (3.12), we reduce the proof of (c) to [7] (Propositions 11 and 13), and to [3] (Theorem B). Here we follow closely the notation and the proof of [3] (Theorem B). We recall that our functor G_{E} in (3.5) is just the functor $\Xi: \operatorname{rep}_{K}\left(\mathbf{B}_{E}\right) \longrightarrow \mathcal{P}_{1}\left(R_{E}\right)$ in [3, p. 476], where $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)=\operatorname{rep}\left(\mathbf{B}_{E}, K\right)$.

Assume that the category C - $\operatorname{Comod}_{f c}^{E}$ is not K-wild. Then the category C - $\operatorname{Comod}_{f_{c}}^{E}$ is not K-wild and, by [28] (Proposition 2.8 (a)), the finite dimensional K-algebras R_{E} and $R_{E}^{o p}$ are not wild. Hence, according to [3] (Theorem B) and its proof, the category $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ is not wild and there exist minimal bocses $\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$, with $\mathbf{B}_{i}=\left(B_{i}, W_{i}\right)$, finitely generated $R_{E}-B_{i}^{o p}$-bimodules T_{i}^{\prime} and full functors $F_{i}^{\prime}: \operatorname{rep}_{K}\left(\mathbf{B}_{i}\right) \longrightarrow R_{E}$-mod
which reflect isomorphisms such that the conditions (c1), (c2) and (c3) stated in (c) are satisfied with C - $\operatorname{Comod}_{f c}^{E}, \quad F_{i}: \operatorname{rep}_{K}\left(\mathbf{B}_{i}\right) \longrightarrow C$ - $\operatorname{Comod}_{f c}^{E}$ and R_{E}-mod, $\quad F_{i}^{\prime}$: $\operatorname{rep}_{K}\left(\mathbf{B}_{i}\right) \longrightarrow R_{E}$-mod interchanged. Moreover, it is shown in the proof of [3] (Theorem B) that, for each $i=1, \ldots, n$, the $R_{E}-B_{i}^{o p}$-bimodules T_{i}^{\prime} are of the form $T_{i}^{\prime}=$ $=\operatorname{cok}_{B_{i}}\left(\widehat{T}_{i}^{\prime}\right)$, where $\widehat{T}_{i}^{\prime} \in \mathcal{P}_{1}\left(R_{E} \otimes B_{i}{ }^{o p}\right)$, and $\widehat{F}_{i}^{\prime}(X)=\widehat{T}_{i}^{\prime} \otimes_{B_{i}} X$, for all representations X of the bocs \mathbf{B}_{i}.

Let $\widehat{T}_{i}=H_{E, B_{i}}^{-1}\left(T_{i}^{\prime}\right) \in \mathcal{M} a_{1}\left(E \otimes B_{i}{ }^{o p}\right)$ be the preimage of T_{i}^{\prime} under the functor $H_{E, S}$ in (3.12), with $S=B_{i}$. Finally, let $T_{i}=\operatorname{ker}\left(\widehat{T}_{i}\right) \in \widehat{C}$-Comod ${ }_{f c}^{\widehat{E}}$ be the image of \widehat{T}_{i} under the functor ker in (3.12), applied to $S=B_{i}$. Then T_{i} is a finitely E-copresented C - B_{i}-bicomodule and we set $F_{i}(-)=T_{i} \otimes_{B_{i}}(-)$.

In view of (a), (b) and the properties of the functors $F_{i}^{\prime}: \operatorname{rep}_{K}\left(\mathbf{B}_{i}\right) \longrightarrow R_{E}$-mod listed above, the conditions $\left(\mathrm{c}_{1}\right)-\left(\mathrm{c}_{3}\right)$ are satisfied, because the arguments given in the proof of [3] (Theorem B) extends almost verbatim. The details are left to the reader.

Corollary 3.1. Under the assumption made in Theorem 3.1, for a given soclefinite injective direct summand E of $C_{C} C$ such that $\operatorname{dim}_{K} \operatorname{End}_{C} E<\infty$, the following conditions are equivalent.
(a) The category C - $\operatorname{Comod}_{f c}^{E}$ is K-wild.
(b) C-Comod ${ }_{f c}^{E}$ is properly $f c$-wild (or smooth) [20] (Section 6), that is, for every finitely generated K-algebra Λ (equivalently, for $\Lambda=K\left\langle t_{1}, t_{2}\right\rangle$, or $\Lambda=\Gamma_{3}(K)$) there exists a finitely E-copresented C - Λ-bicomodule ${ }_{C} N_{\Lambda}$ that induces a representation embedding ${ }_{C} N \otimes_{\Lambda}(-): \operatorname{fin}\left(\Lambda^{o p}\right) \longrightarrow C-\operatorname{Comod}_{f c}^{E}$.
(c) The finite dimensional K-algebras $R_{E}^{o p}$ and R_{E} are wild.
(d) The additive K-category $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ is wild, where \mathbf{B}_{E} is the Roiter bocs of $R_{E}^{o p}$, see (3.5).
(e) The additive K-category $\widehat{R}_{E}-\bmod _{p r}^{p r}$ is wild, where \widehat{R}_{E} is the bipartite algebra (3.9).

Proof. Since the functor $h_{E}^{\bullet}: C$ - $\operatorname{Comod}_{f c}^{E} \longrightarrow R_{E}-\bmod$ in (3.5) is an exact equivalence of categories then the condition (a) implies (c). The inverse implication (c) \Rightarrow (a) and the equivalence of (a) and (b) follows from [28] (Corollary 2.12). The implication (d) \Rightarrow (a) follows from Theorem 3.1 (c). The equivalence (d) \Leftrightarrow (e) follows from [20] (Proposition 4.9). Since (c) \Leftrightarrow (d) follows from [7] (Section 5) and [3], then the proof is complete.

In the proof of the $f c$-tame-wild dichotomy we use the following lemma.
Lemma 3.2. Under the assumption made in Theorem 3.1, for a given socle-finite injective direct summand $E=E_{U}$ of ${ }_{C} C$ such that $R_{E}=\operatorname{End}_{C} E$ is of finite dimension,
(a) the $f c$-tameness of the category C - $\operatorname{Comod}_{f c}^{E}$ implies the tameness of the additive K-categories $\mathcal{M a p}(E) \cong \operatorname{rep}_{K}\left(\mathbf{B}_{E}\right) \cong \widehat{R}_{E}-\bmod _{p r}^{p r}$ and the tameness of the algebras R_{E} and $R^{o p}$, where \widehat{R}_{E} is the bipartite algebra (3.9) and \mathbf{B}_{E} is the Roiter bocs of $R_{E}^{o p}$, see (3.5),
(b) given a proper bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U} \subseteq K_{0}(C) \times K_{0}(C)$ we have

$$
\widehat{\boldsymbol{\mu}}_{C}^{1}(v)=\widehat{\boldsymbol{\mu}}_{\widehat{\boldsymbol{R}}_{E}}^{1}(\sigma(v))=\widehat{\boldsymbol{\mu}}_{R_{E}^{o p}}^{1 o p}(\sigma(v)),
$$

where $\widehat{\boldsymbol{\mu}}_{\widehat{R}_{E}}^{1}(\sigma(v))$ and $\widehat{\boldsymbol{\mu}}_{R_{E}^{o p}}^{1}(\sigma(v))$ is the minimal cardinality of an almost parametrising family for $\operatorname{ind}_{\sigma(v)}\left(\widehat{R}_{E}-\bmod _{p r}^{p r}\right)$ and $\operatorname{ind}_{\sigma(v)}\left(\bmod \left(R_{E}^{o p}\right)\right)$, respectively.

