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Dedicated to the memory of Andrey Viadimirovich Roiter

We study the class of coalgebras C' of fc-tame comodule type introduced by the author. To any basic
computable K -coalgebra C' and a bipartite vector v = (v’|v”’) € Ko(C) x Ko(C), we associate a bimodule
matrix problem Matg, (H), an additive Roiter bocs BC, an affine algebraic K -variety Comodg, and an
algebraic group action GS x ComodvC — Comodvc. We study the fc-tame comodule type and the
fe-wild comodule type of C' by means of Maty, (H), the category rep  (BS) of K-linear representations
of BUC, and geometry of Gg—orbits of Comodvc. For computable coalgebras C' over an algebraically
closed field K, we give an alternative proof of the fc-tame-wild dichotomy theorem. A characterisation of
fec-tameness of C'is given in terms of geometry of G$ -orbits of Comod,,. In particular, we show that C' is
fe-tame of discrete comodule type if and only if the number of Gg-orbits in Comodg is finite, for every

v=(v'|]v") € Ko(C) x Ko(C).

BusueHo kiac koanrebp C' fc-pydHOro KOMOAY/JIBHOTO THILY, IO BBEACHHI aBTopoM. KoxkHy 6a30By 3iideHHy
K -xoanreGpy C' Ta gsononshuit Bektop v = (v/|v"') € Ko(C) X Ko(C) nos’s3ano 3 GiMOLYIBHOK0 Mar-
puuHoio 3anayero Matg, (H), anutunumu Gokcamu Poiitepa By, adinnum anreGpaiunum K -pisHoBHIOM
Comodg Ta anreOpalyHUM TPYNOBUM OLEPATOPOM Gg X Comodg — Comodg . Hocmimkenns fc-
pyuHoro Ta fc-muKoro KomoxyisHuX THIiB C' 1poBeneHo 3 Bukopuctanusy Mat g, (H), kareropii rep e (BUC)
K -niniitnux 306paxens BS ta reomerpii GS -op6ir Comodg . Jnst 3mivennux koanreop C' Hax anrebpa-
TYHO 3aMKHEHHM mosieM K HaBeICHO aIbTEPHATHBHE IOBEICHHS TEOPEMHU NP0 fc-pydHY AMKY AHXOTOMIIO.
Xapakrepusanito fc-pydnoi BnactuBocTi 1t C' OJaHO 4epe3 TeoMeTpito Gg -opbitr Comod,,. Iloka3aHo,
30KpeMa, 1110 C' HANCKHUTH 10 fc-pydHOrO JUCKPETHOrO KOMOYJIBHOTO THITY TOAI 1 TUIBKH TO/, KOJIH KUIBKICTh
G -op6itr B Comod§ ckinuenna mis koxHoro v = (v/[v"") € Ko(C) x Ko(C).

1. Introduction. Throughout this paper, we use the terminology and notation introduced
in [21, 22, 28]. We fix a field K. Given a K-coalgebra C, we denote by C-Comod
and C-comod the categories of left C-comodules and left C-comodules of finite K-
dimension. We recall that C' is said to be basic if the left C-comodule ~C has a
decomposition

cC =P EG) (1.1)

j€lc

into a direct sum of pairwise non-isomorphic indecomposable injective left comodules
E(j). Throughout this paper, given j € Ic, we denote by S(j) the unique simple
subcomodule of E(j). Hence, soc C = P, S(j). Following [26], the coalgebra C is
called Hom-computable (or computable, in short) if dimx Home (E(7), E(j)) is finite,
forallé, j € Ic. Aleft C-comodule M is said to be computable if dim x Home (M, E(j))
is finite, for all j € 1.

Given a computable comodule M, we denote by lgthM = (¢;(M));cr, € Zc
the composition length vector of M, where ¢;(M) < oo is the number of simple
composition factors of M isomorphic to the simple comodule S(j). It is clear that
lgthM € ZUYe) if M is of finite K-dimension. We recall from [21] that the map
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M — lgthM defines a group isomorphism lgth: Ky(C) — ZU¢) where K((C) =
= Ko(C-comod) is the Grothendieck group of the category C-comod and Z(/¢) is the
direct sum of I copies of Z.

We recall from [21] and [25] that an arbitrary K-coalgebra C is defined to be
of K-wild comodule type (or K-wild, in short), if the category C-comod of finite
dimensional C'-comodules is of K -wild representation type [18, 21, 23] in the sense that

there exists an exact K -linear representation embedding 7': modI'3(K) — C-comod,

3
where I's(K) = <Ig I]i) . A K-coalgebra C' is defined to be of K-tame comodule

type [25] (or K-tame, in short), if the category C-comod of finite dimensional left
C-comodules is of K-tame representation type ([18], Section 14.4, [22]), that is, for
every vector v € Ko(C) = ZU¢) | there exist C-K [t]-bicomodules L"), ..., L(™) that
are finitely generated free K [t]-modules, such that all but finitely many indecomposable
left C-comodules M with lgthM = v are of the form M = L(*) @ K}, where s <r,
and

K =K[t]/(t—)), MEK. (1.2)

Equivalently, there exist a non-zero polynomial h(t) € K[t] and C-K|[t],-bicomodules
LM . L) that are finitely generated free K [t]n,-modules, such that all but finitely
many indecomposable left C-comodules M with 1gthM = v are of the form M =
~ ) @ K}, where s < r, and K[t], = K[t,h(t)""] is a rational K -algebra, see [7] or
[18] (Section 14.4). In this case, we say that LW, ... L) form an almost parametri-
sing family for the family ind, (C-comod) of all indecomposable C-comodules M with
IgthM = v.

Here, by a C-K][t],-bicomodule ¢ Lk, we mean a K-vector space L equipped
with a left C-comodule structure and a right K|[t],-module structure satisfying the
obvious associativity conditions. In [28], a K-tame-wild dichotomy theorem is proved
for left (or right) semiperfect coalgebras and for acyclic hereditary coalgebras over an
algebraically closed field K by reducing the problem to the fc-tame-wild dichotomy
theorem [28] (Theorem 2.11) and, consequently, to the tame-wild dichotomy theorem
for finite dimensional K -algebras proved in [7] and [3].

The aim of the paper is to study the classes of coalgebras C' of fc-tame comodule
type and of fc-wild comodule type introduced in [28]. We recall that C' is of of fc-tame
comodule type if, for every coordinate vector v = (v'|[v") € Ky(C) x Ko(C), the
indecomposable finitely copresented C-comodules N such that cdn(N) = (v'|v”) form
at most finitely many one-parameter families, see Section 2 for a precise definition.

We study mainly computable fc-tame and fc-wild basic coalgebras C' by means of
a bimodule matrix problem Mat (H), the additive category rep, (BS) of K-linear
representations an additive Roiter bocs BUC, an affine algebraic K-variety Mapg7 an
algebraic (parabolic) group action G$' x Mapg — Mapf7 and a Zariski open G¢-
invariant subset Comodg c Mapf, associated to C' and to any bipartite vector
v = (V|v") € Ko(C) x Ko(C). It is shown in Section 4 that there is a bijection between
the G¢ -orbits of Comodvc and the isomorphism classes of comodules in C'-Comod ..
On this way, we get in Theorem 4.1 a characterisation of fc-tameness and fc-wildness
of computable colagebras by means of Mat¢ (H), the K-linear representations of the
Roiter bocs BY, and in terms of geometry of the G -orbits of Comodg.
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We show in Section 4 that a computable colagebra C is fc-tame of discrete
comodule type if and only if the number of GC-orbits in ComodS is finite, for
every bipartite vector v = (v'|v") € Ko(C) x Ko(C). Moreover, we prove that a
computable colagebra C' is fc-tame if and only if, for every bipartite vector v =
= (V'|v") € Ko(C) x Ko(C), there exists a constructible subset C(v) of the constructi-
ble set indComode C ComodUC (defined by the indecomposable C-comodules) such
that GS * C(v) = indComod¢ and dim C(v) < 1, see Theorem 4.1.

We also give an alternative proof of the following fc-tame-wild dichotomy theorem
proved in [28]: If C' is a basic computable coalgebra over an algebraically closed field
K then C'is either fc-tame or fc-wild, and these two types are mutually exclusive.

We prove it in Section 3 by a reduction to the tame-wild dichotomy theorem of Drozd
[7] for representations of additive Roiter bocses, by applying the bimodule problems
technique introduced in [5] and developed in [3, 4, 9, 17, 19, 20].

Throughout this paper we freely use the coalgebra representation theory notation and
terminology introduced in [2, 16, 21, 22, 28]. The reader is referred to [1, 8, 10, 18] for
representation theory terminology and notation, and to [3, 4, 7, 9, 13] for a background
on the representation theory of bocses.

In particular, given a ring R with an identity element, we denote by Mod(R) the
category of all unitary right R-modules, and by mod(R) 2 fin(R) the full subcategories
of Mod(R) formed by the finitely generated R-modules and the finite dimensional R-
modules, respectively. Given a K -coalgebra C and a left C-comodule M, we denote by
soc M the socle of M, that is, the sum of all simple C'-subcomodules of M.

