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TIKHONOV REGULARIZATION METHOD FOR SYSTEM
OF EQUILIBRIUM PROBLEMS IN BANACH SPACES*

МЕТОД РЕГУЛЯРИЗАЦIЇ ТIХОНОВА ДЛЯ СИСТЕМИ ЗАДАЧ
ПРО РIВНОВАГУ В БАНАХОВИХ ПРОСТОРАХ

The purpose of the paper is to investigate the Tikhonov regularization method for solving a system of ill-posed
equilibrium problems in Banach spaces with a posteriori regularization parameter choice. An application to
convex minimization problems with coupled constraints is also given.

Метою роботи є дослiдження методу регуляризацiї Тiхонова для розв’язку системи некоректних задач
про рiвновагу в банахових просторах з апостерiорним вибором параметра регуляризацiї. Наведено
застосування методу до задач опуклої мiнiмiзацiї iз зчепленими обмеженнями.

1. Introduction. LetX be a real reflexive Banach space,X∗ be its dual space which both
are assumed to be strictly convex, and letK be a nonempty closed (in the strong topology)
and convex subset of X. For the sake of simplicity norms of X and X∗ are denoted by
the symbol ‖.‖. Assume that the space X possesses the property: weak convergence and
convergence in norm for any sequence in X follow its strong convergence. The symbol〈
x∗, x

〉
denotes the value of the linear and continuous functional x∗ ∈ X∗ at the point

x ∈ X. Let Us, s ≥ 2, be the generalized duality mapping of the space X, i.e., Us is
the mapping from X onto X∗ satisfying the condition

〈Us(x), x〉 = ‖Us(x)‖‖x‖, ‖Us(x)‖ = ‖x‖s−1.

Concerning Us, assume that〈
Us(x)− Us(y), x− y

〉
≥ ms‖x− y‖2,

where ms is some positive number.
Let Fj , j = 1, . . . , N, be a family of bifunctions from K ×K to (−∞,+∞), i.e.,

Fj all satisfy the following set of standard properties.
Condition 1. The bifunction F is such that:
(i) F (u, u) = 0 ∀u ∈ K;
(ii) F (u, v) + F (v, u) ≤ 0 ∀(u, v) ∈ K ×K;
(iii) for every u ∈ K, F (u, .) : K → (−∞,+∞) is lower semicontinuous and

convex;
(iv) limt→+0F ((1− t)u+ tz, v) ≤ F (u, v) ∀(u, z, v) ∈ K ×K ×K.
Consider the system of equilibrium problems: find u∗ ∈ K such that

Fj(u∗, v) ≥ 0 ∀v ∈ K, j = 1, . . . , N. (1)

In the case of a single equilibrium, i.e., N = 1, problem (1) was called equilibri-
um problem, and shown in [1 – 3] to cover monotone inclusion problems, saddle point
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problems, variational inequality problems, minimization problems, Nash equilibria in
noncooperative games, vector equilibrium problems, as well as certain fixed point
problems (see also [4]). For finding approximative solutions of (1) there exist several
approaches: the regularization approach in [5 – 8], the gap-function approach in [8 –
10], and the dynamical system or iterative procedure approach in [1, 2, 7, 11 – 21]. In
particular, this problem are considered in Banach spaces in [9, 17].

In the case N > 1, we are only aware of result [6] in Hilbert spaces where on base of
constructing the resolvant of bifunction, which is a set-valued operator, P. L. Combettes
and S. A. Hirstoaga study the block-iterative algorithms, and a regularization method
only for the particular case N = 1.

In this paper, on the base of the idea in [22] we present the Tikhonov regularization
method constructing the regularized solution, the posteriori regularization parameter
choice depending on h when Fj are given by the approximations Fhj , h > 0, in the
general case N > 1, and an application for convex minimization problem with coupled
constraints.

Set

Sj =
{
u∗ ∈ K : Fj(u∗, v) ≥ 0 ∀v ∈ H

}
, j = 1, . . . , N, S =

N⋂
j=1

Sj .