Proof. Assume that the category C - $\operatorname{Comod}_{f c}^{E}$ is $f c$-tame, that is, for any proper non-negative bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U} \subseteq K_{0}(C) \times K_{0}(C)$, there exist a non-zero polynomial $h \in K[t], C$ - $K[t]_{h}$-bicomodules $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$, that are finitely $E-K[t]_{h}$-copresented and form an almost parametrising family for the family $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E}\right)$ of all indecomposable C-comodules M with $\mathbf{c d n} M=v$. It follows that all $L^{(j)}$ lie in $C-\operatorname{Comod}{ }_{f c}^{E \otimes K[t]_{h}}$. Then, for each $j \in\left\{1, \ldots, r_{v}\right\}$, there is an exact sequence

$$
0 \longrightarrow{ }_{C} L_{K[t]_{h}}^{(j)} \longrightarrow E_{0}^{(j)} \otimes K[t]_{h} \xrightarrow{\psi^{(j)}} E_{1}^{(j)} \otimes K[t]_{h}
$$

in C-Comod ${ }_{f c}^{E \otimes K[t]_{h}}$, with $E_{0}^{(j)}, E_{1}^{(j)}$ in $\operatorname{add}(E)$, such that

$$
\widehat{L}^{(j)}=\left(E_{0}^{(j)} \otimes K[t]_{h}, E_{1}^{(j)} \otimes K[t]_{h}, \psi^{(j)}\right)
$$

is an object of $\mathcal{M a p} p_{1}\left(E \otimes K[t]_{h}\right)$, see (3.12). By applying Theorem 3.1, one can show that the objects $\widehat{L}^{(1)}, \ldots, \widehat{L}^{\left(r_{v}\right)}$ form a finitely E-copresented almost parametrising family for $\operatorname{ind}_{v}\left(\mathcal{M a p}_{1}(E)\right)$, that is, all but finitely many indecomposable objects $\left(E^{\prime}, E^{\prime \prime}, g\right)$ in $\mathcal{M a p}_{1}(E)$, with $\operatorname{cdn}\left(E^{\prime}, E^{\prime \prime}, g\right)=v$, are of the form

$$
\left(E^{\prime}, E^{\prime \prime}, g\right) \cong \widehat{L}^{(s)} \otimes K[t]_{h}:=\left(E_{0}^{(s)} \otimes K[t]_{h}, E_{1}^{(s)} \otimes K[t]_{h}, \psi^{(j)} \otimes K_{\lambda}^{1}\right)
$$

where $s \leq r_{v}, K_{\lambda}^{1}=K[t] /(t-\lambda)$ and $\lambda \in K$. This shows that the category $\mathcal{M a p}_{1}(E)$ is tame. The functor $G_{S}^{-1} \circ H_{E, S}$ in the diagram (3.12), with $S=K[t]_{h}$, carries each of the objects $\widehat{L}^{(s)}$ to some object $\left.U^{(s)} \in \operatorname{rep}\left(\mathbf{B}_{E}, K[t]_{h}\right)\right)$ such that all but finitely many indecomposable objects X in $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$, with $\underline{\operatorname{dim}}(X)=\sigma(v)$, are of the form $X \cong U^{(j)} \otimes K_{\lambda}^{1}$, where $s \leq r_{v}$. This shows that the category $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ is tame and, by [3] (Section 6) and [7], the algebra $R_{E}^{o p}$ and R_{E} are tame. Since, by Proposition 4.9 (b) and Theorem 6.5 in [20], the category $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ is tame if and only if $\widehat{R}_{E}-\bmod _{p r}^{p r}$ is tame then the proof of (a) is complete.

Moreover, it follows that, given a proper vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U}$, any almost parametrising family for $\operatorname{ind}_{v}\left(C\right.$ - $\left.\operatorname{Comod}_{f_{c}}^{E}\right)$ consisting of finitely E-copresented bicomodules $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$ leads to an almost parametrising family $\widehat{L}^{(1)}, \ldots, \widehat{L}^{\left(r_{v}\right)} \in$ $\in \mathcal{M a p} p_{1}(E \otimes S)$, with $S=K[t]_{h}$, for $\operatorname{ind}_{v}\left(\mathcal{M a p}_{1}(E)\right)$. By applying the functor $H_{E, S}$ in (3.12) and then the functor $\left(G_{E, S}^{\prime}\right)^{-1}$ in (3.11), to $\widehat{L}^{(1)}, \ldots, \widehat{L}^{\left(r_{v}\right)}$, we get an almost parametrising family $\widehat{\widehat{L}^{(1)}}, \ldots, \widehat{\widehat{L}^{\left(r_{v}\right)}} \in\left(\widehat{R}_{E} \otimes S\right)-\bmod _{p r}^{p r}$, for $\operatorname{ind}_{v}\left(\widehat{R}_{E}-\bmod _{p r}^{p r}\right)$. Since the vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right)$ is proper then, up to a localisation of $S=K[t]_{h}$, by applying the functor cok in (3.12) we get an almost parametrising family $\operatorname{cok}\left(\frac{\widehat{L}^{(1)}}{}\right), \ldots, \operatorname{cok}\left(\widehat{\widehat{L}^{\left(r_{v}\right)}}\right)$ for $\operatorname{ind}_{\sigma(v)}\left(\bmod \left(R_{E}^{o p}\right)\right)$.

By Lemma 3.1, any finitely copresented family for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)$ can be corrected to a finitely E-copresented almost parametrising family for $\operatorname{ind}_{v}\left(C\right.$ - $\left.\operatorname{Comod}_{f c}\right)=\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E}\right)$, for any $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U}$. Hence (b) follows and the proof is complete.

Now we are able to give an alternative proof of the $f c$-tame-wild dichotomy for computable coalgebras established in [28].

Theorem 3.2. Assume that C is a basic coalgebra over an algebraically closed field K such that $\operatorname{dim}_{K} \operatorname{Hom}_{K}\left(E^{\prime}, E^{\prime \prime}\right)$ is finite, for each pair $E^{\prime}, E^{\prime \prime}$ of indecomposable direct summands of ${ }_{C} C$. Then C is either of tame $f c$-comodule type or of wild $f c$ comodule type, and these two types are mutually exclusive.

Proof. Since C is basic, ${ }_{C} C$ has a decomposition (1.1). Assume that C is not of $f c$-wild comodule type. To show that C is of $f c$-tame comodule type, fix a nonnegative bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)} \cong K_{0}(C) \times K_{0}(C)$. Since the support $U_{v}=\operatorname{supp}(v)$ of v is a finite subset of I_{C} then the injective C-comodule $E=$ $=E_{U_{v}}=\bigoplus_{j \in U_{v}} E(j)$ is socle-finite and, according to our assumption the algebra $R_{E}=$ $=\operatorname{End}_{C} E$ is finite dimensional. Moreover, every left C-comodule N, with $\operatorname{cdn}(N)=$ $=v$ lies in the subcategory C - $\operatorname{Comod}_{f c}^{E}$ of $C-\operatorname{Comod}_{f c}$. Then $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)=$ $=\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E}\right)$ and, by our assumption, the category $C-\operatorname{Comod}_{f c}^{E}$ is not of $K-$ wild comodule type. Then, by Theorem 3.1, there exist minimal bocses $\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$, with $\mathbf{B}_{i}=\left(B_{i}, W_{i}\right)$, finitely $E \otimes R_{i}$-copresented C - B_{i}-bicomodules T_{i} and full functors $F_{i}(-)=T_{i} \otimes_{B_{i}}(-): \operatorname{rep}_{K}\left(\mathbf{B}_{i}\right) \longrightarrow C$ - $\operatorname{Comod}_{f c}^{E}$ which reflect isomorphisms such that the conditions $\left(\mathrm{c}_{1}\right)-\left(\mathrm{c}_{3}\right)$ in Theorem 3.1 are satisfied. In particular, every indecomposable comodule N in C - $\operatorname{Comod}_{f_{c}}^{E}$ with $\mathbf{c d n}(N)=v$ is isomorphic to $F_{i}(X)$, for some i and some representation X in $\operatorname{rep}_{K}\left(\mathbf{B}_{i}\right)$. Hence we conclude, as in the proof of [3] (Corollary C), that there is a finite set of pairs $\left(R_{i}, L^{(i)}\right)$, where each $R_{i}=K[t]_{h}$ is a localisation of $K[t]$ and $L^{(i)}$ is a finitely E-copresented C - R_{i}-bicomodule such that

$$
\begin{equation*}
L^{(i)} \in\left(C \otimes R_{i}^{o p}\right)-\operatorname{Comod}_{f c}^{E \otimes R_{i}^{o p}} \tag{3.14}
\end{equation*}
$$

and all but finitely many indecomposable left C-comodules N in C-Comod ${ }_{f c}$, with $\operatorname{cdn}(N)=v$, are of the form $N \cong L^{(s)} \otimes Y$, for some i and some indecomposable R_{i}-module Y. Hence we conclude, as in the proof of Theorem 14.18 in [18, p. 297], that there exist finitely E-copresented C - $K[t]_{h}$-bicomodules $\widehat{L}^{(1)}, \ldots, \widehat{L}^{\left(r_{v}\right)}$ such that all but finitely many indecomposable left C-comodules N in $C-\operatorname{Comod}_{f c}$, with $\operatorname{cdn}(N)=v$, are of the form $N \cong \widehat{L}^{(s)} \otimes K_{\lambda}^{1}$, where $s \leq r_{v}, K_{\lambda}^{1}=K[t] /(t-\lambda)$ and $\lambda \in K$. Consequently, the coalgebra is of $f c$-tame comodule type.