A comodule N in C'-Comod is said to be socle-finite if N is a subcomodule of a finite
direct sum of indecomposable injective comodules, or equivalently, dim i soc IV is finite.
We say that [V is finitely copresented if /V admits a socle-finite injective copresentation,

that is, an exact sequence 0 — N — Ej LN FE1 in C-Comod, where each of the
comodules E; and F; is a finite direct sum of indecomposable injective comodules.
If Ey, E1 € add(E), for some socle-finite injective C-comodule E, the comodule N
is called finitely E-copresented. We denote by C-Comody. 2 C—Comodﬁ the full
subcategories of C'-Comod whose objects are the finitely copresented comodules and
finitely E-copresented comodules, respectively. Here by add(E) we mean the full addi-
tive subcategory of C'-Comod whose objects are finite direct sum of indecomposable
injective comodules isomorphic to direct summands of E.

2. Preliminaries on fc-comodule types for coalgebras. Throughout we assume
that K is an algebraically closed field and C is a basic K-coalgebra with a fixed
decomposition (1.1). Following [28], given a finitely copresented C-comodule N in
C-Comod ., with a minimal injective copresentation 0 — N — EY % EN | we
define the coordinate vector of NV to be the bipartite vector

cdn(N) = (edn)) | edn)) € Ko(C) x Ko(C) = Z1) x 7e), 2.1

where cdn)’ = Igth(soc EY) and cdn) = lgth(soc EY). We call a bipartite vector
v = (v'[v") € ZUe) x ZUc) proper if v/ # 0 and v has non-negative coordinates.
Note that an indecomposable comodule N in C-Comod . is injective if and only if the
vector cdn(N) is proper and has the form v = (e;[v”), where v” = 0 and e, is the jth
standard basis vector of Z/¢) for some j € I¢.
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The support of a bipartite vector v = (v'[v") € ZU¢) x ZUe) s the finite subset
supp(v) = {j € Ic; v} # 0 or v} # 0} of Ic.

We recall from [28] that K-coalgebra C is defined to be of fc-wild comodule
type (or fc-wild, in short), if the category C'-Comody. of finitely copresented C-
comodules is of K-wild representation type [18, 23, 25] in the sense that there exists
an exact K-linear representation embedding 7": modI's(K) — C-Comody., where

K K3
BIO=1o &

A C-K][t]p-bicomodule ¢ L1y

C-K][t]p-bicomodule exact sequence 0 — ¢ Ly, — E' @ K[t], SNy 57 ® Kt]p, such
that £/, E’ are socle-finite injective C-comodules. If E’, E” are finitely E-copresented,
we call ¢ Ly, finitely F-copresented.

A K-coalgebra C'is defined to be of fc-tame comodule type (or fc-tame, in short),
if the category C-Comody, is of fc-tame representation type [18] (Section 14.4), that is,
for every bipartite vector v = (v/'|v") € Ko(C) x Ko(C) = ZU) x ZUe)  there exist
C-K|t],-bicomodules LM ... L) that are finitely copresented, such that all but
finitely many indecomposable left C-comodules N in C-Comod ., with cdn(N) = v,
are of the form N = L(*) @ K}, where s < r,,

, 18 defined to be finitely copresented if there is a

Ky = K[t]/(t =),

and A € K. In this case, we say that L(Y), ... L") is a finitely copresented almost
parametrising family for the family ind,(C-Comod;.) of all indecomposable C-
comodules N with cdn(/N) = v. Obviously, one can restrict the definition to proper
bipartite vectors v = (v'[|v").

We recall from [28] that the growth function ﬁé: Ky(C) x Ko(C) —— N of C
associates to any bipartite vector v = (v'|[v") € K(C) x Ko(C), the minimal number
ﬁlc(v) =r, > 1 of non-zero finitely copresented C-K [t],-bicomodules LW . L)
forming an almost parametrising family for ind,, (C-Comod;.). We set ﬁé(v) =71, =0,
if there is no such a family of bicomodules, that is, there is only a finite number of
comodules N in ind, (C-Comody.), up to isomorphism.

An fc-tame coalgebra C' is defined to be of fc-discrete comodule type if ﬁlc =0,
that is, the number of the isomorphism classes of the indecomposable C'-comodules N
in C-Comod . with cdn(N) = v is finite, for every bipartite vector v = (v'[v") €
€ Ko(C) x Ko(C).

By the main result in [28], the definition is left-right symmetric, for any computable
coalgebra C'. Note also that the K-tameness and K-wildness of a coalgebra are defined
by means of finite dimensional comodules, but the fc-tame comodule type and fc-wild
comodule type are defined by means of the category C-Comod ¢ of finitely copresented
comodules that usually contains a lot of infinite dimensional comodules.

In the proof of our main results, we need the following construction that associates to
any v = (V'|v") € Ko(C) x Ko(C) and any finitely copresented C-K[t];-bicomodule
c Lk, anew one CZ K[t],» called fc-localising v-corrected C-K [t],-bicomodule.

Construction 2.1. Let C be a basic K-coalgebra with a decomposition (1.1), and
let v = (v'[v"") € Ko(C) x Ko(C) = ZUe) x ZU¢) be a proper bipartite vector.

Let U, = supp(v) C I¢ be the support of v = (v'|v”). We call the socle-finite
injective C'-comodules

ISSN 1027-3190. Vip. mam. scypn., 2009, m. 61, Ne 6
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EW) =@ E@)" and E@") = EG)" (2.2)

i€l j€lc

the standard injective C-comodules with cdnE(v") = (v'|0) and cdnE(v”) = (v”|0).
We fix a rational K -algebra S = Kt];, and note that
E,=Ey, = P E(a) (2.3)

acU,

is a socle-finite injective direct summand of ¢ C.
Assume that ¢ Lg is a finitely copresented C'-S-bicomodule with a fixed injective
C-S-bicomodule copresentation

0— oLy — Ey®S - E®S (2.4)

where Ey, E; are socle-finite injective comodules such that E(v') C Ey and E(v”) C
- El-

We construct in three steps a finitely F,-copresented C'-S-bicomodule CES, called
a localising fc-correction of ¢ Lg as follows.

Step 1°. Fix a decomposition Ey = E| @ E{/, where E|, is the injective envelope
of the semisimple subcomodule S(v) generated by the simple subcomodules of Ej that
are isomorphic to S(j), with j € U,. Obviously, every simple subcomodule S of E
has the form S = S(a), where a & U,.

Step 2°. Define a C-S-subbicomodule ¢Ls of ¢Lg to be the kernel of the
composite C-S-bicomodule homomorhism Ejj ® S 487 Ey® S N FE, ® S, where
uy: Ef — Ej is the canonical embedding.

Step 3°. Lete,: C — K be the idempotent of the algebra C* = Homg (C, K)
defined by the direct summand E, of «C. An fc-localising correction of - Lg is the
C-S-bicomodule

cLs = e,CO,,ce, [resi, (¢ L')s), (2.5)

where resg, : C-Comod;. — e,Ce,-Comody. is the exact restriction functor and
e,Cc, e, (—): €yCey-Comody. — C-Comody, is the left exact cotensor product
functor defined in [11] and [25] ((2.9), see also [29]).

The following fc-localising correction lemma is of importance.

Lemma 2.1. Let K be an algebraically closed field, C' a basic K-coalgebra with
the decomposition (1.1), v = (V'[v") € Ko(C) x Ko(C) = ZUe) x 7<) a proper
bipartite vector, S = Kl|t|n, and ¢Lg a finitely copresented C-S-bicomodule with a
fixed injective C-S-bicomodule copresentation (2.4) as in Construction 2.1.

(a) The C-S-bicomodule cLs (2.5) has an injective C-S-bicomodule copresentation

O—>Czs—>E0®SLE1®S (2.6)

and the comodules Ey = E}, E; lie in add(Ey, ).

(b) If N is an indecomposable comodule in C-Comod . such that cdn(N) = v and
N = oLs ® K3, with \ € K, then the restriction U}y: cLs — cLg of the splitting
monomorphism uy®S: Ey®S — Ey®S to ¢ L is an embedding of C-S-bicomodules
and induces isomorphisms CES ® K> cly® K}\ = N of C-comodules.
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Proof. (a) By the construction, there are a decomposition Ey = E} & Ej and exact
sequence

0—cly — E2S - EBos

of C-S-bicomodules, where ¢’ = 1o (up®S) and ug = (idg;,0): Ej — Eo = Eq@EY
is the canonical embedding into the direct summand E) of Ey. We recall from [11] and
[25] (Section 2) that the restriction functor resg, : C-Comody. — e,Ce,-Comod .
is exact and the cotensor product functor e,CO., ce,(—): €,Ce,-Comods. —
— C-Comody. is left exact. Then we derive an exact sequence

O—>czs HEQ@SLEI/@S
of C-S-bicomodules, where Eo = e,COe, ce,resp, (E)) and
EY =¢,00,,ce¢,resg, (E1).

Since Ej is a direct summand of Ey,, then by [11] and [25] (Proposition 2.7
and Theorem 2.10), there is an isomorphism Eo = E,, the socle of resg, (E1) is
a finite dimensional subcomodule of the coalgebra e,Ce, and the socle of EY =
= €,C0¢,ce,resg, (F1) is a finite direct sum of comodules S(a), with a € U,. It
follows that the injective envelope £, = Eq(E)Y) of the C-comodule EY lies in
add(Ey, ). Hence we get the exact sequence (2.6) and (a) follows.

(b) The canonical embedding ug = (idgy,0): Ey — Eo = Ej @ Ey into the direct
summand E, of Ejy induces the commutative diagram of C-S-bicomodules

0 — ¢Ls — (EyeEH®S -5 E®S

ﬂéT ué@ST idp, ®ST

0 — oLy — E,®S Y E®S

with exact rows, where %, is the restriction of the monomorphism ugy ® S: Ey ® S —
— Ey ® S to ¢ L. Obviously, % is an embedding of C-S-bicomodules.

