UDC 517.9

Nguyen Buong (Vietnam. Acad. Sci. and Technol. Inst. Inform. Technol., Hanoi, Vietnam), Dang Thi Hai Ha (Vietnam. Forestry Univ.)

TIKHONOV REGULARIZATION METHOD FOR SYSTEM OF EQUILIBRIUM PROBLEMS IN BANACH SPACES^{*}

МЕТОД РЕГУЛЯРИЗАЦІЇ ТІХОНОВА ДЛЯ СИСТЕМИ ЗАДАЧ ПРО РІВНОВАГУ В БАНАХОВИХ ПРОСТОРАХ

The purpose of the paper is to investigate the Tikhonov regularization method for solving a system of ill-posed equilibrium problems in Banach spaces with a posteriori regularization parameter choice. An application to convex minimization problems with coupled constraints is also given.

Метою роботи є дослідження методу регуляризації Тіхонова для розв'язку системи некоректних задач про рівновагу в банахових просторах з апостеріорним вибором параметра регуляризації. Наведено застосування методу до задач опуклої мінімізації із зчепленими обмеженнями.

1. Introduction. Let X be a real reflexive Banach space, X^* be its dual space which both are assumed to be strictly convex, and let K be a nonempty closed (in the strong topology) and convex subset of X. For the sake of simplicity norms of X and X^* are denoted by the symbol $\|.\|$. Assume that the space X possesses the property: weak convergence and convergence in norm for any sequence in X follow its strong convergence. The symbol $\langle x^*, x \rangle$ denotes the value of the linear and continuous functional $x^* \in X^*$ at the point $x \in X$. Let $U^s, s \ge 2$, be the generalized duality mapping of the space X, i.e., U^s is the mapping from X onto X^* satisfying the condition

$$\langle U^s(x), x \rangle = \|U^s(x)\| \|x\|, \qquad \|U^s(x)\| = \|x\|^{s-1}.$$

Concerning U^s , assume that

$$\left\langle U^s(x) - U^s(y), x - y \right\rangle \ge m_s \|x - y\|^2,$$

where m_s is some positive number.

Let F_j , j = 1, ..., N, be a family of bifunctions from $K \times K$ to $(-\infty, +\infty)$, i.e., F_j all satisfy the following set of standard properties.

Condition 1. The bifunction *F* is such that:

- (i) $F(u, u) = 0 \ \forall u \in K;$
- (ii) $F(u,v) + F(v,u) \le 0 \ \forall (u,v) \in K \times K;$

(iii) for every $u \in K$, $F(u, .): K \to (-\infty, +\infty)$ is lower semicontinuous and convex;

(iv) $\overline{\lim}_{t\to+0} F((1-t)u+tz,v) \le F(u,v) \ \forall (u,z,v) \in K \times K \times K.$

Consider the system of equilibrium problems: find $u_* \in K$ such that

$$F_j(u_*, v) \ge 0 \quad \forall v \in K, \quad j = 1, \dots, N.$$
(1)

In the case of a single equilibrium, i.e., N = 1, problem (1) was called equilibrium problem, and shown in [1-3] to cover monotone inclusion problems, saddle point

© NGUYEN BUONG, DANG THI HAI HA, 2009

^{*}This work was supported by the Vietnamese Fundamental Research Program in Natural Sciences № 100506.

problems, variational inequality problems, minimization problems, Nash equilibria in noncooperative games, vector equilibrium problems, as well as certain fixed point problems (see also [4]). For finding approximative solutions of (1) there exist several approaches: the regularization approach in [5-8], the gap-function approach in [8-10], and the dynamical system or iterative procedure approach in [1, 2, 7, 11-21]. In particular, this problem are considered in Banach spaces in [9, 17].

In the case N > 1, we are only aware of result [6] in Hilbert spaces where on base of constructing the resolvant of bifunction, which is a set-valued operator, P. L. Combettes and S. A. Hirstoaga study the block-iterative algorithms, and a regularization method only for the particular case N = 1.

In this paper, on the base of the idea in [22] we present the Tikhonov regularization method constructing the regularized solution, the posteriori regularization parameter choice depending on h when F_j are given by the approximations F_j^h , h > 0, in the general case N > 1, and an application for convex minimization problem with coupled constraints.