It remains to prove that the coalgebra C can not be both of $f c$-tame and of $f c$ wild comodule type. Assume to the contrary, that C is of $f c$-tame and of $f c$-wild comodule type. Let $T: \bmod \Gamma_{3}(K) \longrightarrow C$ - $\operatorname{Comod}_{f c}$ be an exact K-linear representation embedding, where $\Gamma_{3}(K)=\left[\begin{array}{cc}K & K^{3} \\ 0 & K\end{array}\right]$. Let S_{1} be the unique simple injective right $\Gamma_{3}(K)$-module, and let S_{2} be the unique simple projective right $\Gamma_{3}(K)$-module, up to isomorphism. Since $T\left(S_{1}\right)$ and $T\left(S_{2}\right)$ lie in C - $^{C o m o d_{f c}}$, then there are exact sequences $0 \rightarrow T\left(S_{1}\right) \rightarrow E_{0}^{(1)} \longrightarrow E_{1}^{(1)}$ and $0 \rightarrow T\left(S_{2}\right) \rightarrow E_{0}^{(2)} \longrightarrow E_{1}^{(2)}$, where $E_{0}^{(1)}, E_{1}^{(1)}$, $E_{0}^{(2)}, E_{1}^{(2)}$ are socle-finite injective C-modules.

Let E be a socle-finite direct summand of C such that the comodules $E_{0}^{(1)}, E_{1}^{(1)}$, $E_{0}^{(2)}, E_{1}^{(2)}$ lies in $\operatorname{add}(E)$. We show that $\operatorname{Im} T \subseteq C$ - $\operatorname{Comod}_{f c}^{E}$. Indeed, if $N=T(X)$ lies in $\operatorname{Im} F$, where X is a module in $\bmod \Gamma_{3}(K)$, then there is an exact sequence $0 \rightarrow S_{2}^{n} \rightarrow X \rightarrow S_{1}^{m} \rightarrow 0$, with $n, m \geq 0$. Since T is exact, we get the exact sequence $0 \rightarrow T\left(S_{2}\right)^{n} \rightarrow N \rightarrow T\left(S_{1}\right)^{m} \rightarrow 0$ in C-Comod. The comodules $T\left(S_{1}\right)^{m}$ and $T\left(S_{2}\right)^{n}$ obviously lie in C - $\operatorname{Comod}_{f c}^{E}$ and, hence, also N lies in $C-\operatorname{Comod}_{f c}^{E}$. This shows that $\operatorname{Im} T \subseteq C$ - $\operatorname{Comod}_{f c}^{E}$ and, hence, the category C - $\operatorname{Comod}_{f c}^{E}$ is $f c$-wild and, according to Corollary 3.1, the finite dimensional algebra R_{E} is wild.

On the other hand, in view of the $f c$-parametrisation correction lemma (Lemma 3.1), the assumption that C is of $f c$-tame comodule type implies that C - $\operatorname{Comod}_{f c}^{E}$ is $f c$ tame. Hence, by Lemma 3.2, the finite dimensional algebra R_{E} is tame and we get a contradiction with the tame-wild dichotomy [7] for finite dimensional K-algebras.

Now we can complete [28] (Proposition 2.8 (a)) as follows.
Corollary 3.2. Under the assumption made in Theorem 3.1, for a given socle-finite injective direct summand $E=E_{U}$ of ${ }_{C} C$ such that the algebra $R_{E}=\operatorname{End}_{C} E$ is of finite dimension, the following conditions are equivalent.
(a) The category C - $\operatorname{Comod}_{f c}^{E}$ is $f c$-tame.
(b) The finite dimensional K-algebra R_{E} is tame.
(c) The additive K-categories $\mathcal{M a p}(E) \cong \operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ are tame, where \mathbf{B}_{E} is the additive Roiter bocs of $R_{E}^{o p}$, see (3.5).
(d) The additive K-category $\widehat{R}_{E}-\bmod _{p r}^{p r}$ is tame, where \widehat{R}_{E} is the bipartite algebra (3.9).

Moreover, if C - $\operatorname{Comod}_{f c}^{E}$ is fc-tame then, given a proper bipartite vector $v=$ $=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{U} \times \mathbb{Z}^{U} \subseteq K_{0}(C) \times K_{0}(C)$, we have $\widehat{\boldsymbol{\mu}}_{C}^{1}(v)=\widehat{\boldsymbol{\mu}}_{\widehat{R}_{E}}^{1}(\sigma(v))=\widehat{\boldsymbol{\mu}}_{R_{E}^{o p}}^{1}(\sigma(v))$. In particular, C-Comod ${ }_{f c}^{E}$ is of polynomial growth if and only if $\widehat{R}_{E}-\bmod _{p r}^{p r}$ is of polynomial growth.

Proof. The equivalence (b) \Leftrightarrow (c) follows from the theorem of Drozd [7] (see also [3], [28] (Proposition 2.8) and from the proof of Theorem 3.1. The equivalence (c) \Leftrightarrow (d) follows from [20] (Theorem 6.5) (or from the proof of Theorem 3.1). To prove (c) \Rightarrow (a), note that, according to [7], if $\operatorname{rep}_{K}\left(\mathbf{B}_{E}\right)$ is tame, it is not wild. Then, by Theorem 3.2 and its proof, the category C - Comod $_{f c}^{E}$ is $f c$-tame. Since (a) \Rightarrow (c) follows from Lemma 3.2 (a), the conditions (a)-(d) are equivalent. The remaining statement follows from Lemma 3.2 (b).

Corollary 3.3. Let C be a basic coalgebra over an algebraically closed field K such that $\operatorname{dim}_{K} \operatorname{Hom}_{K}\left(E^{\prime}, E^{\prime \prime}\right)$ is finite, for each pair $E^{\prime}, E^{\prime \prime}$ of indecomposable direct summands of ${ }_{C} C$. The following conditions are equivalent.
(a) The coalgebra C is of tame $f c$-comodule type.
(b) For any proper bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, there is a finitely $E_{U_{v}}$-copresented almost parametrising family for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)=$ $=\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E_{v}}\right)$, where $U_{v}=\operatorname{supp}(v) \subseteq \mathbb{Z}^{\left(I_{C}\right)}$ is the support of v and $E_{U_{v}}=\bigoplus_{j \in U_{v}} E(j)$.
(c) For any socle-finite direct summand E of ${ }_{C} C, C$ - $\operatorname{Comod}_{f c}^{E}$ is $f c$-tame.
(d) For any socle-finite direct summand E of $C_{C} C, C$ - $\operatorname{Comod}_{f c}^{E}$ is not $f c$-wild.
(e) For any socle-finite direct summand E of $C C$, the finite dimensional K-algebra $R_{E}=\operatorname{End}_{C} E$ is tame.
(f) For any socle-finite direct summand E of ${ }_{C} C$, the category $\widehat{R}_{E}-\bmod _{p r}^{p r}$ is tame, where \widehat{R}_{E} is the bipartite algebra (3.9).

The coalgebra C is of fc-discrete comodule type if and only if, for any proper bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, the family $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f_{c}}^{E_{U v}}\right)$, with $U_{v}=\operatorname{supp}(v) \subseteq \mathbb{Z}^{\left(I_{C}\right)}$, is finite up to isomorphism, or equivalently, the family $\operatorname{ind}_{v}\left(\widehat{R}_{E_{U_{v}}}-\bmod _{p r}^{p r}\right)$ is finite up to isomorphism.