Let NV be an indecomposable comodule in C-Comod . such that cdn(N) = v =
= (V'|v") and N = ¢Ls ® K}, with A € K. Then N has a minimal injective
copresentation 0 — N — E(v') < E(v”). Recall that cdnE(v') = (v/|0) and

cdnE(v") = (v”|0). Then we get a commutative diagram of C-comodules in
C-Comody,
0 — N — E(v') <, E@")

l% fol fll

0 — c¢Le®sKi — (Ej®E])®K; E1® K}
agT ué@idT idT

0 — cLeskl — E,® K} Y, B @K

with exact rows. Since the upper row is a minimal injective copresentation of N, then fj
. — 5 0®S

and f, are monomorphisms, and f, has a factorisation E(v") o, EyoKl = BjoK}

through the subcomodule Ej) ® K3 of Ey ® K3, because the socle of Ej ® K} contains

no simple comodules S(a), with a € U,,. It follows that f{ restricts to a monomorphism
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f/'\éz N — ¢L'®gs K such that the composite map N LN cl'®sK} o, cL®s K] is
an isomorphism. Consequently, f}: N — ¢L'®gK} is an isomorphism of C-comodules.
Hence, in the notation of Construction 2.1, we get the isomorphisms

cLl ®g Ki = [evCDevcevreSEv (CL,)] Xs Kl
>~ ¢,C0., ce, [tesp, (L' @ K3)] 2 e,CO., ce, [tesp, (N)] = N

of C'-comodules, because N is finitely Eys, -copresented and [25] (Theorem 2.10 (d))
applies to N.

The lemma is proved.

3. fc-Tameness, fc-wildness and Roiter bocses for coalgebras. We show in this
section how the study of fc-tame and fc-wild coalgebras can be reduced to the study
of bimodule matrix problems in the sense of Drozd [5], to representations of additive
Roiter bocses [3—7], and to the study of propartite modules over a class of bipartite
algebras [19, 20].

To formulate our main results on fc-tame and fc-wild computable coalgebras, we
recall some notation, see [25] and [26]. Given a socle-finite injective direct summand

uelU

of cC =, E(j), with afinite subset U of Ic, we define the category C-Comodfg
to be fc-tame if for every bipartite vector v = (v'[v") € ZY x ZY | there is a finitely
E-copresented almost parametrising family for indU(C—Comod}E ).

We start with the following fc-parametrisation correction lemma.

Lemma 3.1. Let K be an algebraically closed field, C' a basic K-coalgebra with
the decomposition (1.1), and E = Ey a socle-finite injective direct summand (3.1)
Ofcc.

(a) If Cis fc-tame then the category C’—Comod?g is fc-tame.

) Ifv=(v|]v") € Ko(C) x Ko(C) = ZU) x 72U is a proper bipartite vector,

S = Kl[t], and LW ... LU is a finitely copresented almost parametrising fami-
ly of C-S-bicomodules for indv(C’-COmod?g ) then the fc-localising v-corrected C-
S-bicomodules Z<1>, .. .,EW in the sense of Construction 2.1 form a finitely Ey-

copresented almost parametrising family for ind,, (C—Comodfcu ).

Proof. 1t is sufficient to prove (b), because (a) is a direct consequence of (b).
Assume that v = (V'|v") € Ko(C) x Ko(C) = ZUe) x 7U) is a proper biparti-
te vector and L™, ... L") is a finitely copresented almost parametrising family for
indv(C’—ComodféJ ). Assume that 7, > 0 is a minimal number of such non-zero bi-
modules. If 7, = 0 then there is nothing to prove, because the number of the isomorphism
classes of indecomposable comodules in indU(C—ComodféJ ) is finite.

Assume that 7, > 1. Then, for each 1 < 5 < r,, there is an indecomposable
comodule N such that cdn(N) = v and N = LU) @4 K)l\(j), for some A(j) € K. Then

N has a minimal injective copresentation 0 — N — E(v’) 2, EB(v).
Since CLg) is a finitely copresented C-S-bicomodule then it has an injective C-S-
bicomodule copresentation

) . ) )
0— oLy — Efes S EVe s
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TAME COMODULE TYPE, ROITER BOCSES, AND A GEOMETRY CONTEXT FOR COALGEBRAS 817
where E(gj ), E%J ) are socle-finite injective C-comodules. Since N = L) @ K /{(j) then
there are C-comodule monomorphisms E(v') C Ey and E(v”) C Ej, because the
sequence

. . e ;
0 — LW @ Ki ;) — EY @ K} ;) Y BV 9 K}

induced by the previous one is exact and is a socle-finite injective copresentation of
N =~ 10) Qg Ki(j). Then the Construction 2.1 applies to CL(Sj), forj=1,...,r,.

By applying Lemma 2.1 to the finitely copresented C-S-bicomodule L) we get a
finitely Ep-copresented C-S-bicomodule L) such that the fc-localising v-corrected
C-S-bicomodules LY, ... L) form a finitely Eyr-copresented almost parametrising
family for ind, (C-ComodfY ).

The lemma is proved.

Following [25, 26, 28] given a socle-finite injective direct summand £ = Ey (3.1),
we consider the K-algebra

Rp = EndcE = @ euRe, (3.2)
uelU

where e, Rp = Homg (E, E(u)) is viewed as an indecomposable projective right ideal
of Rg and e, is the primitive idempotent of Ry defined by the summand E(u) of E.
Since the set U is finite then ZUEU e, 1s the identity of Rp. It is easy to see that the
Jacobson radical J(Rg) of Rg has the form J(Rg) = {h € Endc E; h(soc E) = 0}. It
follows that the algebra Rg is semiperfect and pseudocompact with respect to the K-
linear topology defined by the left ideals ag = Homc(E/V3, E) C Rg, where {Vs}s
is the directed set of all finite dimensional subcomodules of E. Since £/ = (J; V3, then
there are isomorphisms

Rp = End¢E = lim HOl’nc(Vg, E) = lim RE/aﬁ. (3.3)
8 8

Following [3, 7, 28], we consider the homomorphism category Map,(E) whose
objects are the triples (Ey, F1,v) with Ey, Ey comodules in add(F) and¢: Ey — E;
a homomorphism of C-comodules such that ¢ (soc Ey) = 0; and whose morphisms are
the pairs ( fo, f1), where fo: Ey — E}, fi: Ey — E} and ¢)'o fy = f101. Denote by
Map,(E) the full subcategory of Map, (E) whose objects are the triples (Eg, 1, )
such that soc Im = soc E;. or equivalently, ¢: Ey — F; has no non-zero direct
summand of the form 0 — E”. We define the coordinate vector of (Ey, E1,1)) to be
the bipartite vector

cdn(Ey, E1, 1) = (Igth(soc Ey)|lgth(soc E;)) € ZY x ZV = Ko(RE) x Ko(RE).
(3.4)

Following [7], [3] (Section 6) and [28], we denote by P;(R7’) the category whose
objects are the triples (Py, Py, ¢) with Py, P; finitely generated projective left Rp-
modules and ¢: P, — rad(Fy) = PyJ(Rg) a homomorphism of left Rg-modules;
and whose morphisms are the pairs (g1, go), where go: Py — P}, g1: PA — P{ and
@ o g1 = go o ¢. Denote by Pa(R}) the full subcategory of P;(R%) whose objects
are the triples (Py, Py, ¢) with Ker¢ C rad(P;). or equivalently, ¢: P, — Py has no
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non-zero direct summand of the form P — 0. We define the coordinate vector of
(Py, Py, @) to be the bipartite vector

cdn(Py, Py, ¢) = (Igth(topPy)|lgth(topPy)) € ZY x ZY = Ko(R%) x Ko(RY).

We call cdn(Coker¢) = cdn(Py, Py, ¢) the coordinate vector of the Rpg-module
Cokerg.

We start with the following important result. Here we freely use the terminology and
notation introduced in [3] (Section 6), [7], and [28].

Theorem 3.1. Let K be an algebraically closed field, C a basic K-coalgebra
with the decomposition (1.1), E a socle-finite injective direct summand (3.1) of ¢C,
and assume that the K-algebra Ry = EndcFE (3.2) is finite-dimensional. Let B =
= (A, AVa) be the additive Roiter bocs associated to the K -algebra R} in [3] (Proposi-
tion 6.1). Then there is a commutative diagram

Mapy(E) =5 Py(RY) < repg(Bp)
- cokr | (3.5)
hy

C-Comodf. —% mod(RY),
where Hg and h$, = Homc (e, E) are K-linear contravariant equivalences of categori-
es, G is a covariant K-linear equivalence of categories, hy, is an exact functor,
kerg(Ey, E1,¢) = Kery, cokg(Py, Py, ¢) = Cokere, and the following conditions
are satisfied.

(a) The functors cokp and kerg are full dense and restrict to the representation
equivalences kerg: Map,(E) — C-Comod?c and cokp: Py(R7) — mod(R}).
The right-hand part in the diagram is defined as in [7] (Section 5) and [3, p. 476, 478],
with R}, G, cokg and A, 2, cok interchanged.

(b) If N is an indecomposable comodule in C—Comod?c then there exists a uni-
que, up to isomorphism, indecomposable object (Ey, E1,) in Map,(E) such that
kerg(Ey, E1,¢) & N. In this case (Eq, E1,1) lies in Map,(E) and

cdn(N) = cdn(Ey, E1, ) = o(cdnHg(Eo, E1,v)) = dimG ™" Hg(Eo, E1,1)),

where we set o(v'[v") = (v"|v).