Set

$$S_j = \{u_* \in K \colon F_j(u_*, v) \ge 0 \ \forall v \in H\}, \quad j = 1, \dots, N, \qquad S = \bigcap_{j=1}^N S_j.$$

From now on, suppose that $S \neq \emptyset$. In addition, we assume that F_j all are hemicontinuous in the variable u for each fixed $v \in K$ and weakly lower semicontinuous in the variable v for each fixed $u \in K$ instead of (iv) and (iii) in condition 1, respectively.

The strong and weak convergences of any sequence are denoted by \rightarrow and \rightarrow , respectively.

2. Main results. First, we formulate the following facts in [1, 3] which are necessary in the proof of our results.

Proposition 1. (i) If F(., v) is hemicontinuous for each $v \in K$ and F is monotone, *i.e., satisfies* (ii) in condition 1, then $U_* = V_*$, where

 U_* is the solution set of $F(u_*, v) \ge 0 \ \forall v \in K$,

 V_* is the solution set of $F(u, v_*) \leq 0 \ \forall u \in K$, and it is convex and closed.

(ii) If F(., v) is hemicontinuous for each $v \in K$ and F is strongly monotone, i.e., there exists a positive constant τ such that

$$F(u, v) + F(v, u) \le -\tau ||u - v||^2,$$

then U_* contains a unique element.

Each set S_j is closed convex (Proposition 1 (i)). Hence, S is closed convex, too.

We construct the Tikhonov regularization solution u_{α} by solving the single equilibrium problem

$$F_{\alpha}(u_{\alpha}, v) \ge 0 \quad \forall v \in K, \qquad u_{\alpha} \in K,$$

$$F_{\alpha}(u, v) := \sum_{j=1}^{N} \alpha^{\mu_{j}} F_{j}(u, v) + \alpha \langle U^{s}(u), v - u \rangle, \quad \alpha > 0, \qquad (2)$$

$$\mu_{1} = 0 < \mu_{j} < \mu_{j+1} < 1, \quad j = 1, 2, \dots, N-1,$$

and α is the regularization parameter.

We have the following results.

Theorem 1. (i) For each $\alpha > 0$, problem (2) has a unique solution u_{α} .

(ii) $\lim_{\alpha \to +0} u_{\alpha} = u_*, u_* \in S, ||u_*|| \le ||y|| \ \forall y \in S.$

(iii) If $F_j(u, v)$ are bounded, i.e., there exists a positive constant C such that $|F_j(u, v)| \leq C \ \forall u, v \in U$ with $||u||, ||v|| \leq \tilde{C}$, that also is a positive constant, then we have

$$\begin{aligned} \|u_{\alpha} - u_{\beta}\| &\leq \frac{|\alpha - \beta|}{2m_s \alpha} \|u_*\|^{s-1} + \\ &+ \frac{\sqrt{|\alpha - \beta|}}{2m_s \alpha} \sqrt{|\alpha - \beta| \|u_*\|^{2(s-1)} + 4m_s \alpha C(N-1)}, \quad \alpha, \beta > 0. \end{aligned}$$

Proof. It is easy to verify that $F_{\alpha}(u, v)$ is a bifunction, i.e., $F_{\alpha}(u, v)$ satisfies condition 1, and strongly monotone with constant $m_s \alpha > 0$. Therefore, (2) has a unique solution u_{α} for each $\alpha > 0$.

Now we shall prove that

$$\|u_{\alpha}\| \le \|y\| \quad \forall y \in S.$$
(3)

Since $y \in S$, then $F_j(y, u_\alpha) \ge 0, j = 1, \dots, N$. Consequently,

$$\sum_{j=1}^{N} \alpha^{\mu_j} F_j(y, u_\alpha) \ge 0 \quad \forall y \in S.$$
(4)

This fact, u_{α} is the solution of (2) and property (ii) in condition 1 of F_j give

$$\left\langle U^s(u_\alpha), y - u_\alpha \right\rangle \ge 0 \quad \forall y \in S,$$

that implies (3). It means that $\{u_{\alpha}\}$ is bounded. Let $u_{\alpha_k} \rightharpoonup u_* \in X$, as $k \rightarrow +\infty$. First, note that $u_* \in K$, because K also is weakly closed in X. We prove that $u_* \in S_1$. Indeed, from (ii) in condition 1 and (2) we have

$$F_1(v, u_{\alpha_k}) + \sum_{j=2}^N \alpha_k^{\mu_j} F_j(v, u_{\alpha_k}) \le \alpha_k \langle U^s(u_{\alpha_k}), v - u_{\alpha_k} \rangle \le \le \alpha_k \langle U^s(v), v - u_{\alpha_k} \rangle \quad \forall y \in K.$$