Proof. The implication (b) \Rightarrow (a) is obvious. The implication (c) \Rightarrow (b) and the equivalence of the statements (c) -(f) is an immediate consequence of previous results.

To prove (a) \Leftrightarrow (b), we fix a proper bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$ and set $U_{v}=\operatorname{supp}(v), E_{U_{v}}=\bigoplus_{j \in U_{v}} E(j)$. It is clear that $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)=$ $=\operatorname{ind}_{v}\left(C\right.$ - $\left.\operatorname{Comod}_{f c}^{E_{c}}\right)$. Since C is $f c$-tame then there are finitely copresented C - $K[t]_{h}$-bimodules $L^{(1)}, \ldots, L^{\left(r_{v}\right)}$ forming an almost parametrising family of for
$\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)$. By Lemma 3.1, the family corrects to an almost parametrising family $\widetilde{L}^{(1)}, \ldots, \widetilde{L}^{\left(r_{v}\right)}$ for $\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}\right)=\operatorname{ind}_{v}\left(C-\operatorname{Comod}_{f c}^{E_{v}}\right)$ consisting of finitely $E_{U_{v}}$-copresented bicomodules. Hence (b) follows and the conditions (a)-(f) are equivalent. Since the remaining statement of corollary is a consequence of Lemma 3.2 (b), the proof is complete.
4. A geometry context for computable coalgebras. Througouht we assume that K is an algebraically closed field and C a basic computable K-coalgebra with a fixed decomposition ${ }_{C} C=\bigoplus_{j \in I_{C}} E(j)$ (1.1). Following [7, 17, 19, 20], we introduce in Definitions 4.1 and 4.2 a geometry context for a coalgebra C, compare with [15]. We use it in the study of comodules over a K-coalgebra C by applying the geometry of orbits. In particular, we give a geometric characterisation of $f c$-tame coalgebras.

Definition 4.1. Given a computable K-coalgebra C (1.1) and a bipartite nonnegative vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}$, we define an action

$$
\begin{equation*}
*: \mathbf{G}_{v}^{C} \times \operatorname{Map}_{v}^{C} \longrightarrow \operatorname{Map}_{v}^{C} \tag{4.1}
\end{equation*}
$$

of an algebraic (parabolic) group \mathbf{G}_{v}^{C} on an affine K-variety $\operatorname{Map}_{v}^{C}$ as follows.
(a) $\mathbf{G}_{v}^{C}=\operatorname{Aut}_{C} \mathbf{E}\left(v^{\prime}\right) \times \operatorname{Aut}_{C} \mathbf{E}\left(v^{\prime \prime}\right)$ viewed as an algebraic group with respect to Zariski topology, where $\mathbf{E}\left(v^{\prime}\right)=\bigoplus_{i \in I_{C}} E(j)^{v_{i}^{\prime}}$ and $\mathbf{E}\left(v^{\prime \prime}\right)=\bigoplus_{j \in I_{C}} E(j)^{v_{j}^{\prime \prime}}$ are the standard injective C-comodules (2.2) with $\operatorname{lgth} \mathbf{E}\left(v^{\prime}\right)=\left(v^{\prime} \mid 0\right)$ and $\lg \operatorname{th} \mathbf{E}\left(v^{\prime \prime}\right)=$ $=\left(v^{\prime \prime} \mid 0\right)$.
(b) $\operatorname{Map}_{v}^{C}=\left\{\psi \in \operatorname{Hom}_{C}\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right)\right) ; \psi\left(\operatorname{soc} \mathbf{E}\left(v^{\prime}\right)\right)=0\right\} \subseteq \operatorname{Hom}_{C}\left(\mathbf{E}\left(v^{\prime}\right)\right.$, $\left.\mathbf{E}\left(v^{\prime \prime}\right)\right)$ is viewed as an affine K-variety (Zariski closed subset of the affine space $\operatorname{Hom}_{C}\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right)\right)$ of finite K-dimension)
(c) The algebraic group (left) action (4.1) of \mathbf{G}_{v}^{C} on $\operatorname{Map}_{v}^{C}$ is defined by the conjugation $\left(f^{\prime}, f^{\prime \prime}\right) * \psi=f^{\prime \prime} \circ g \circ\left(f^{\prime}\right)^{-1}$, where $\psi \in \operatorname{Map}_{v}^{C}, f^{\prime} \in \operatorname{Aut}_{C} \mathbf{E}\left(v^{\prime}\right)$ and $f^{\prime \prime} \in \operatorname{Aut}_{C} \mathbf{E}\left(v^{\prime \prime}\right)$.

Definition 4.2. Given a computable K-coalgebra C and a bipartite non-negative vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{\left(I_{C}\right)} \times \mathbb{Z}^{\left(I_{C}\right)}=K_{0}(C) \times K_{0}(C)$, the open subset

$$
\begin{equation*}
\operatorname{Comod}_{v}^{C}=\left\{\psi \in \operatorname{Map}_{v}^{C} ; \operatorname{soc} \mathbf{E}\left(v^{\prime \prime}\right) \subseteq \operatorname{Im} \psi\right\} \tag{4.2}
\end{equation*}
$$

of the variety $\operatorname{Map}_{v}^{C}$ is called a variety of C-comodules N with $\mathbf{c d n}(N)=v$.
We start with the following useful facts.
Lemma 4.1. Let C be a computable K-coalgebra and $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in \mathbb{Z}^{\left(I_{C}\right)} \times$ $\times \mathbb{Z}^{\left(I_{C}\right)}=K_{0}(C) \times K_{0}(C)$ a non-negative bipartite vector.
(a) $\operatorname{Comod}_{v}^{C}$ is a \mathbf{G}_{v}^{C}-invariant and Zariski open subset of the affine variety $\mathbf{M a p}_{v}^{C}$.
(b) The map $\psi \mapsto \operatorname{Ker} \psi$ defines a bijection between the \mathbf{G}_{v}^{C}-orbits of $\operatorname{Comod}_{v}^{C}$ and the isomorphism classes of comodules N in C - $\operatorname{Comod}_{f c}$ such that $\mathbf{~} \mathbf{c d n}(N)=v$.

Proof. (a) To see that $\operatorname{Comod}_{v}^{C}$ is a Zariski open subset of $\operatorname{Map}_{v}^{C}$, note that, given $a \in \operatorname{supp}\left(v^{\prime \prime}\right) \subseteq I_{C}$, the subset \mathfrak{D}_{a} of $\operatorname{Map}_{v}^{C}$ consisting of all $\psi \in \operatorname{Map}_{v}^{C}$ such that $\psi: \mathbf{E}\left(v^{\prime}\right) \longrightarrow \mathbf{E}\left(v^{\prime \prime}\right)$ has a factorisation through the subcomodule $\mathbf{E}\left(v^{\prime \prime}\right)_{a}=$ $=\bigoplus_{j \neq a} E(j)^{v_{j}^{\prime \prime}}$ of $E\left(v^{\prime \prime}\right)$ is Zariski closed. Since the set $\operatorname{supp}\left(v^{\prime \prime}\right)$ is finite then $\mathfrak{D}=\bigcup_{a \in \operatorname{supp}\left(v^{\prime \prime}\right)} \mathfrak{D}_{a}$ is closed and therefore $\operatorname{Comod}_{v}^{C}=\operatorname{Map}_{v}^{C} \backslash \mathfrak{D}$ is open. The fact that $\mathbf{C o m o d}_{v}^{C}$ is a \mathbf{G}_{v}^{C}-invariant subset of $\operatorname{Map}_{v}^{C}$ follows by applying the definitions.
(b) Note that a C-comodule homomorphism $\psi: \mathbf{E}\left(v^{\prime}\right) \longrightarrow \mathbf{E}\left(v^{\prime \prime}\right)$ is an element of $\mathbf{C o m o d}_{v}^{C}$ if and only if $0 \longrightarrow \operatorname{Ker} \psi \longrightarrow \mathbf{E}\left(v^{\prime}\right) \xrightarrow{\psi} \mathbf{E}\left(v^{\prime \prime}\right)$ is a minimal injective
copresentation of $\operatorname{Ker} \psi$ in C - $\operatorname{Comod}_{f c}$. Hence every comodule N in C - $\operatorname{Comod}_{f c}$, with $\operatorname{cdn}(N)=v$, is isomorphic to $\operatorname{Ker} \psi$, for some $\psi: \mathbf{E}\left(v^{\prime}\right) \longrightarrow \mathbf{E}\left(v^{\prime \prime}\right)$ in $\operatorname{Comod}_{v}^{C}$. Obviously, two elements $\psi: \mathbf{E}\left(v^{\prime}\right) \longrightarrow \mathbf{E}\left(v^{\prime \prime}\right)$ and $\psi^{\prime}: \mathbf{E}\left(v^{\prime}\right) \longrightarrow \mathbf{E}\left(v^{\prime \prime}\right)$ of $\mathbf{C o m o d}_{v}^{C}$ lie in the same \mathbf{G}_{v}^{C}-orbits if and only if the comodules $\operatorname{Ker} \psi$ and $\operatorname{Ker} \psi^{\prime}$ are isomorphic. Hence (b) follows.