(c) If the category C’—Comodfc is not of K-wild representation type (shortly, K-
wild) then the additive category rep i (Bg) of the K-linear representations of B is not
wild and, given a non-negative vector

v=(v|v") e ZY x ZY C ZUe) x 7Ue) ~ K((C) x Ko(O),

there exist minimal bocses By, ..., B, with B; = (B;,W,), finitely E-copresented
C-B;-bicomodules T; and full functors F;: repy(B;) — C-Comody. which reflect
isomorphisms such that

(c1) Fi(X) =T, ®p, X, for all representations X in repy(B;),

(c2) every indecomposable comodule N in C’—Comodfc7 with cdn(N) = v, is
isomorphic to F;(X), for some i and some representation X in repy(B;),
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(c3) the functors F; induce group homomorphisms Ko(B;) — ZY C zUc) =~
> Ko(C) taking the dimension vector dim(X) of X to cdnF;(X).

Proof. By our assumption, the injective comodule £ = FEy is socle-finite and
the K-algebra R = EndcE is finite dimensional. Let D: modR} — modRp be
the standard duality given by L — D(L) = Homg (L, K), for any L in modR7.
We define the contravariant functor hY, by setting hg) = Hom¢(—, E). Since E is
injective, the functor h§, is exact and, by [26] (Proposition 2.13), h%, is an equivalence
of categories such that (lgthN), = (dimh®), = dimg (hY )e,,, for any comodule N in
C-Comod ﬁ” and all u € U, where dim N’ is the dimension vector of a left Ryy-module
N’. This means that resy (lgthN) = dimh%, for any comodule N in C—Comodfb;U7
where resy: ZU#) — ZU is the restriction homomorphism.

We define the functor Hg on objects by setting Hg(Ey, E1,%) = (hgl,hgo, h}é),
and on morphisms by setting Hg(fo, f1) = (hé1 , hg’) A direct calculation shows that
(hEr hEo h%) belongs to Py(RY), if (Eo, E1,%) € Map,(E) and that Hp is well
defined.

For a purpose of next steps of the proof (and in order to see a nature of Map, (F)
as the bimodule problem in the sense of Drozd [5], see also [4, 17]), we give a different
detailed proof of the above fact.

Let K = add(E) be the full additive subcategory of C-Comod formed by finite
direct sums of the injective C-comodules E(u), with u € U, and let H = H¥ be the
K-K-bimodule H(—,-) = H¥(—,-): K x K — modK defined by the formula

H(E', E") = {g € Hom¢(E', E");¢(soc E') = 0} C Hom¢(E', E"),

with E', E” € K. Note that H(FE, E) = {¢ € End¢c E; ¢(soc E) = 0} = J(Rp) is the
Jacobson radical of the algebra Rg.
We construct Hg, as the composite functor

Map,(E) 25 Mat(HE) - Pi(RY), (3.6)

where Mat (KH]% ) is the additive K -category of KHH]g -matrices in the sense of Drozd [5],
see also [4], [10], [18] (Chapter 17), [20] (Section 2) for details. Recall that the objects
of Mat(xHE) are the triples (E', E”,), where E’, E" € obK and ¢ € H(E', E"),
and morphisms are defined in a natural way.

The functor H' is defined by attaching to any object (Ey, Eq,%) of Map,(E),
with ¢ € Home(FEo, E1) = H(FEy, E1) and Ey, F1 € K, the triple H'(Ey, E1,) =
= (Eo, E1,7), viewed as an object of Mat(xHE). Given a morphism (fy, f1):
(E(], El,w) — (E67 E{,’(ﬁ/), we set H/(f(), fl) = (f(), fl) It is casy to see that H' is
a K-linear equivalence of categories.

Now we construct the functor H”. In the notation of [20] (Section 2), we denote
by Rp-pr the category of finitely generated projective left Rp-modules and we define
the Nakayama equivalence w: K — (Rp-pr)°? that associates, to any object = of KK,
the finitely generated projective left Rg-module w(x) = h% = Home (z, E). Hence, by
applying the formula (2.9) in [20] to K = L = K = add(F) and the bimodule M = H,
we conclude that, for any pair x = E’,y = E” of objects in K, the (contravariant!)
functor w induces the natural isomorphisms

H(E', E") = H(z,y) = Hompg, (h%, H(z, E)) =
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&~ Homg, (h%, H(E, E) Qg, hf) =
=~ Hompg,, (%, J(RE) @R, h%) =
= Homp,, (h%, radh%) = Homp,, (hE", radhE') =
=~ Homp, (J(Rg)t ®r, hi, hE) =
> Homp, (J(Rg)" @r, W2 hE), 3.7

where J(Rg)™ = Homg, (J(REg), Rg) is viewed as an Rg-Rpg-bimodule.

Hence, if (Eo, E1,1) is an object of Mapl( ) (or of Mat(gHx)) then ¢ €
€ H(E', E") and its image o: hE — radhg under the composite isomorphism (3.7)
is such that h% — u - ¢, where u : radhy < hZ is the embedding. It follows that
(hE",hE 1Y) lies in Py (Ryg) if and only if (Ey, By, 1) lies in Map, (E). We define
H"” (and Hg) on objects (Ey, E1, ) by setting

H"(Eo, By, ) = Hg(Eo, By, ) = (W hE  h%),

and on morphisms (fo, f1) by H”(fo, f1) = HE(fo, 1) = (hE,hi?). Obviously,
H = H" o H'. Since, up to isomorphism, all objects of P;(Rg) are of the form
(hg”,hg',hqé), with (Eg, E1,v) € Map,(F), then the functors H” and Hg are
equivalences of categories making the square in (3.5) commutative.

(a) The fact that the functors ker and cok are full and dense follows immedi-
ately form the definitions. It is easy to see that (Pj, Py, ¢) is an object of P;(Rg)

if and only if P, 2, Py — Coker¢ — 0 is a minimal projective presentation of
Cokert in mod(R%’). Analogously, (Eo, E1, 1)) is an object of Map, (E) if and only

if 0 — Keryy — Ej 2, F is a minimal injective E-copresentation of Keriy. Hence
easily follows that the functors cokp and kerg restrict to the representation equi-
valences kerg: Map,(E) — C-Comod?c and cokp: Py(R%) — mod(R}). The
remaining statements in (a) follow from the definitions and [3] (Section 6).

(b) Let N be an indecomposable comodule in C-Comodfc. Then N admits a minimal

injective E-copresentation 0 — N — Ej N E; in C-Comod, with Fy, E; € add(FE)
and, therefore, (Fy, E1,1) is an object of Map, (E). It follows that

Hg(Eo, E1, ) = (W2 hE° hY) € P2(Rp)

and, hence, hgl LN hg“ — h¥ — 0 is a minimal projective presentation of A%
in modR%}. Hence the equalities cdn(N) = cdn(Ey, E1,1) = o(cdnHg(Ey, E1,1)))
easily follow. The equality o(cdnHg(Ey, E1,v)) = dimG~ ' Hg(Ey, E1,)) is proved
in [7] (Section 5) and [3] (Section 6).

(c) First we show that the functor G in (3.5) is the composite functor

P (R"p)<—RE mod? < rep . (Bp), (3.8)

where R p-modb " is the additive K -category of finite dimensional propartite left modules
over the finite dimensional bipartite K -algebra

Rg J(Rg)*t

~

Rp = (3.9)

0 Rg
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in the sense of [20], with J(Rg)™ = Homg, (J(Rg), Rg). First we note that if X =
= (X, X",&: J(Rg)*t®g, X' — X"), is a propartite left Rp-module then, up to
isomorphism, the projective left Rg-modules X', X" have the forms X' = hg//,
X" = hg, where F’, E" € add(E). Then, in view of the isomorphisms

1"

i)

1%

Homg, (J(Rg)" ®gr, hi
~ Hompg, (b, J(RE) ®r, hE ) = Homp, (hE  radhl)

given in (3.7), we can view X as the triple X = (X', X", £), where £ = u o ¢ is the

u

composition hE" £, radhZ % hE' of the image € of & € Homp, (J(Rg)" ®g,
hgn, hg/), under the composite isomorphism, with the canonical embedding u. In other
words, the triple G'(X) = (X', X", ¢) = (b hE ,¢) is an object of P;(RY).
This defines the equivalence G’, and we set G” = G o (G')~!. It is clear that the
functor Tir = (G”)~1 is the equivalence Tk : ﬁE-mod§: — repg(Bg) defined in
[20] ((4.11)).

Following an observation of Drozd [7] (see also [3] and [20, p. 44, 45]), given a fini-
tely generated K -algebra S, the category rep(Bg, S) of right S-module representations
of the bocs B = (A, 4V4) has as objects the A-S-bimodules 4 X in mody,(A® S°P)
(the category of finitely presented left (A ® S°P)-modules), which are finitely generated
projective, when viewed as right S-modules, see [7], [3] and [20, p. 44, 45] for details.
We set repy (Bg) = rep(Bg, K).

By [20] (Proposition 4.9), there is an equivalence of categories

Ts: (Rp ® S°7)-mod?l —= rep(Bp, S), (3.10)

for any finitely generated K -algebra S, where

R Rp®S°? J(Rgp)™ @ S°P
(Rp ® SP) = .
0 Rp ® S°P

The objects of (R ®S5°P)-mody, are Rp-S-bimodules that are (R ® 5°P)-(Rp © S°P)-
propartite and finitely generated projective as left S-modules.