By virtue of weak lower semicontinuous property of the bifunction $F_j(u, v)$ in the variable v we obtain $F_1(v, u_*) \leq 0 \ \forall v \in U$, i.e., $u_* \in S_1$. Now, we shall prove that $u_* \in S_j, j = 2, ..., N$. From (2) and property (ii) in condition 1 of the bifunction F_1 it implies that

$$F_2(y, u_{\alpha_k}) + \sum_{j=3}^N \alpha_k^{\mu_j - \mu_2} F_j(y, u_{\alpha_k}) \le \alpha_k^{1 - \mu_2} \langle U^s(y), y - u_{\alpha_k} \rangle \quad \forall y \in S_1.$$

Tending $k \to \infty$, we have got

$$F_2(y, u_*) \le 0 \quad \forall y \in S_1.$$

Therefore, $F_2(u^*, y) \ge 0 \ \forall v \in S_1$, i.e., u_* is a minimizer of the convex functional $F_2(v, u_*)$ on the set S_1 . Since $S_1 \cap S_2 \neq \emptyset$, then

$$u_* \in \arg\min_{v \in K} F_2(u_*, v)$$

i.e., $F_2(u_*, y) \ge 0 \ \forall y \in K$.

Set $\tilde{S}_i = \bigcap_{k=1}^i S_k$. Then, \tilde{S}_i is also closed convex, and $\tilde{S}_i \neq \emptyset$.

Now, suppose that we have proved that $u_* \in \tilde{S}_i$, and need to show that u_* belongs to S_{i+1} . Again, by virtue of (2) for $y \in \tilde{S}_i$ we can write

$$F_{i+1}(y,u_{\alpha_k}) + \sum_{j=i+2}^{N} \alpha_k^{\mu_j - \mu_{i+1}} F_j(y,u_{\alpha_k}) \le \alpha_k^{1 - \mu_{i+1}} \langle U^s(y), y - u_{\alpha_k} \rangle \quad \forall y \in \tilde{S}_i.$$

After passing $k \to \infty$, we obtain

$$F_{i+1}(y, u_*) \le 0 \quad \forall y \in \hat{S}_i.$$

Since $\tilde{S}_i \cap S_{i+1} \neq \emptyset$, then u_* also is an element of S_{i+1} , i.e., $F_{i+1}(u_*, y) \ge 0$ $\forall y \in K$. Inequality (3) and the weak convergence of $\{u_{\alpha_k}\}$ to $u_* \in S$, which is a closed convex subset in the strictly convex space X, give the strong convergence of $\{u_{\alpha_k}\}$ to $u_* : ||u_*|| \le ||y|| \forall y \in S$.

Let u_{β} be a solution of (2) when α is replaced by β . By virtue of (ii) in condition 1 we have $F_j(u_{\alpha}, u_{\beta}) + F_j(u_{\beta}, u_{\alpha}) \leq 0$. Therefore, from (2) it follows

$$\sum_{j=1}^{N} (\alpha^{\mu_j} - \beta^{\mu_j}) F_j(u_\alpha, u_\beta) + \alpha \langle U^s(u_\alpha), u_\beta - u_\alpha \rangle + \beta \langle U^s(u_\beta), u_\alpha - u_\beta \rangle \ge 0$$

or

$$m_{s}\alpha \|u_{\alpha} - u_{\beta}\|^{2} \leq |\alpha - \beta| \|u_{\beta}\|^{s-1} \|u_{\alpha} - u_{\beta}\| + \sum_{j=1}^{N} |\alpha^{\mu_{j}} - \beta^{\mu_{j}}| |F_{j}(u_{\alpha}, u_{\beta})|.$$

Using (3), the boundedness of F_j and the Lagrange's mean-value theorem for the function $\alpha(t) = t^{-\mu}$, $0 < \mu < 1$, $t \in [1, +\infty)$, on $[\alpha, \beta]$ if $\alpha < \beta$ or $[\beta, \alpha]$ if $\beta < \alpha$ we have conclusion (iii).