The lemma is proved.
Now we characterise computable K-colagebras of $f c$-discrete comodule type in terms of the \mathbf{G}_{v}^{C}-orbits of $\operatorname{Comod}_{v}^{C}$ as follows.

Proposition 4.1. Let K be an algebraically closed field and C a computable K-coalgebra. The following four conditions are equivalent.
(a) The coalgebra C is fc-tame of discrete comodule type.
(b) For every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, there is only a finite number of indecomposable objects $\left(E_{0}, E_{1}, \psi\right)$ in \mathcal{M} ap ${ }_{1}\left(E_{U_{v}}\right)$ with $\mathbf{c d n}\left(E_{0}, E_{1}, \psi\right)=$ $=v$, up to isomorphism, where $U_{v}=\operatorname{supp}(v)$.
(c) The number of \mathbf{G}_{v}^{C}-orbits in $\mathbf{C o m o d}_{v}^{C}$ is finite, for every bipartite vector $v=$ $\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$.
(d) The number of \mathbf{G}_{v}^{C}-orbits in $\mathbf{M a p}{ }_{v}^{C}$ is finite, for every bipartite vector $v=$ $=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$.

Proof. (a) \Rightarrow (b) Assume that C is $f c$-tame of discrete comodule type. Let $v=\left(v^{\prime} \mid v^{\prime \prime}\right)$ be a bipartite vector in $K_{0}(C) \times K_{0}(C)$ and let $\left(E_{0}, E_{1}, \psi\right)$ be an indecomposable object of $\left.\mathcal{M a p}{ }_{1}\left(E_{U}\right)\right)$ such that $\boldsymbol{\operatorname { c d n }}\left(E_{0}, E_{1}, \psi\right)=\left(v^{\prime} \mid v^{\prime \prime}\right)$, where we set $U=U_{v}=\operatorname{supp}(v)$.

If $v^{\prime}=0$ then $E_{0}=0, E_{1} \cong E(a)$, with $a \in U$, and therefore the number of the indecomposable objects $\left(E_{0}, E_{1}, \psi\right)$ of $\left.\mathcal{M a p}\left(E_{U}\right)\right)$ with $\operatorname{cdn}\left(E_{0}, E_{1}, \psi\right)=\left(0 \mid v^{\prime \prime}\right)$ equals the cardinality of the finite subset $U=\operatorname{supp}(v)$ of I_{C}.

Assume that $v^{\prime} \neq 0$, that is, the vector v is proper. Since $\left(E_{0}, E_{1}, \psi\right)$ is indecomposable, it lies in $\mathcal{M a p} p_{2}\left(E_{U}\right)$, because it has no non-zero direct summand of the form $(0, Z, 0)$, By Proposition 4.1 (a), with E and E_{U} interchanged, the functor $\operatorname{ker}_{E_{U}}$ in the diagram (3.5) restrict to the representation equivalence $\mathbf{k e r}_{E_{U}}: \mathcal{M a p} p_{2}\left(E_{U}\right) \longrightarrow$ $\longrightarrow C$ - $\operatorname{Comod}_{f c}^{E_{U}}$. Then $\operatorname{Ker} \psi=\operatorname{ker}_{E_{U}}\left(E_{0}, E_{1}, \psi\right)$ is an indecomposable comodule in C - $\operatorname{Comod}_{f_{c}}^{E_{U}}$ such that $\mathbf{~} \mathbf{c d n}(\operatorname{Ker} \psi)=\mathbf{c d n}\left(E_{0}, E_{1}, \psi\right)=v$, see Proposition $4.1(\mathrm{~b})$. Since C is $f c$-tame of discrete comodule type then the number of the isomorphism classes of such comodules is finite and, hence, the number of the isomorphism classes of indecomposable objects $\left(E_{0}, E_{1}, \psi\right)$ in $\mathcal{M a p}\left(E_{U}\right)$ with $\operatorname{cdn}\left(E_{0}, E_{1}, \psi\right)=v$ is also finite.
(b) \Rightarrow (d) Let $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$ be a vector with non-negative coordinates and let $\left(E_{0}, E_{1}, \psi\right)$ be an object in $\mathcal{M a p}_{1}\left(E_{U}\right)$. Since the coalgebra C is assumed to be computable then the endomorphism ring $\operatorname{End}(\psi)$ of $\left(E_{0}, E_{1}, \psi\right)$ is a finite dimension K-algebra, and $\operatorname{End}(\psi)$ is a local algebra if $\left(E_{0}, E_{1}, \psi\right)$ is indecomposable. It follows that $\mathcal{M a p}_{1}\left(E_{U}\right)$, with $U=\operatorname{supp}(v) \subseteq I_{C}$, is a Krull-Schmidt category such that each of its objects is a finite direct sum of indecomposable objects, and every such a decomposition is unique up to isomorphism and a permutation of the indecomposables.

By our assumption, there is only a finite number of indecomposable objects $\left(E_{0}^{\prime}, E_{1}^{\prime}\right.$, $\left.\psi^{\prime}\right)$ in $\mathcal{M a p} p_{1}\left(E_{U_{v}}\right)$ with $\operatorname{cdn}\left(E_{0}^{\prime}, E_{1}^{\prime}, \psi^{\prime}\right) \leq v$, up to isomorphism. Let $\mathbb{E}_{1}, \ldots, \mathbb{E}_{s_{v}}$ be a complete set of such indecomposable objects. Then, up to isomorphism, any object $\left(E_{0}, E_{1}, \psi\right)$ in $\operatorname{Map}_{1}\left(E_{U_{v}}\right)$, with $\operatorname{cdn}\left(E_{0}, E_{1}, \psi\right)=v$, has the form

$$
\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right), \psi\right) \cong \mathbb{E}_{1}^{\ell_{1}} \oplus \ldots \oplus \mathbb{E}_{s_{v}}^{\ell_{s_{v}}}
$$

where $\ell\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right), \psi\right)=\left(\ell_{1}, \ldots, \ell_{s_{v}}\right) \in \mathbb{N}^{s_{v}}$ is a vector with non-negative coordinates such that

$$
\ell_{1} \cdot \mathbf{c d n}\left(\mathbb{E}_{1}\right)+\ldots+\ell_{s_{v}} \cdot \mathbf{c d n}\left(\mathbb{E}_{s_{v}}\right)=v
$$

Obviously, the number of such vectors $\left(\ell_{1}, \ldots, \ell_{s_{v}}\right)$ is finite. The unique decomposition property in $\mathcal{M} a p_{1}\left(E_{U_{v}}\right)$ yields

$$
\begin{gathered}
\ell\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right), \psi\right)=\ell\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right), \psi^{\prime}\right) \\
\text { if and only if }\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right), \psi\right) \cong\left(\mathbf{E}\left(v^{\prime}\right), \mathbf{E}\left(v^{\prime \prime}\right), \psi^{\prime}\right),
\end{gathered}
$$

or equivalently, if and only if the elements ψ and ψ^{\prime} of $\operatorname{Map}_{v}^{C}$ lie in the same \mathbf{G}_{v}^{C}-orbit. Hence the number of \mathbf{G}_{v}^{C}-orbits in $\mathbf{M a p}_{v}^{C}$ is finite and (d) follows.

Since the implication (d) \Rightarrow (c) is obvious and the implication (c) \Rightarrow (a) follows from Lemma 4.1 (b), the proof is complete.