Following the above construction of the functor G’, we can construct equivalences
of categories .

GE fa - G/bi
Pi((Rp ® §P)P) <=2 (Rp ® $°)-mod’;. «== rep(Bp, S), (3.11)

and we extend the diagram (3.5) to the following commutative diagram

Map, (E @ ) er p(Re @ 57))  EE rep(Bp, S)

~ ~

kerJr cokl

(C ® §°P)-Comod 225" 2, mod((Rg ® S°)P),

~

(3.12)
where G s = G g 0 G g and TS = G5 We set C = C ® S° and view it as
an S°P-coalgebra with the comultiplication A = A ® S° and the counit & = ¢ ® S°P.
Then E = E® S° is an injective object in the category C-Comod of left a—comodules,
which is projective, when viewed as a right S-module.
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We define é-Comodfb; C® S"p)—Comodﬁ(@Sw to be the full subcategory
C-Comod whose objects are the finitely E-copresented C-comodules, that is, finitely
E ® S°P-copresented C-bicomodules. The categories Map,(E® S°P), P1(Rg ® S°P),
and the functors ker = kergggsor, cok = cokp,gso» are defined in an obvious way.

We only prove that the functor hY: (C' ® SOP)—Comode;@Sop — mod((Rg ®
®S°P)°P) in (3.12) defined by Z — h% = Homg(Z, E), is an equivalence of categories.
The fact that Hg g is an equivalence of categories can be proved by applying the
properties of h% and the isomorphism

xer, g : Home(E', E") © S — Homg (E' @ SP, E" ®@ S°), (3.13)

with B/, E” € add(E), givenby ¢®s — [(g®id)-s: F'®S°P? — E"” ® S5°P], because
the bimodule problem arguments used above extend almost verbatim to our situation.
The homomorphism x g g~ is an isomorphism of S-modules, for each pair E’, E” of
comodules in add(F), because it is functorial with respect to homomorphisms £’ — E
and E” — EY of C'-comodules and it is proved in [28] ((2.10)) that x g g is bijective,
for B/ = E” = E, if the algebra Rp is finite dimensional.

Hence easily follows that a left C-comodule Z lies in (C' ® S°P)-Comod fe&% ”
if and only if there is an exact sequence 0 — Z — Fy ® S°? — E; ® S°P, with
Ey, E1 € add(E). By applying Homg(—, £ ® S°P) and the isomorphism x g+ g, we
get the exact sequence

h§1®50p—>hgo®50p—>h§—>0

of left (Rz®S5°P)-modules, that is a projective presentation of hZ = Homg(Z, E®SP).
Hence, we conclude that the functor A% in (3.12) is an equivalence of categories. It
follows that the functor Hg g in (3.12) is an equivalence of categories making the
diagram (3.12) commutative.

Note that, by [20] (Proposition 4.9(b)) and the definition of the functors Gg s, Hg s
in (3.12) and the functors Gg and Hg in (3.5), for every module L in the category
fin(S°P) of finite dimensional left S-modules and every Rp-S-bimodule 7, Xs in the
category R1((Rg ® S°P)°P) there exist isomorphisms

Gp'(,X ©s L) =Gz, Xs) ©s L,

and
HEI(EEX ®s L) = HE}S(EEXs) ®g L

that are functorial with respect to the S-module homomorphisms . — L’ and R B-S—
bimodule homomorphisms 7 Xs — 5 Xg.

By applying the diagram (3.12), we reduce the proof of (c) to [7] (Propositi-
ons 11 and 13), and to [3] (Theorem B). Here we follow closely the notation and
the proof of [3] (Theorem B). We recall that our functor Gg in (3.5) is just the functor
E:repg(Brg) —— P1(REg) in [3, p. 476], where repy (Bg) = rep(Bg, K).

Assume that the category C' -Comodfc is not K -wild. Then the category C’-Comod?C
is not K-wild and, by [28] (Proposition 2.8 (a)), the finite dimensional K -algebras Rpg
and R7 are not wild. Hence, according to [3] (Theorem B) and its proof, the category
repy (Bg) is not wild and there exist minimal bocses By, ..., B,,, with B, = (B;, W,),
finitely generated Rp-B;”-bimodules 77 and full functors F: repy (B;) — Rp-mod
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which reflect isomorphisms such that the conditions (c1), (c2) and (c3) stated in (c) are
satisfied with C-Comodf,, F;: repy(B;) — C-Comodf, and Rpg-mod, F}:
repy (B;) — Rp-mod interchanged. Moreover, it is shown in the proof of [3] (Theo-
rem B) that, for each ¢ = 1,...,n, the Rg-B;”-bimodules T} are of the form 7] =
= cokp, (T!), where T/ € Py(Rp ® B;°?), and F!(X) = T/ ®p, X, for all representati-
ons X of the bocs B,;.

LetT, = H E}Bi (T]) € Map,(E ® B;°?) be the preimage of 7] under the functor
Hpg s in (3.12), with S = B;. Finally, let T; = ker(ﬁ) € é-Comodfb; be the image of
ZIA} under the functor ker in (3.12), applied to S = B;. Then 7; is a finitely E-copresented
C-B;-bicomodule and we set F;(—) =T; ®p, (—).

In view of (a), (b) and the properties of the functors F/ : rep,(B;) — Rg-mod
listed above, the conditions (c1)—(c3) are satisfied, because the arguments given in the
proof of [3] (Theorem B) extends almost verbatim. The details are left to the reader.

Corollary 3.1. Under the assumption made in Theorem 3.1, for a given socle-
finite injective direct summand E of ¢C such that dimg Endc E < oo, the following
conditions are equivalent.

(a) The category C’—Comod]}?c is K-wild.

(b) C—Comod?C is properly fc-wild (or smooth) [20] (Section 6), that is, for every
finitely generated K-algebra A (equivalently, for A = K (t1,t2), or A = T'3(K)) there
exists a finitely E-copresented C-A-bicomodule «Ny that induces a representation
embedding ¢ N @ (—): fin(A°?) — C-Comod?c.

(¢) The finite dimensional K-algebras R} and Rp are wild.

(d) The additive K-category repy(Bg) is wild, where By is the Roiter bocs of
R, see (3.5).

(e) The additive K-category RE-mod5: is wild, where Rp is the bipartite
algebra (3.9).

Proof. Since the functor h¥;: C’-Comod]‘?c — Rp-mod in (3.5) is an exact equi-
valence of categories then the condition (a) implies (c). The inverse implication (c) = (a)
and the equivalence of (a) and (b) follows from [28] (Corollary 2.12). The implication
(d) = (a) follows from Theorem 3.1 (c). The equivalence (d) < (e) follows from [20]
(Proposition 4.9). Since (c¢) < (d) follows from [7] (Section 5) and [3], then the proof
is complete.

In the proof of the fc-tame-wild dichotomy we use the following lemma.

Lemma 3.2. Under the assumption made in Theorem 3.1, for a given socle-finite
injective direct summand E = Ey of ¢C such that Rg = End¢ E is of finite dimension,

(a) the fc-tameness of the category C' —Comod}EC implies the tameness of the additive
K-categories Map,(E) = repy (Bg) = ]TZE-modg: and the tameness of the algebras
Rpg and R°P, where Ry is the bipartite algebra (3.9) and By, is the Roiter bocs of R,
see (3.5),

(b) given a proper bipartite vector v = (v'|v") € ZY x ZV C Ky(C) x Ko(C) we
have

fic(v) = i, (0(v) = fipg (o (v)),

where ﬁ%E (o(v)) and ﬁ}%oEp (o(v)) is the minimal cardinality of an almost parametrising

Sfamily for indo(,})(ﬁE—modﬂ) and ind,(,y(mod(R7Y)), respectively.
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Proof. Assume that the category C-Comod}?C is fc-tame, that is, for any proper
non-negative bipartite vector v = (v'|[v") € ZV x ZUV C Ky(C) x Ko(C), there
exist a non-zero polynomial i € K][t], C-K[t],-bicomodules LV, ..., L") that are
finitely E-K|[t]-copresented and form an almost parametrising family for the family
indv(C-Comod?c) of all indecomposable C'-comodules M with cdnM = v. It follows
that all L) lie in C-Comodﬁ®K[t]”. Then, for each j € {1,...,r,}, there is an exact
sequence

. . @ .
0— cL¥, — EY @ Kltl “> EY) o Kt],

in C-Comod 2K Wr with E), EY) in add(E), such that
LY = (EY © K[t BY @ K[t v"))

is an object of Map, (EQK|t]s), see (3.12). By applying Theorem 3.1, one can show that
the objects Z(l), e ,Z(”) form a finitely F-copresented almost parametrising family
for ind, (Map;(E)), that is, all but finitely many indecomposable objects (E’, E”, g)
in Map;(FE), with edn(E’, E”, g) = v, are of the form

(E',E",g) =L@ @ K[t], == (ES” @ K[t]n, B” @ K[t]n, v © K}),

where s < r,, K} = K[t]/(t — \) and A\ € K. This shows that the category Map, (E)
is tame. The functor Gg' o Hp g in the diagram (3.12), with S = K[t],, carries each
of the objects L(*) to some object U*) € rep(Bg, K[t];)) such that all but finitely
many indecomposable objects X in repg (Bg), with dim(X) = o(v), are of the form
X>UWeK 1, where s < r,. This shows that the category rep (Bg) is tame and, by
[3] (Section 6) and [7], the algebra R7? and Ry are tame. Since, by Proposition 4.9 (b)
and Theorem 6.5 in [20], the category repy(Bg) is tame if and only if f{E-modZ,f is
tame then the proof of (a) is complete.