Theorem is proved.

Remark. Obviously, if $u_{\alpha_k} \to \tilde{u}$ where u_{α_k} is the solution of (2) with $\alpha = \alpha_k \to 0$, as $k \to +\infty$, then $S \neq \emptyset$.

Let F_j^h be the approximation bifunctions for F_j satisfy the condition

$$\|F_{j}(u,v) - F_{j}^{h}(u,v)\| \le hg(\|u\|)\|u - v\|,$$
(5)

which the bounded (image of bounded set is bounded) nonegative function g(t), $t \ge 0$. Note that condition (5) was used in the regularizing the variational inequality

$$\langle A(x_*), x - x_* \rangle \ge 0 \quad \forall x \in K, \quad x_* \in K,$$

where A is a hemicontinuous monotone from X into X^* , and is given approximatively by the hemicontinuous monotone operators A_h also from X into X^* such that

$$||A_h(x) - A(x)|| \le hg(||u||).$$

By setting $\tilde{F}(u,v) = \langle A(u), v-u \rangle$ and $\tilde{F}^h(u,v) = \langle A_h(u), v-u \rangle$ we see that $\tilde{F}(u,v)$ and $\tilde{F}^h(u,v)$ are the bifunctions satisfying condition (5).

Since F_i^h are also the bifunctions, then the following single equilibrium problem:

$$F^{h}_{\alpha}(u^{h}_{\alpha}, v) \geq 0 \quad \forall v \in K, \quad u^{h}_{\alpha} \in K,$$

$$F^{h}_{\alpha}(u, v) := \sum_{j=1}^{N} \alpha^{\mu_{j}} F^{h}_{j}(u, v) + \alpha \langle U^{s}(u), v - u \rangle, \quad \alpha > 0,$$
(6)

has a unique solution denoted by u^h_{α} for each α , h > 0. As well as for the variational inequalities [23, 24] or the operator equation of Hammerstein type [25, 26], we have the following conclusion.

Theorem 2. If $h/\alpha \to 0$ as $h, \alpha \to 0$, then $u^h_\alpha \to u_*$. **Proof.** From (4) with that u_α is replaced by u^h_α , (5), (6) and the properties of the bifunctions F_j^h it follows

$$\sum_{j=1}^{N} \alpha^{\mu_j} \left[F_j(y, u^h_\alpha) - F_j^h(y, u^h_\alpha) \right] + \alpha \langle U^s(u^h_\alpha), y - u^h_\alpha \rangle \ge 0 \quad \forall y \in S.$$

Therefore,

$$\begin{split} m_s \|y - u^h_\alpha\|^2 &\leq \langle U^s(y), y - u^h_\alpha \rangle + \frac{1}{\alpha} \sum_{j=1}^N \alpha^{\mu_j} \left| F^h_j(y, u^h_\alpha) - F_j(y, u^h_\alpha) \right| = \\ &= \left\langle U^s(y), y - u^h_\alpha \right\rangle + \frac{h}{\alpha} (N-1)g(\|y\|) \|y - u^h_\alpha\|, \end{split}$$

for $\alpha \leq 1$. Thus,

$$\|y - u_{\alpha}^{h}\| \le \frac{1}{m_{s}} \left[\|y\|^{s-1} + \frac{(N-1)h}{\alpha} g(\|y\|) \right].$$
⁽⁷⁾

It means that $\{u_{\alpha}^{h}\}$ is bounded, when $h, \alpha, h/\alpha \to 0$. Since X is reflexive, then there exist a subsequence $\{u_k := u_{\alpha_k}^{h_k}\} \subset \{u_{\alpha}^h\}$ and an element $\tilde{x} \in X$ such that $u_k \rightharpoonup \tilde{x}$ as $k \to +\infty$, and K is also weak closed. Hence, the element \tilde{x} is an element of K. By repeating the proof in Theorem 1 we obtain that $\tilde{x} \in S$ and $u_{\alpha}^{h} \to \tilde{x} = u_{*}$.

Theorem is proved.