Now we present a characterisation of computable $f c$-tame colagebras in terms of geometry of the \mathbf{G}_{v}^{C}-orbits of $\mathbf{C o m o d}{ }_{v}^{C}$.

Theorem 4.1. Let K be an algebraically closed field and C a computable K coalgebra.
(a) C is fc-tame.
(b) For every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, the category $\mathcal{M a p}_{1}\left(E_{U_{v}}\right)$, with $U_{v}=\operatorname{supp}(v)$, is tame.
(c) For every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, the subset $\operatorname{indComod}_{v}^{C}$ of $\operatorname{Comod}_{v}^{C}$ defined by the indecomposable C-comodules is constructible and there exists a constructible subset $\mathcal{C}(v)$ of $\operatorname{indComod}_{v}^{C}$ such that

$$
\mathbf{G}_{v}^{C} * \mathcal{C}(v)=\operatorname{indComod}_{v}^{C} \quad \text { and } \quad \operatorname{dim} \mathcal{C}(v) \leq 1
$$

(d) For every bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$, the subset $\mathbf{i n d M a p}_{v}^{C}$ of $\operatorname{Map}_{v}^{C}$ defined by the indecomposable C-comodules is constructible and there exists a constructible subset $\widehat{\mathcal{C}}(v)$ of $\mathbf{i n d M a p}_{v}^{C}$ such that

$$
\mathbf{G}_{v}^{C} * \widehat{\mathcal{C}}(v)=\operatorname{indMap}_{v}^{C} \quad \text { and } \quad \operatorname{dim} \widehat{\mathcal{C}}(v) \leq 1
$$

Proof. (a) \Rightarrow (b) Apply Lemma 3.2 (a) to $E=E_{U}=\bigoplus_{j \in U} E(j)$, where $U=$ $=\operatorname{supp}(v) \subseteq I_{C}$.
(b) \Rightarrow (a) Apply Corollary 3.3.

We prove the equivalence of (b), (c) and (d) by applying the arguments used by Drozd [7], see also [3], [18] (Section 15.2) and [20] (Theorem 6.5).
(b) \Rightarrow (d) Fix a bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in K_{0}(C) \times K_{0}(C)$ and assume that the category $\mathcal{M a p}_{1}\left(E_{U_{v}}\right)$, with $U_{v}=\operatorname{supp}(v)$, is tame. Then there is a parametrising family of functors

$$
\widehat{L}^{(1)}, \ldots, \widehat{L}^{(r)}: \operatorname{ind}_{1}\left(K[t]_{h}\right) \longrightarrow \mathcal{M a p}{ }_{1}\left(E_{U_{v}}\right)
$$

for the family $\operatorname{ind}_{v}\left(\mathcal{M a p}_{1}\left(E_{U_{v}}\right)\right.$, where $h \in K[t]$ and $U_{v}=\operatorname{supp}(v) . \operatorname{Here~ind}_{1}\left(K[t]_{h}\right)$ is the category of one-dimensional $K[t]_{h}$-modules. Hence we conclude, as in [18] (Lemma 14.30, Remark 14.27) that the functors $\widehat{L}^{(1)}, \ldots, \widehat{L}^{(r)}$ induce regular maps

$$
\ell_{1}, \ldots, \ell_{r}: \bmod ^{K[t]_{h}}(1) \longrightarrow \operatorname{Map}_{v}^{C}
$$

such that every point of indMap ${ }_{v}^{C}$ belongs to an \mathbf{G}_{v}^{C}-orbit of the set

$$
\widehat{\mathcal{C}}(v)=\operatorname{Im} \ell_{1} \cup \ldots \cup \operatorname{Im} \ell_{r} .
$$

Here $\bmod ^{K[t]_{h}}(1)$ is the variety of one-dimensional $K[t]_{h}$-modules. Since we have $\operatorname{dim} \bmod ^{K[t]_{h}}(1)=1$ then, according to the Chevalley Theorem, the subsets $\operatorname{Im} \ell_{1}, \ldots$ $\ldots, \operatorname{Im} \ell_{r}$ of $\operatorname{indMap}_{v}^{C}$ are constructible and therefore $\widehat{\mathcal{C}}(v)$ is a constructible subset of $\operatorname{indMap}_{v}^{C}$. Moreover, it follows that $\operatorname{dim}\left(\operatorname{Im} \ell_{j}\right) \leq 1$, for $j=1, \ldots, r$, and therefore $\operatorname{dim} \widehat{\mathcal{C}}(v) \leq 1$, compare with [15] and [18, p. 317].

The equivalence (d) \Leftrightarrow (c) easily follows from the fact that $\operatorname{indMap}_{v}^{C} \backslash \operatorname{indComod}_{v}^{C}$ is a finite set and $\operatorname{Comod}_{v}^{C}$ is an open subset of $\operatorname{Map}_{v}^{C}$, by Lemma 4.1.
(d) \Rightarrow (b) Assume to the contrary that there is a bipartite vector $v=\left(v^{\prime} \mid v^{\prime \prime}\right) \in$ $\in K_{0}(C) \times K_{0}(C)$ such that the category $\mathcal{M a p}_{1}\left(E_{U_{v}}\right)$, with $U_{v}=\operatorname{supp}(v)$, is not tame. By Corollary 3.2, the finite dimensional algebra $R_{U_{v}}$ is not tame. Then $R_{U_{v}}$ is wild [7] and therefore the category $\mathcal{M a p}_{1}\left(E_{U_{v}}\right)$ is wild, by [3] (Section 6) and the proof of Theorem 3.1.

Let $\mathcal{W}=K\left\langle t_{1}, t_{2}\right\rangle$ be the free polynomial K-algebra in two non-commuting indeterminates t_{1} and t_{2}. Since the category $\operatorname{Map}_{1}\left(E_{U_{v}}\right)$ is wild then there exists an object ${ }_{C} N_{\mathcal{W}}=\left(E^{\prime} \otimes \mathcal{W}, E^{\prime \prime} \otimes \mathcal{W}, \psi\right)$ in $\mathcal{M a p}{ }_{1}\left(E_{U_{v}} \otimes \mathcal{W}\right)$, with $E^{\prime}, E^{\prime \prime}$ in $\operatorname{add}\left(E_{U_{v}}\right)$, such that the functor

$$
\widehat{N}={ }_{C} N \otimes \mathcal{W}(-): \operatorname{fin}(\mathcal{W}) \longrightarrow \mathcal{M} a p_{1}\left(E_{U_{v}}\right)
$$

preserves the indecomposability and respects the isomorphism classes.
Let $w=\left(w^{\prime} \mid w^{\prime \prime}\right)$, where $w^{\prime}=\lg \operatorname{th}\left(\operatorname{soc} E^{\prime}\right)$ and $w^{\prime \prime}=\lg \operatorname{th}\left(\operatorname{soc} E^{\prime \prime}\right)$. It is well known that $\operatorname{indMap}_{w}^{C}$ is a constructible subset of $\operatorname{Map}_{w}^{C}$, compare with [18] (Lemma 14.32).

Note that $U_{w}=\operatorname{supp}(w) \subseteq U_{v}, \mathbf{c d n}(\widehat{N}(X))=w$, and $\left.\widehat{N}(X)\right) \cong\left(\mathbf{E}\left(w^{\prime}\right), \mathbf{E}\left(w^{\prime \prime}\right)\right.$, ψ), for some $\psi \in \operatorname{indMap}_{w}^{C} \subseteq \operatorname{Map}_{w}^{C}$, if $X \in \operatorname{fin}(\mathcal{W})$ and $\operatorname{dim}_{K} X=1$. It follows that the restriction $\widehat{N}: \operatorname{ind}_{1}(\mathcal{W}) \longrightarrow \mathcal{M} a p_{1}\left(E_{U_{v}}\right)$ of \widehat{N} to $\operatorname{ind}_{1}(\mathcal{W})$ induces a regular map (see [18], Lemma 14.30)

$$
\ell_{N}: \bmod ^{\mathcal{W}}(1) \longrightarrow \operatorname{indMap}_{w}^{C} \subseteq \operatorname{Map}_{w}^{C} .
$$

Since $\bmod ^{\mathcal{W}}(1) \cong K^{2}$, the map ℓ_{N} is injective, and according to the Chevalley Theorem the set $\operatorname{Im} \ell_{N}$ is constructible then the variety dimension $\operatorname{dim}\left(\operatorname{Im} \ell_{N}\right)$ of $\operatorname{Im} \ell_{N}$ equals two. Hence, in view of (d) with v and w interchanged, we get the contradiction $2=\operatorname{dim}\left(\operatorname{Im} \ell_{N}\right) \leq \operatorname{dim} \mathcal{C}(v) \leq 1$ (apply [12] (Lemma 3.16) or [18] (Lemma 15.15)). This completes the proof.
5. On $\boldsymbol{f} \boldsymbol{c}$-tameness for arbitrary coalgebras. The $f c$-tame-wild dichotomy for an arbitrary basic coalgebra C over an algebraically closed field K remains an open problem. Some suggestions for the proof in case C is not computable is given in the following proposition that collects important consequences of the technique described in Section 3. In particular, it shows that the coalgebra C is $f c$-tame if and only if every socle-finite colocalisation $C_{E} \cong R_{E}^{\circ}$ of C (in the sense of [11,25]) is $f c$-tame.