Moreover, it follows that, given a proper vector v = (v'|v”) € ZY x ZY, any
almost parametrising family for ind, (C’—Comod?c) consisting of finitely E-copresented
bicomodules LX), ..., L() leads to an almost parametrising family (1), ..., L") €
€ Map1(E®S), with S = K][t], for ind,(Map;(E)) . By applying the functor Hg s
in (3.12) and then the functor (G’; g)~' in (3.11), to LM, ... L), we get an almost

parametrising family (1), ... (™) € (Rg ® S)-mody7, for indv(ﬁE—modI’;:). Since

the vector v = (v’|v") is proper then, up to a localisation of S = K[t];,, by applying the
functor cok in (3.12) we get an almost parametrising family cok(L(1), ..., cok(L())
for ind,(,y (mod(R7)).

By Lemma 3.1, any finitely copresented family for ind,(C-Comody.) can be
corrected to a finitely FE-copresented almost parametrising family for
ind, (C-Comody.) = indv(C-Comodfc), for any v = (v'|v") € ZY x ZY. Hence
(b) follows and the proof is complete.

Now we are able to give an alternative proof of the fc-tame-wild dichotomy for
computable coalgebras established in [28].

Theorem 3.2. Assume that C is a basic coalgebra over an algebraically closed
field K such that dimg Homg (E’, E") is finite, for each pair E', E"' of indecomposable
direct summands of ¢C. Then C is either of tame fc-comodule type or of wild fc-
comodule type, and these two types are mutually exclusive.
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Proof. Since C' is basic, «C has a decomposition (1.1). Assume that C' is not
of fc-wild comodule type. To show that C is of fc-tame comodule type, fix a non-
negative bipartite vector v = (v/|v") € ZUe) x 7Ue) = Ky(C) x Ko(C). Since the
support U,, = supp(v) of v is a finite subset of I then the injective C-comodule E =
=FEy, =P jev, B (7) is socle-finite and, according to our assumption the algebra Rp =
= End¢ F is finite dimensional. Moreover, every left C-comodule N, with cdn(N) =
= v lies in the subcategory C-Comod}Ec of C-Comod .. Then ind, (C-Comody.) =
= ind, (C-Comodfc) and, by our assumption, the category C—Comod?C is not of K-
wild comodule type. Then, by Theorem 3.1, there exist minimal bocses B1,...,B,,
with B; = (B;, W;), finitely £ ® R;-copresented C-B;-bicomodules T; and full functors
Fi(-)=T,®p, (—): repg(B;) — C-Comodj?C which reflect isomorphisms such that
the conditions (c;)—(c3) in Theorem 3.1 are satisfied. In particular, every indecomposable
comodule N in C’—Comod?C with cdn(N) = v is isomorphic to F;(X), for some ¢
and some representation X in rep, (B;). Hence we conclude, as in the proof of [3]
(Corollary C), that there is a finite set of pairs (R;, L(¥)), where each R; = K[t], is a
localisation of K[t] and L) is a finitely E-copresented C-R;-bicomodule such that

LY € (C ® R%P)-Comod 221" (3.14)

and all but finitely many indecomposable left C'-comodules IV in C-Comody., with
cdn(N) = v, are of the form N = L(*) ® Y, for some i and some indecomposable
R;-module Y. Hence we conclude, as in the proof of Theorem 14.18 in [18, p. 297], that
there exist finitely E-copresented C-K[t];-bicomodules E(l), e L) such that all but
finitely many indecomposable left C-comodules N in C-Comod ., with cdn(N) = v,
are of the form N = L9 @ K} where s < r,, K} = K[t]/(t — ) and A € K.
Consequently, the coalgebra is of fc-tame comodule type.

It remains to prove that the coalgebra C' can not be both of fc-tame and of fc-
wild comodule type. Assume to the contrary, that C' is of fc-tame and of fc-wild

comodule type. Let T': modI's(K) — C-Comod . be an exact K -linear representation
K3

embedding, where T'3(K) = . Let S1 be the unique simple injective right

I's(K)-module, and let Sy be the unique simple projective right I's (K )-module, up to
isomorphism. Since T'(S1) and T'(S5) lie in C-Comod ¢, then there are exact sequences
0— T(S) — EY — EY and 0 — T(S,) — E? — B where EV, BV,
EéQ), Efz) are socle-finite injective C'-modules.

Let E be a socle-finite direct summand of C' such that the comodules E(gl), E;l),
E), B\ lies in add(E). We show that ImT C C-Comod?.. Indeed, if N = T'(X)
lies in Im F, where X is a module in modI's(K), then there is an exact sequence
0— 5% — X — S7"— 0, withn,m > 0. Since T is exact, we get the exact sequence
0—T(S2)" = N — T(S1)™ — 0in C-Comod. The comodules T'(S7)™ and T'(S2)"
obviously lie in C-Comodj?C and, hence, also N lies in C-Comodfc. This shows that
ImT C C’—ComodJ]ZJC and, hence, the category C’—ComodfC is fc-wild and, according to
Corollary 3.1, the finite dimensional algebra R is wild.

On the other hand, in view of the fc-parametrisation correction lemma (Lemma 3.1),
the assumption that C' is of fc-tame comodule type implies that C—ComodfﬂjC is fe-
tame. Hence, by Lemma 3.2, the finite dimensional algebra Rp is tame and we get a
contradiction with the tame-wild dichotomy [7] for finite dimensional K -algebras.
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Now we can complete [28] (Proposition 2.8 (a)) as follows.

Corollary 3.2. Under the assumption made in Theorem 3.1, for a given socle-finite
injective direct summand E = Ey of ¢C such that the algebra R = EndcFE is of
finite dimension, the following conditions are equivalent.

(a) The category C—ComodllgC is fc-tame.

(b) The finite dimensional K-algebra R, is tame.

(c) The additive K-categories Map,(E) = rep (Bg) are tame, where By is the
additive Roiter bocs of RY , see (3.5).

(d) The additive K-category ﬁE-modﬂ is tame, where Rg is the bipartite
algebra (3.9).

Moreover, if C—Comodfc is fc-tame then, given a proper bipartite vector v =
= (v'[v") € ZV xZY C Ko(C)x Ko(C), we have fi¢:(v) = fig, (0(v)) = figer (0(v)).
In particular, C’—Comod?C is of polynomial growth if and only if EE-modgf is of
polynomial growth.

Proof. The equivalence (b) < (c) follows from the theorem of Drozd [7] (see also
[31, [28] (Proposition 2.8) and from the proof of Theorem 3.1. The equivalence (c) < (d)
follows from [20] (Theorem 6.5) (or from the proof of Theorem 3.1). To prove (c) = (a),
note that, according to [7], if repy (Bg) is tame, it is not wild. Then, by Theorem 3.2
and its proof, the category C’—Comod?c is fc-tame. Since (a) = (c) follows from
Lemma 3.2 (a), the conditions (a)—(d) are equivalent. The remaining statement follows
from Lemma 3.2 (b).

Corollary 3.3. Let C be a basic coalgebra over an algebraically closed field K
such that dimy Homg (E', E") is finite, for each pair E', E" of indecomposable direct
summands of ¢C. The following conditions are equivalent.

(a) The coalgebra C'is of tame fc-comodule type.

(b) For any proper bipartite vector v = (V'|[v") € Ko(C) x Ko(C), there is a
finitely Ey, -copresented almost parametrising family for ind,(C-Comodys.) =
= ind, (C-Comodf»), where U, = supp(v) C Z°) is the support of v and
EU,, = @jqu, E(])

(¢c) For any socle-finite direct summand E of ¢C, C’-Comod?c is fc-tame.

(d) For any socle-finite direct summand FE of «C, C’—Comodfc is not fc-wild.

(e) For any socle-finite direct summand E of ¢C, the finite dimensional K-algebra
Rp = Endc F is tame.

() For any socle-finite direct summand E of «C, the category ]%E—modg;’ﬁ is tame,
where Ry is the bipartite algebra (3.9).

The coalgebra C' is of fc-discrete comodule type if and only if, for any proper
bipartite vector v = (v'[v") € Ko(C) x Ko(C), the family ind, (C-Comod f2+ ), wi-
th U, = supp(v) C ZU) s finite up to isomorphism, or equivalently, the family
indv(ﬁ Ey,—mody) is finite up to isomorphism.

Proof. The implication (b) = (a) is obvious. The implication (¢) = (b) and the
equivalence of the statements (c)— (f) is an immediate consequence of previous results.

To prove (a) < (b), we fix a proper bipartite vector v = (v'[v”") € ZUe) x zUe)
and set U, = supp(v), Ey, = @,cy, £(j)- It is clear that ind,(C-Comody.) =
= indv(C’—ComodﬁU“ ). Since C is fc-tame then there are finitely copresented
C-K|[t],-bimodules L™, ... L") forming an almost parametrising family of for
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ind, (C-Comody.). By Lemma 3.1, the family corrects to an almost parametrising fami-
ly LM, ..., L) for ind,(C-Comod;.) = ind,(C-Comod V) consisting of finitely
Ey, -copresented bicomodules. Hence (b) follows and the conditions (a)—(f) are equi-
valent. Since the remaining statement of corollary is a consequence of Lemma 3.2 (b),
the proof is complete.