Now, we study the problem of choosing $\alpha = \alpha(h)$. For this purpose, consider the function $\rho(\alpha) := \alpha(a_0 + t(\alpha))$, where $t(\alpha) = ||u_{\alpha}^h||$ for each fixed h > 0. Obviously, from (5), (6) and property (ii) in condition 1 of F_j^h it implies that

$$m_{s}\alpha_{0}\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\|^{2} \leq |\alpha_{1}-\alpha_{2}|\|u_{\alpha_{2}}^{h}\|^{s-1}\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\| + \sum_{j=1}^{N} |\alpha_{2}^{\mu_{j}}-\alpha_{1}^{\mu_{j}}||F_{j}^{h}(u_{\alpha_{2}}^{h},u_{\alpha_{1}}^{h})|$$

for $\alpha_i \in [\alpha_0, +\infty)$, i = 1, 2, and $\alpha_0 > 0$, where

 $|F_{i}^{h}(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h})| \leq |F_{i}^{h}(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h}) - F_{j}(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h})| + |F_{j}(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h})|.$

Therefore, if $F_i(u, v)$ all satisfy condition (iii) in Theorem 1, then

ISSN 1027-3190. Укр. мат. журн., 2009, т. 61, № 8

1102

$$m_{s}\alpha_{0}\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\|^{2} \leq \left[|\alpha_{1}-\alpha_{2}|\|u_{\alpha_{2}}^{h}\|^{s-1}+hg(\|u_{\alpha_{2}}^{h}\|)\sum_{j=1}^{N}|\alpha_{2}^{\mu_{j}}-\alpha_{1}^{\mu_{j}}|\right] \times \\ \times \|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\|+C\sum_{j=1}^{N}|\alpha_{2}^{\mu_{j}}-\alpha_{1}^{\mu_{j}}|.$$

Hence,

$$\begin{aligned} \|u_{\alpha_{1}}^{h} - u_{\alpha_{2}}^{h}\| &\leq \tilde{c}, \\ \tilde{c} &= \frac{d}{2m_{s}\alpha_{0}} + \frac{1}{2m_{s}\alpha_{0}}\sqrt{d^{2} + 4m_{s}\alpha_{0}C(N-1)|\alpha_{1} - \alpha_{2}|}, \\ d &= \left[\|u_{\alpha_{2}}^{h}\|^{s-1} + h(N-1)g(\|u_{\alpha_{2}}^{h}\|)\right]|\alpha_{1} - \alpha_{2}|. \end{aligned}$$

Thus, $u_{\alpha_1}^h \to u_{\alpha_2}^h$ as $\alpha_1 \to \alpha_2$. It means that $t(\alpha)$ is continuous on $[\alpha_0, +\infty)$. So, is the function $\rho(\alpha)$. We shall choose $\tilde{\alpha} = \alpha(h)$ satisfying the following equation:

$$\rho(\alpha) = h^p \alpha^{-q}, \quad p, q > 0.$$
(8)

Theorem 3. Assume that $F_j(u, v)$ all satisfy condition (iii) in Theorem 1. Then, we have:

- (i) for each fixed h > 0 there exists at least a value $\tilde{\alpha} = \alpha(h)$ satisfying (8),
- (ii) $\lim_{h\to 0} \alpha(h) = 0$, and
- (iii) if $q \ge p$, then $\lim_{h\to 0} h/\alpha(h) = 0$.

Proof. First, from (7) we can obtain the following inequality:

$$\alpha^{q} \rho(\alpha) \leq \alpha^{1+q} \left[a_{0} + \|y\| + \frac{1}{m_{s}} \|y\|^{s-1} \right] + \alpha^{q} \frac{(N-1)h}{m_{s}} g\big(\|y\|\big)$$

for a fixed element $y \in S$. Therefore,

$$\lim_{\alpha \to +0} \alpha^q \rho(\alpha) = 0$$

On the other hand,

$$\lim_{\alpha \to +\infty} \alpha^{1+q} \rho(\alpha) \ge a_0 \lim_{\alpha \to +\infty} \alpha^{q+1} = +\infty.$$

The intermidiate value theorem gives (i).