Proposition 5.1. Assume that K is an algebraically closed field and C is an arbitrary basic coalgebra with a decomposition ${ }_{C} C=\bigoplus_{j \in I_{C}} E(j)$ (1.1).
(a) Given a socle-finite injective direct summand $E=E_{U}=\bigoplus_{u \in U} E(u)$ (3.1) of ${ }_{C} C$, with a finite subset U of I_{C}, the K-algebra $R_{E}=\operatorname{End}_{C} E$ is semi-perfect and pseudocompact with respect to the topology defined by (5.2) below. There is a commutative diagram

$$
\begin{align*}
& \operatorname{Map}_{1}(E) \quad \stackrel{H_{E}}{\simeq} \quad \mathcal{P}_{1}\left(R_{E}^{o p}\right) \quad \stackrel{G^{\prime}}{\simeq} \quad \widehat{R}_{E}-\bmod _{p r}^{p r} \\
& \operatorname{ker}_{E} \downarrow \quad \operatorname{cok}_{E} \downarrow \tag{5.1}\\
& C_{E}-\operatorname{Comod}_{f c} \cong C-\operatorname{Comod}_{f c}^{E} \xrightarrow[\simeq]{\xrightarrow{h_{E}^{\bullet}}} \bmod _{f p}\left(R_{E}^{o p}\right),
\end{align*}
$$

where $C_{E} \cong R_{E}^{\circ}$ is the colocalisation of C at E in the sense of $[11,25], \bmod _{f p}\left(R_{E}^{o p}\right)$ is the category of finitely presented left R_{E}-modules, $\widehat{R}_{E}-\bmod _{p r}^{p r}$ is the category of finitely generated propartite left modules over the bipartite K-algebra \widehat{R}_{E} (3.9), H_{E} and $h_{E}^{\bullet}=\operatorname{Hom}_{C}(\bullet, E)$ are K-linear contravariant equivalences of categories defined as in (3.5), G^{\prime} is the covariant K-linear equivalence of categories defined in (3.9), h_{E}^{\bullet} is an exact functor, $\operatorname{ker}_{E}\left(E_{0}, E_{1}, \psi\right)=\operatorname{Ker} \psi, \operatorname{cok}_{E}\left(P_{1}, P_{0}, \phi\right)=\operatorname{Coker} \phi$.
(b) For any socle-finite comodule $E=E_{U}$ as in (a), the fc-tameness of the coalgebra C implies that the category C - $\operatorname{Comod}_{f_{c}}^{E_{U}}$ is $f c$-tame, that is, the coalgebra $C_{E_{U}}$ is $f c$ tame.
(c) Conversely, if the category $C_{E_{U}}-\operatorname{Comod}_{f c} \cong C$ - $\operatorname{Comod}_{f c}^{E_{U}}$ is $f c$-tame, for all socle-finite injective direct summands $E=E_{U}$, then the coalgebra C is $f c$-tame.

Proof. (a) Let $E=E_{U}$ be a socle-finite direct summand of C as in (a). The K-algebra $R_{E}=\operatorname{End}_{C} E$ has the decomposition $R_{E}=\bigoplus_{u \in U} e_{u} R_{E}$, where $e_{u} R_{E}=$ $=\operatorname{Hom}_{C}(E, E(u))$ is an indecomposable projective right ideal of R_{E} and e_{u} is the primitive idempotent of R_{E} defined by the summand $E(u)$ of E. Since the set U is finite then $\sum_{u \in U} e_{u}$ is the identity of R_{E}, see $[25,26,28]$. It is easy to see that the Jacobson radical $J\left(R_{E}\right)$ of R_{E} has the form $J\left(R_{E}\right)=\left\{h \in \operatorname{End}_{C} E ; h(\operatorname{soc} E)=0\right\}$. It follows that the algebra R_{E} is semiperfect and pseudocompact with respect to the K linear topology defined by the left ideals $\mathfrak{a}_{\beta}=\operatorname{Hom}_{C}\left(E / V_{\beta}, E\right) \subseteq R_{E}$, where $\left\{V_{\beta}\right\}_{\beta}$ is the directed set of all finite dimensional subcomodules of E. Since $E=\bigcup_{\beta} V_{\beta}$, then there are isomorphisms

$$
\begin{equation*}
R_{E}=\operatorname{End}_{C} E \cong \lim _{\leftarrow} \operatorname{Hom}_{C}\left(V_{\beta}, E\right) \cong \lim _{\leftarrow} R_{E} / \mathfrak{a}_{\beta} \tag{5.2}
\end{equation*}
$$

The remaining statements in (a) follow from the proof of Theorem 3.1.
For the proof of (b) and (c), apply Lemma 3.1 and the arguments used in the proof of Theorem 3.1.

It follows from [28] (Corollaries 2.12 and 2.13) and the results of Section 3 that the $f c$-tameness and $f c$-wildness of a computable coalgebra C is equivalent, respectively, to the K-tameness and the K-wildness of the finite dimensional algebra R_{E}, for every socle-finite direct summand of C. Proposition 5.1 shows that the $f c$-tameness and $f c$ wildness of a basic coalgebra C (that is not necessarily computable) can be studied by means of the tameness and wildness of the categories $\widehat{R}_{E}-\bmod _{p r}^{p r}$ and $\bmod _{f p}\left(R_{E}^{o p}\right)$ over the semiperfect algebras \widehat{R}_{E} and R_{E} that are not finite dimensional, in general.

We recall from [26] (Corollary 2.10) that a socle-finite coalgebra C is computable if and only if $\operatorname{dim}_{K} C$ is finite. Hence, if C is a cocommutative noncomputable coalgebra
with simple socle then C is infinite dimensional and, in view of Proposition 5.1, we have the following consequence of Drozd [6].

Corollary 5.1. Assume that K is an algebraically closed field and C is a basic infinite dimensional cocommutative K-coalgebra with a unique simple subcoalgebra S. If S is finitely copresented and C is not $f c$-wild then
(i) C is a subcoalgebra of the path K-coalgebra $K^{\square}\left(\mathcal{L}_{2}, \Omega\right)$ (see [21] (Example 6.18), [22], [24]), where \mathcal{L}_{2} is the two loop quiver

and $\Omega \subseteq K \mathcal{L}_{2}$ is the ideal of the path algebra $K \mathcal{L}_{2}$ generated by the two zero-relations $\beta_{1} \beta_{2}$ and $\beta_{2} \beta_{1}$, and
(ii) $K^{\square}\left(\mathcal{L}_{2}, \Omega\right)$ is a string coalgebra in the sense of [22] (Section 6),
(iii) the colagebras $K^{\square}\left(\mathcal{L}_{2}, \Omega\right)$ and C are of tame comodule type, and $K^{\square}\left(\mathcal{L}_{2}, \Omega\right)$ is of non-polynomial growth.