4. A geometry context for computable coalgebras. Througouht we assume that
K is an algebraically closed field and C' a basic computable K-coalgebra with a fixed
decomposition ¢C' = P, ¢, E(j) (1.1). Following [7, 17, 19, 20], we introduce in
Definitions 4.1 and 4.2 a geometry context for a coalgebra C, compare with [15]. We
use it in the study of comodules over a K-coalgebra C' by applying the geometry of
orbits. In particular, we give a geometric characterisation of fc-tame coalgebras.

Definition 4.1. Given a computable K-coalgebra C (1.1) and a bipartite non-
negative vector v = (v'[v"") € ZU¢) x 7ZU°)  we define an action

* GS X Mapg — Mapg 4.1

of an algebraic (parabolic) group GS on an affine K-variety MapUC as follows.

(@) G¢ = AutcE(v') x AutcE(v") viewed as an algebraic group with respect
to Zariski topology, where E(v') = @, E(j)% and E(v") = Djcr. E()Y are
the standard injective C-comodules (2.2) with 1gthE(v') = (v'|0) and 1gthE(v") =
= (v"10).

(b) Map’ = {¢ € Homg(E(v'), E(v"));¢(socE(v')) = 0} € Home (E(v'),
E(v")) is viewed as an affine K-variety (Zariski closed subset of the affine space
Home (E(v'), E(v")) of finite K-dimension).

(c) The algebraic group (left) action (4.1) of GS on Mapf}j is defined by the
conjugation (f', f") 1 = f" o go (f)"1, where ¢» € Map?, f € Autc¢E(v') and
1" € AutcE(W").

Definition 4.2. Given a computable K-coalgebra C and a bipartite non-negative
vector v = (v'|v") € ZUe) x Z1e) = Ko(C) x Ko(C), the open subset

Comod? = {¢) € Map%;soc E(v") C Im 1)} 4.2)

of the variety Map€ is called a variety of C-comodules N with cdn(N) = v.
We start with the following useful facts.
Lemma 4.1. Let C be a computable K-coalgebra and v = (v'|[v") € ZUe) x
x Z1e) = K (C) x Ko(C) a non-negative bipartite vector.
(a) Comodg is a GC-invariant and Zariski open subset of the affine variety Mapg.
(b) The map ) — Keri defines a bijection between the GS -orbits of Comodg and
the isomorphism classes of comodules N in C-Comod . such that cdn(N) = v.
Proof. (a) To see that Comodvc is a Zariski open subset of Mapvc, note that,
given a € supp(v”’) C Ig, the subset ©, of Mapvc consisting of all ¢ € Mapg
such that ¢: E(v') — E(v”) has a factorisation through the subcomodule E(v"), =
= D, E(j)¥ of E(v") is Zariski closed. Since the set supp(v”) is finite then
D= U D, is closed and therefore Comod = Map? \ D is open. The fact
a€supp(v’’)
that Comodf is a G -invariant subset of Mapf follows by applying the definitions.
(b) Note that a C-comodule homomorphism ¢: E(v') — E(v”) is an element

of Comod{ if and only if 0 — Keryy — E(v') 2, E(v") is a minimal injective
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copresentation of Kery in C-Comod .. Hence every comodule N in C'-Comody.., with
cdn(N) = v, is isomorphic to Kery, for some ¢: E(v') — E(v”) in Comod?.
Obviously, two elements : E(v') — E(v”) and ¢/ : E(v/) — E(v") of Comod?
lie in the same G$-orbits if and only if the comodules Kery) and Kery)' are isomorphic.
Hence (b) follows.

The lemma is proved.

Now we characterise computable K-colagebras of fc-discrete comodule type in
terms of the G -orbits of Comod as follows.

Proposition 4.1. Let K be an algebraically closed field and C' a computable
K-coalgebra. The following four conditions are equivalent.

(a) The coalgebra C'is fc-tame of discrete comodule type.

(b) For every bipartite vector v = (v'[v"") € Ko(C) x Ko(C), there is only a finite
number of indecomposable objects (Ey, E1,1) in Map, (Ey,) with cdn(Ey, Eq, ) =
= v, up to isomorphism, where U,, = supp(v).

(c) The number of GC-orbits in Comodvc is finite, for every bipartite vector v =
(v'|v") € Ko(C) x Ko(C).

(d) The number of GS-orbits in Mapf is finite, for every bipartite vector v =
= (v'|v") € Ko(C) x Ko(C).

Proof. (a) = (b) Assume that C' is fc-tame of discrete comodule type. Let
v = (V'|v") be a bipartite vector in Ko(C) x Ko(C) and let (Fy, Eq,1) be an
indecomposable object of Map,(Ey)) such that cdn(Fy, Eq,¢) = (v'|v”), where
we set U = U,, = supp(v).

If v = 0 then Ey = 0, E; & E(a), with a € U, and therefore the number of
the indecomposable objects (Ey, E1, 1) of Map,(Ey)) with cdn(Ey, E1,v¢) = (0[v")
equals the cardinality of the finite subset U = supp(v) of I¢.

Assume that v" # 0, that is, the vector v is proper. Since (Fy, E1, ) is indecompos-
able, it lies in Map,(Ey ), because it has no non-zero direct summand of the form
(0, Z,0), By Proposition 4.1 (a), with E and Ey interchanged, the functor kerp,, in
the diagram (3.5) restrict to the representation equivalence kerg, : Map,(Ey) —
— C-Comodféf . Then Keryp = kerpg, (Ey, E1,%) is an indecomposable comodule
in C-Comodfg such that cdn(Kery)) = edn(Ey, E1, 1) = v, see Proposition 4.1 (b).
Since C is fc-tame of discrete comodule type then the number of the isomorphism
classes of such comodules is finite and, hence, the number of the isomorphism classes
of indecomposable objects (Ey, E1,%) in Map, (Ey) with cdn(Ey, E1, 1) = v is also
finite.

(b) = (d) Let v = (V'|v") € Ko(C) x Ko(C) be a vector with non-negative
coordinates and let (Ey, E'1, 1) be an object in Map, (Ey). Since the coalgebra C' is
assumed to be computable then the endomorphism ring End(v) of (Ey, E1,1)) is a finite
dimension K -algebra, and End(v)) is a local algebra if (Ey, F1, ) is indecomposable. It
follows that Map, (Ey ), with U = supp(v) C I¢, is a Krull - Schmidt category such
that each of its objects is a finite direct sum of indecomposable objects, and every such a
decomposition is unique up to isomorphism and a permutation of the indecomposables.

By our assumption, there is only a finite number of indecomposable objects (Ef, Ef,
Y') in Map, (Ey,) with edn(E], E],v’') < v, up to isomorphism. Let Eq,...,E, be
a complete set of such indecomposable objects. Then, up to isomorphism, any object
(Eo, E1,v) in Map,(Ey, ), with cdn(Ey, F4, ) = v, has the form
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(E(W),E("),¢) 2E} @ ... & g’
where ((E(v'),E(v"),¢) = (¢1,...,4s,) € N® is a vector with non-negative coordi-
nates such that
6y cdn(Eq) + ...+ 4, -cdn(E,,) = v.

Obviously, the number of such vectors (¢1, ..., ¥, ) is finite. The unique decomposition
property in Map, (Ey,) yields

K(E(U/)a E(UH)’ 1][}) = E(E(v,)a E(vn)a 1/)/)
ifand only if (E(v'),E(v"),9) = (E(),E("),’),

or equivalently, if and only if the elements 1) and v’ of Mapvc lie in the same G -orbit.
Hence the number of G¢ -orbits in Mapvc is finite and (d) follows.

Since the implication (d) = (c) is obvious and the implication (c) = (a) follows
from Lemma 4.1 (b), the proof is complete.

Now we present a characterisation of computable fc-tame colagebras in terms of
geometry of the G -orbits of Comod? .

Theorem 4.1. Let K be an algebraically closed field and C a computable K-
coalgebra.

(a) Cis fc-tame.

(b) For every bipartite vector v = (v'|v") € Ko(C)xKy(C), the category Map,(Evy, ),
with U, = supp(v), is tame.

(c) For every bipartite vector v = (V'|v") € Ko(C) x Ko(C), the subset
indComodg of ComodUC defined by the indecomposable C-comodules is constructi-
ble and there exists a constructible subset C(v) of indComodUC such that

GY¢ «C(v) = indComod{ and dimC(v) < 1.

(d) For every bipartite vector v = (v'|v") € Ko(C) x Ko(C), the subset indMap$
of Mapg defined by the indecomposable C-comodules is constructible and there exists
a constructible subset C(v) of indMap¢ such that

GY «C(v) = indMap{ and dimC(v) < 1.

Proof. (a) = (b) Apply Lemma 3.2 (a) to £ = Fy = @jeU E(j), where U =
= supp(v) C Ic.

(b) = (a) Apply Corollary 3.3.

We prove the equivalence of (b), (c) and (d) by applying the arguments used by
Drozd [7], see also [3], [18] (Section 15.2) and [20] (Theorem 6.5).

(b) = (d) Fix a bipartite vector v = (v'|[v"") € Ky(C) x Ko(C) and assume that
the category Map, (Ey, ), with U, = supp(v), is tame. Then there is a parametrising
family of functors

LM LY indy (K[t]n) — Map, (Ey,)

for the family ind,,(Map, (Ey, ), where h € K[t] and U, = supp(v). Here ind; (K [t]5)
is the category of one-dimensional K[t],-modules. Hence we conclude, as in [18]
(Lemma 14.30, Remark 14.27) that the functors L(1), ..., L(") induce regular maps
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b, ..., 0 mod® (1) — Map?
such that every point of indMapUC belongs to an G$ -orbit of the set
Clv)=Im/l, U...UIm¥,.