The second conclusion is proved by using the inequality

$$0 \le \alpha(h) \le a_0^{-1/(1+q)} h^{p/(1+q)}$$

that is followed from $\alpha^{1+q}(h)[a_0 + t(\alpha(h))] = h^p$. Since

$$\begin{split} \left[\frac{h}{\alpha(h)}\right]^p &= [h^p \alpha^{-q}(h)] \alpha^{q-p}(h) = \rho(\alpha(h)) \alpha^{q-p}(h) = \\ &= \alpha(h)[a_0 + t(\alpha(h))] \alpha^{q-p}(h) \leq \\ &\leq [a_0 + \|y\| + \frac{1}{m_s} \|y\|^{s-1}] \alpha^{1+q-p}(h) + \alpha^{q-p}(h) \frac{(N-1)h}{m_s} g(\|y\|), \end{split}$$

then

1104

$$\lim_{h \to 0} h/\alpha(h) = 0.$$

Theorem is proved.

3. Application. We consider the following convex minimization problems with coupling constraints: find $u_* \in K$ such that

$$\varphi(u_*) = \min_{u \in S} \quad \varphi(u),$$

$$S = \left\{ \tilde{u} \in K \colon F_j(\tilde{u}, v) \ge 0 \quad \forall v \in K, \quad j = 1, \dots, N \right\},$$
(9)

where φ is a weak continuous convex functional on X, and F_j all are the bifunctions. In addition, assume that $\varphi(u) \ge 0$ for each $u \in X$ and is Gateau differentiable with the derivative A. Then, u_* solves (9) iff it solves the following variational inequality problem:

$$\langle A(u_*), v - u_* \rangle \ge 0 \quad \forall v \in K, \quad F_j(u_*, v) \ge 0, \quad j = 1, \dots N$$

that is studied in [27] and [28] in the finite-dimensional Hilbert space \mathbb{R}^n . The presence of the functional constraints $F_j(u_*, v)$, which couple the parameters and the variables of the problem, is the basic distintion of this statement from the standard one. Set

$$F_{N+1}(u,v) = \varphi(v) - \varphi(u).$$

It is easy to verify that $F_{N+1}(u, v)$ is a bifunction. The regularized solution of problem (9) can be constructed by solving the single equilibrium problem

$$F_{\alpha}(u_{\alpha}, v) \ge 0 \quad \forall v \in K, \quad u_{\alpha} \in K,$$
$$F_{\alpha}(u, v) := \sum_{j=1}^{N+1} \alpha^{\mu_j} F_j(u, v) + \alpha \langle U^s(u), v - u \rangle, \quad \alpha > 0,$$
$$\mu_1 = 0 < \mu_j < \mu_{j+1} < 1, \quad j = 2, 3, \dots, N,$$

and α is the regularization parameter.

Note that the nonegative property of φ permits to obtain the estimate (3). From the proof of Theorem 1 it implies that $\varphi(v) \ge \varphi(u_*) \ \forall v \in S = \bigcap_{j=1}^N S_j$.

In particular, if the bifunctions F_j all are defined on the whole space X, then we introduce additionally the bifunction $F_0(u, v) := \operatorname{dis}(v, K) - \operatorname{dis}(u, K)$, where

$$\operatorname{dis}(x,K) = \min_{y \in K} \|x - y\|$$

Then, we have the following single equilibrium:

$$F_{\alpha}(u_{\alpha}, v) \ge 0 \quad \forall v \in X, \quad u_{\alpha} \in X,$$

$$F_{\alpha}(u, v) := \sum_{j=0}^{N+1} \alpha^{\mu_j} F_j(u, v) + \alpha \langle U^s(u), v - u \rangle, \quad \alpha > 0,$$

$$\mu_0 = 0 < \mu_j < \mu_{j+1} < 1, \quad j = 2, 3, \dots, N,$$

and α is the regularization parameter.