Proof. By our assumption, C has a simple socle S and $C=E(S)$ is the injective envelope of S, that is, the set I_{C} in the decomposition (1.1) has one element and Proposition 5.1 applies to $E=E(S)=C$. It follows that the K-algebra R_{E} is pseudocompact, infinite dimensional, commutative, local, and complete. Since C is not $f c$-wild, the category $\bmod _{f p}\left(R_{E}\right)$ is not K-wild, by Proposition 5.1. Since S is finitely copresented then C-comod $\subseteq C$ - $\operatorname{Comod}_{f c}$ and therefore $\operatorname{fin}\left(R_{E}\right) \subseteq \bmod _{f p}\left(R_{E}\right)$. It follows that the category $\operatorname{fin}\left(R_{E}\right)$ is not K-wild. Hence, by [6], the unique maximal ideal $J\left(R_{E}\right)$ of R_{E} is generated by at most two elements and R_{E} is isomorphic to a quotient of the K-algebra $K\left[\left[t_{1}, t_{2}\right]\right] /\left(t_{1} t_{2}\right)$, where $K\left[\left[t_{1}, t_{2}\right]\right]$ is the power series K-algebra in two commuting indeterminates t_{1}, t_{2} and $\left(t_{1} t_{2}\right)$ is the ideal of $K\left[\left[t_{1}, t_{2}\right]\right]$ generated by $t_{1} t_{2}$.

It is easy to see that the path coalgebra $K^{\square}\left(\mathcal{L}_{2}, \Omega\right)=\Omega^{\perp} \subseteq K^{\square} \mathcal{L}_{2}$ is isomorphic with the coalgebra

$$
K\left[t_{1}, t_{2}\right]^{\triangleright}=K \oplus \bigoplus_{n=1}^{\infty} K \bar{t}_{1}^{n} \oplus \bigoplus_{m=1}^{\infty} K \bar{t}_{2}^{m}
$$

where the comultiplication $\Delta: K\left[t_{1}, t_{2}\right]^{\triangleright} \longrightarrow K\left[t_{1}, t_{2}\right]^{\triangleright} \otimes K\left[t_{1}, t_{2}\right]^{\triangleright}$ and the counity $\varepsilon: K\left[t_{1}, t_{2}\right]^{\triangleright} \longrightarrow K$ are defined by the formulae $\Delta\left(\bar{t}_{j}^{m}\right)=\sum_{r+s=m} \bar{t}_{j}^{r} \otimes \bar{t}_{j}^{s}$ for $j=1,2$, $\varepsilon(1)=1$ and $\varepsilon\left(\bar{t}_{j}^{s}\right)=0$ for $s \geq 1$ and $j=1,2$, see [21] (Example 6.18).

Moreover, it follows from [24] that C is isomorphic to a subcoalgebra of $K^{\square}\left(\mathcal{L}_{2}, \Omega\right)$. Since $K^{\square}\left(\mathcal{L}_{2}, \Omega\right)$ is a string coalgebra then, according to [21] (Example 6.18) and [22] (Theorem 6.2) $K^{\triangleright}\left(\mathcal{L}_{2}, \Omega\right) \cong K\left[t_{1}, t_{2}\right]^{\triangleright}$ is of tame comodule type and, hence, the coalgebra C is of tame comodule type, too. It is shown in [21] (Example 6.18) that $K^{\square}\left(\mathcal{L}_{2}, \Omega\right) \cong K\left[t_{1}, t_{2}\right]^{\diamond}$ is tame of non-polynomial growth.

[^1]4. Crawley-Boevey W. W. Matrix problems and Drozd's theorem // Topics Algebra, Pt I: Rings and Represent. Algebras / Eds S. Balcerzyk, T. Józefiak, J. Krempa, D. Simson, W. Vogel. - Warszawa: PWN, 1990. - P. 199-222.
5. Drozd Ju. A. Matrix problems and categories of matrices // Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI). - 1972. - 28. - P. 144-153 (in Russian).
6. Drozd Ju. A. Representations of commutative algebras // Funkc. Analiz i Pril. - 1972. - 6. - P. 41-43 (in Russian).
7. Drozd Ju. A. Tame and wild matrix problems // Represent. and Quadr. Forms. - Kiev: Inst. Mat. Akad. Nauk USSR, 1979. - P. 39-74 (in Russian).
8. Drozd Ju. A., Kirichenko V. V. Finite dimensional algebras. - Berlin etc.: Springer, 1994.
9. Drozd Ju. A., Ovsienko S. A., Furchin B. Ju. Categorical constructions in representation theory // Algebr. Structures and Appl. - Kiev: UMK VO, 1988. - P. 43-73 (in Russian).
10. Gabriel P., Roiter A. V. Representations of finite dimensional algebras // Algebra VIII: Encyclopedia Math. Sci. - 1992. - 73.
11. Jara P., Merino L., Navarro G. Localization in tame and wild coalgebras // J. Pure and Appl. Algebra. - 2007. - 211. - P. 342-359.
12. Kasjan S., Simson D. Varieties of poset representations and minimal posets of wild prinjective type // Represent. Algebras: Can. Math. Soc. Conf. Proc. - 1993. - 14. - P. 245-284.
13. Kleiner M., Roiter A. V. Representations of differential graded categories // Matrix Problems. - Kiev: Inst. Math. Akad. Nauk USSR, 1977. - P. 5-70 (in Russian).
14. Kleiner M., Reiten I. Abelian categories, almost split sequences and comodules // Trans. Amer. Math. Soc. - 2005. - 357. - P. 3201-3214.
15. Kraft H., Riedtmann K. Geometry of representations of quivers // Represent. Algebras: London Math. Soc. Lect. Notes 116. - 1986. - P. 109-145.
16. Montgomery S. Hopf algebras and their actions on rings // CMBS. - 1993. - № 82.
17. de la Peña J. A., Simson D. Prinjective modules, reflection functors, quadratic forms and Auslander Reiten sequences // Trans. Amer. Math. Soc. - 1992. - 329. - P. 733-753.
18. Simson D. Linear representations of partially ordered sets and vector space categories // Algebra, Logic and Appl. - 1992. - 4.
19. Simson D. Representation embedding problems, categories of extensions and prinjective modules // Represent. Theory Algebras / Eds R. Bautista, R. Martinez-Villa, J. A. de la Peña: Can. Math. Soc. Conf. Proc. - 1996. - 18. - P. 601-639.
20. Simson D. Prinjective modules, propartite modules, representations of bocses and lattices over orders // J. Math. Soc. Jap. - 1997. - 49. - P. 1-68.
21. Simson D. Coalgebras, comodules, pseudocompact algebras and tame comodule type // Colloq. math. 2001. - 90. - P. 101-150.
22. Simson D. Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras // Lect. Notes Pure and Appl. Math. - 2004. - 236. - P. 465-492.
23. Simson D. On Corner type Endo-Wild algebras // J. Pure and Appl. Algebra. - 2005. - 202. - P. 118-132.
24. Simson D. Path coalgebras of profinite bound quivers, cotensor coalgebras of bound species and locally nilpotent representations // Colloq. math. - 2007. - 109. - P. 307-343.
25. Simson D. Localising embeddings of comodule categories with applications to tame and Euler coalgebras // J. Algebra. - 2007. - 312. - P. 455-494.
26. Simson D. Hom-computable coalgebras, a composition factors matrix and the Euler bilinear form of an Euler coalgebra // Ibid. - 2007. - 315. - P. 42-75.
27. Simson D. Representation-directed incidence coalgebras of intervally finite posets and the tame-wild dichotomy // Communs Algebra. - 2008. - 36. - P. 2764-2784.
28. Simson D. Tame-wild dichotomy for coalgebras // J. London Math. Soc. - 2008. - 78. - P. 783-797.
29. Woodcock D. Some categorical remarks on the representation theory of coalgebras // Communs Algebra. - 1997. - 25. - P. 775-2794.

Received 10.02.09

[^0]: *Supported by Polish Research Grant 1 P03A № N201/2692/ 35/2008-2011.

[^1]: 1. Assem I., Simson D., Skowroński A. Elements of the representation theory of associative algebras. Vol. 1 Techniques of representation theory // London Math. Soc. Student Texts 65. - Cambridge; New York: Cambridge Univ. Press, 2006.
 2. Chin W. A brief introduction to coalgebra representation theory // Lect. Notes Pure and Appl. Math. 2004. - 237. - P. 109-131.
 3. Crawley-Boevey W. W. On tame algebras and bocses // Proc. London Math. Soc. - 1988. - 56. P. $451-483$.