Here mod®!¥% (1) is the variety of one-dimensional K [t],-modules. Since we have
dim mod <[t (1) = 1 then, according to the Chevalley Theorem, the subsets Im ¢1, . ..
..., Im#, of indMapf are constructible and therefore C| (v) is a constructible subset of
indMapf. Moreover, it follows that dim(Im ¢;) < 1, for j = 1,...,r, and therefore
dim C(v) < 1, compare with [15] and [18, p. 317].

The equivalence (d)<>(c) easily follows from the fact that indMapf \indComodg
is a finite set and Comod$ is an open subset of Map?, by Lemma 4.1.

(d) = (b) Assume to the contrary that there is a bipartite vector v = (v'[v") €
€ Ko(C) x Ko(C) such that the category Map,(Ey, ), with U, = supp(v), is not
tame. By Corollary 3.2, the finite dimensional algebra Ry, is not tame. Then Ry, is
wild [7] and therefore the category Map, (Ey, ) is wild, by [3] (Section 6) and the proof
of Theorem 3.1.

Let W = K({(t1,t2) be the free polynomial K-algebra in two non-commuting
indeterminates ¢; and ¢2. Since the category Map, (Ey, ) is wild then there exists an
object c Ny = (E' @ W, E" @ W, ¢) in Map,(Ey, ® W), with E', E” in add(Ey, ),
such that the functor

N =N @ (—): finOW) — Map, (Ey,)

preserves the indecomposability and respects the isomorphism classes.

Let w = (w'|w”), where w' = lgth(soc E’) and w” = lgth(soc E”). Tt is
well known that indMapg is a constructible subset of Mapg, compare with [18]
(Lemma 14.32).

Note that U,, = supp(w) C U,, cdn(N(X)) = w, and N (X)) = (E(w'), E(w"),
), for some 1 € indMap$ C Map?, if X € fin(W) and dimg X = 1. It follows
that the restriction N : ind; (W) — Map, (Ey,) of N to ind; (W) induces a regular
map (see [18], Lemma 14.30)

{n: mod” (1) — indMap¢ C Map¢.

Since modW(l) =~ K2, the map {y is injective, and according to the Chevalley
Theorem the set Im £ is constructible then the variety dimension dim(Im £y) of Im ¢
equals two. Hence, in view of (d) with v and w interchanged, we get the contradiction
2 =dim(Im/y) < dimC(v) < 1 (apply [12] (Lemma 3.16) or [18] (Lemma 15.15)).
This completes the proof.

5. On fc-tameness for arbitrary coalgebras. The fc-tame-wild dichotomy for
an arbitrary basic coalgebra C' over an algebraically closed field K remains an open
problem. Some suggestions for the proof in case C' is not computable is given in the
following proposition that collects important consequences of the technique described
in Section 3. In particular, it shows that the coalgebra C' is fc-tame if and only if every
socle-finite colocalisation C'r = R$, of C' (in the sense of [11, 25]) is fc-tame.

Proposition 5.1. Assume that K is an algebraically closed field and C is an
arbitrary basic coalgebra with a decomposition cC = @ ¢, E(j) (1.1).

ISSN 1027-3190. Vkp. mam. scypH., 2009, m. 61, Ne 6



TAME COMODULE TYPE, ROITER BOCSES, AND A GEOMETRY CONTEXT FOR COALGEBRAS 831

(a) Given a socle-finite injective direct summand E = Ey = @, E(u) (3.1)
of ¢C, with a finite subset U of I¢, the K-algebra Ry = EndcFE is semi-perfect
and pseudocompact with respect to the topology defined by (5.2) below. There is a
commutative diagram

Hg

Map,(B) 25 Pi(RY) < Rpmody;

kergl cokEl 5.D

Cp-Comodj. = C-Comodfl 2 mody,(RY),

where Cy = RS, is the colocalisation of C at E in the sense of [11, 25], mody,(R%)
is the category of finitely presented left Rp-modules, ﬁE-mod’;: is the category of
finitely generated propartite left modules over the bipartite K-algebra Rg (3.9), Hg
and hy, = Home (e, E) are K-linear contravariant equivalences of categories defined
as in (3.5), G' is the covariant K-linear equivalence of categories defined in (3.9), h,
is an exact functor, kerg(Eq, E1, 1) = Kery), cokg(Py, Py, ¢) = Cokere.

(b) For any socle-finite comodule E = Ey; as in (), the fc-tameness of the coalgebra
C' implies that the category C-Comod?g is fc-tame, that is, the coalgebra Cg,, is fc-
tame.

(c) Conversely, if the category Cg,-Comody. = C’-Comod?pf] is fc-tame, for all
socle-finite injective direct summands E = Ey, then the coalgebra C is fc-tame.

Proof. (a) Let E = Ey be a socle-finite direct summand of C as in (a). The
K-algebra Ry = End¢ E has the decomposition Rp = @ueU ewRE, where e, Rp =
= Hom¢(F, E(u)) is an indecomposable projective right ideal of Rg and e, is the
primitive idempotent of Rp defined by the summand E(u) of E. Since the set U is
finite then ) _;; e, is the identity of Rp, see [25, 26, 28]. It is easy to see that the
Jacobson radical J(Rg) of Rp has the form J(Rg) = {h € End¢ E; h(soc E) = 0}. It
follows that the algebra Ry is semiperfect and pseudocompact with respect to the K-
linear topology defined by the left ideals ag = Homc(E/V3, E) C Rg, where {V3}s
is the directed set of all finite dimensional subcomodules of E. Since E' = (J; Vj3, then
there are isomorphisms

Rp =EndcE = lim Home(V3, E) 2 lim Rg/ag. (5.2)
8 8

The remaining statements in (a) follow from the proof of Theorem 3.1.

For the proof of (b) and (c), apply Lemma 3.1 and the arguments used in the proof
of Theorem 3.1.

It follows from [28] (Corollaries 2.12 and 2.13) and the results of Section 3 that the
fc-tameness and fc-wildness of a computable coalgebra C' is equivalent, respectively,
to the K-tameness and the K -wildness of the finite dimensional algebra R, for every
socle-finite direct summand of C. Proposition 5.1 shows that the fc-tameness and fc-
wildness of a basic coalgebra C' (that is not necessarily computable) can be studied by
means of the tameness and wildness of the categories R g-mody” and mod, (R%) over
the semiperfect algebras }A%E and R that are not finite dimensional, in general.

We recall from [26] (Corollary 2.10) that a socle-finite coalgebra C' is computable if
and only if dimg C' is finite. Hence, if C' is a cocommutative noncomputable coalgebra
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with simple socle then C is infinite dimensional and, in view of Proposition 5.1, we have
the following consequence of Drozd [6].

Corollary 5.1. Assume that K is an algebraically closed field and C' is a basic
infinite dimensional cocommutative K-coalgebra with a unique simple subcoalgebra S.
If' S is finitely copresented and C' is not fc-wild then

(1) C'is a subcoalgebra of the path K -coalgebra K°(L2, Q) (see [21] (Example 6.18),
[22], [24]), where Ly is the two loop quiver

Nee"

and Q2 C K Ls is the ideal of the path algebra K Lo generated by the two zero-relations
(182 and (3231, and

(il) K°(L2,Q) is a string coalgebra in the sense of [22] (Section 6),

(iii) the colagebras K°(L4,2) and C are of tame comodule type, and K°(L4, ) is
of non-polynomial growth.

Proof. By our assumption, C' has a simple socle S and C = E(.5) is the injective
envelope of S, that is, the set I in the decomposition (1.1) has one element and Proposi-
tion 5.1 applies to £ = E(S) = C. It follows that the K -algebra Rg is pseudocompact,
infinite dimensional, commutative, local, and complete. Since C is not fc-wild, the
category mod,(Rg) is not K-wild, by Proposition 5.1. Since S is finitely copresented
then C-comod C C-Comody. and therefore fin(Rg) C modys,(REg). It follows that
the category fin(Rp) is not K-wild. Hence, by [6], the unique maximal ideal J(Rp)
of Rg is generated by at most two elements and Rg is isomorphic to a quotient of
the K-algebra K[[t1,ts]]/(t1t2), where K[[t1,t2]] is the power series K -algebra in two
commuting indeterminates ¢1, t5 and (¢1t2) is the ideal of K[[t1, t2]] generated by ¢1¢s.

It is easy to see that the path coalgebra K°(Lo, ) = Q-+ C K°L, is isomorphic with
the coalgebra

Kt t2)° = K & (P Kt & @ Kty
n=1 m=1
where the comultiplication A: K[ty,t2]® ——— K|[t1, t2]° ® K[t1, t2]® and the couni-
tye: K[t1,t5]® — K are defined by the formulac A(;") = 3 7;®F; forj = 1,2,

r4+s=m
e(l)=1and s(f‘;) =0fors>1and j =1,2, see [21] (Example 6.18).

Moreover, it follows from [24] that C' is isomorphic to a subcoalgebra of K°(Ls, §2).
Since K°(L2,{2) is a string coalgebra then, according to [21] (Example 6.18) and
[22] (Theorem 6.2) K°(Lo,€)) = K[t1,t2]® is of tame comodule type and, hence,
the coalgebra C' is of tame comodule type, too. It is shown in [21] (Example 6.18) that
K°(Lo,9Q) = K|t1,t2]° is tame of non-polynomial growth.
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