- Bianchi M., Schaible S. Generalized monotone bifunctions and equilibrium problems // J. Optimiz. Theory and Appl. – 1996. – 90. – P. 31–43.
- Blum E., Oettli W. From optimization and variational inequalities to equilibrium problems // Math. Stud. - 1994. - 63. - P. 123-145.
- Oettli W. A remark on vector-valued equilibria and generalized monotonicity // Acta Math. Vietnam. 1997. – 22. – P. 215–221.
- Göpfert A., Riahi H., Tammer C., Zalinescu C. Variational methods in partially ordered spaces. New York: Springer, 2003.
- Chadli O., Schaible S., Yao J. C. Regularized equilibrium problems with an application to noncoercive hemivariational inequalities // J. Optimiz. Theory and Appl. – 2004. – 121. – P. 571–596.
- Combettes P. L., Hirstoaga S. A. Equilibrium programming in Hilbert spaces // J. Nonlinear and Convex Anal. – 2005. – 6, № 1. – P. 117–136.
- Konnov I. V., Pinyagina O. V. D-gap functions for a class of monotone equilibrium problems in Banach spaces // Comput. Methods Appl. Math. – 2003. – 3, № 2. – P. 274–286.
- Stukalov A. C. Regularization extragradient method for solving equilibrium programming problems in Hilbert spaces // Zh. Vych. Mat. i Mat. Fiz. – 2005. – 45, № 9. – P. 1538–1554.
- Konnov I. V., Pinyagina O. V. D-gap functions and descent methods for a class of monotone equilibrium problems // Lobachevskii J. Math. – 2003. – 13. – P. 57–65.
- 10. Mastroeni G. Gap functions for equilibrium problems // J. Global Optimiz. 2003. 27. P. 411-426.
- Antipin A. S. Equilibrium programming: gradient methods // Automat. and Remote Control. 1997. 58, № 8. – P. 1337–1347.
- Antipin A. S. Equilibrium programming: Proximal methods // Zh. Vych. Mat. i Mat. Fiz. 1997. 37, № 11. – P. 1327–1339 (Comput. Math. and Math. Phys. – 1997. – 37, № 11. – P. 1285–1296.
- 13. Bounkhel M., Al-Senan B. R. An iterative method for nonconvex equilibrium problems // J. Inequalit. Pure and Appl. Math. 2006. 7, Issue 2, Article 75.
- Chadli O., Konnov I. V., Yao J. C. Descent methods for equilibrium problems in Banach spaces // Comput. and Math. Appl. – 2004. – 48. – P. 609–616.
- Konnov I. V. Application of the proximal point method to nonomonotone equilibrium problems // J. Optimiz. Theory and Appl. – 2005. – 126. – P. 309–322.
- Konnov I. V., Schaible S., Yao J. C. Combined relaxation method for mixed equilibrium problems // Ibid. – 2003. – 119. – P. 317–333.
- 17. *Mastroeni G*. On auxiliary principle for equilibrium problems // Techn. Rept Dep. Math. Pisa Univ. 2000. № 3. P. 244–258.
- Moudafi A. Second-order differential proximal methods for equilibrium problems // J. Inequal. Pure and Appl. Math. – 2003. – 4, Issue 1, Article 18.
- Moudafi A., Théra M. Proximal and dynamical approaches to equilibrium problems // Lect. Notes Econ. and Math. Syst. – 1999. – 477. – P. 187–201.
- Noor M. A. Auxiliary principle technique for equilibrium problems // J. Optimiz. Theory and Appl. 2004. – 122. – P. 371–386.
- 21. Noor M. A., Noor K. I. On equilibrium problems // Appl. Math. E-N7otes (AMEN). 2004. 4.
- Buong Ng. Regularization for unconstrained vector optimization of convex functionals in Banach spaces // Zh. Vych. Mat. i Mat. Fiz. – 2006. – 46, № 3. – P. 372–378.
- Buong Ng. Convergence rates and finite-dimensional approximations for a class of ill-posed variational inequalities // Ukr. Math. J. – 1996. – 48, № 9. – P. 1–9.
- 24. Buong Ng. On ill-posed problems in Banach spaces // South. Asian Bull. Math. 1997. 21. P. 95 193.
- 25. Buong Ng. Operator equations of Hammerstein type under monotone perturbations // Proc. NCST Vietnam. 1999. 11, № 2. P. 3–7.
- Buong Ng. Convergence rates in regularization for the case of monotone pertubations // Ukr. Math. J. 2000. – 52, № 2. – P. 285–293.
- Antipin A. S. Solution methods for variational inequalities with coupled constraints // Comput. Math. and Math Phys. 2000. 40, № 9. P. 1239–1254 (Transl. from Zh. Vych. Mat. i Mat. Fiz. 2000. 40, № 9. P. 1291–1307).
- Antipin A. S. Solving variational inequalities with coupling constraints with the use of differential equations // Different. Equat. 2000. 36, № 11. P. 1587–1596 (Transl. from Differents. Uravneniya. 2000. 36, № 11. P. 1443–1451).

Received 16.07.07