From now on, suppose that S 6= ∅. In addition, we assume that Fj all are hemicontinuous
in the variable u for each fixed v ∈ K and weakly lower semicontinuous in the variable
v for each fixed u ∈ K instead of (iv) and (iii) in condition 1, respectively.

The strong and weak convergences of any sequence are denoted by → and ⇀,

respectively.
2. Main results. First, we formulate the following facts in [1, 3] which are necessary

in the proof of our results.
Proposition 1. (i) If F (., v) is hemicontinuous for each v ∈ K and F is monotone,

i.e., satisfies (ii) in condition 1, then U∗ = V∗, where
U∗ is the solution set of F (u∗, v) ≥ 0 ∀v ∈ K,
V∗ is the solution set of F (u, v∗) ≤ 0 ∀u ∈ K, and it is convex and closed.
(ii) If F (., v) is hemicontinuous for each v ∈ K and F is strongly monotone, i.e.,

there exists a positive constant τ such that

F (u, v) + F (v, u) ≤ −τ‖u− v‖2,

then U∗ contains a unique element.
Each set Sj is closed convex (Proposition 1 (i)). Hence, S is closed convex, too.
We construct the Tikhonov regularization solution uα by solving the single equili-

brium problem

Fα(uα, v) ≥ 0 ∀v ∈ K, uα ∈ K,

Fα(u, v) :=
N∑
j=1

αµjFj(u, v) + α
〈
Us(u), v − u

〉
, α > 0, (2)

µ1 = 0 < µj < µj+1 < 1, j = 1, 2, . . . , N − 1,

and α is the regularization parameter.
We have the following results.
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Theorem 1. (i) For each α > 0, problem (2) has a unique solution uα.
(ii) limα→+0 uα = u∗, u∗ ∈ S, ‖u∗‖ ≤ ‖y‖ ∀y ∈ S.
(iii) If Fj(u, v) are bounded, i.e., there exists a positive constant C such that

|Fj(u, v)| ≤ C ∀u, v ∈ U with ‖u‖, ‖v‖ ≤ C̃, that also is a positive constant, then
we have

‖uα − uβ‖ ≤
|α− β|
2msα

‖u∗‖s−1+

+

√
|α− β|
2msα

√
|α− β|‖u∗‖2(s−1) + 4msαC(N − 1), α, β > 0.

Proof. It is easy to verify that Fα(u, v) is a bifunction, i.e., Fα(u, v) satisfies
condition 1, and strongly monotone with constant msα > 0. Therefore, (2) has a unique
solution uα for each α > 0.

Now we shall prove that

‖uα‖ ≤ ‖y‖ ∀y ∈ S. (3)

Since y ∈ S, then Fj(y, uα) ≥ 0, j = 1, . . . , N. Consequently,

N∑
j=1

αµjFj(y, uα) ≥ 0 ∀y ∈ S. (4)

This fact, uα is the solution of (2) and property (ii) in condition 1 of Fj give〈
Us(uα), y − uα

〉
≥ 0 ∀y ∈ S,

that implies (3). It means that {uα} is bounded. Let uαk
⇀ u∗ ∈ X, as k → +∞.

First, note that u∗ ∈ K, because K also is weakly closed in X. We prove that u∗ ∈ S1.

Indeed, from (ii) in condition 1 and (2) we have

F1(v, uαk
) +

N∑
j=2

α
µj

k Fj(v, uαk
) ≤ αk〈Us(uαk

), v − uαk
〉 ≤

≤ αk〈Us(v), v − uαk
〉 ∀y ∈ K.

By virtue of weak lower semicontinuous property of the bifunction Fj(u, v) in the
variable v we obtain F1(v, u∗) ≤ 0 ∀v ∈ U, i.e., u∗ ∈ S1. Now, we shall prove that
u∗ ∈ Sj , j = 2, . . . , N. From (2) and property (ii) in condition 1 of the bifunction F1 it
implies that

F2(y, uαk
) +

N∑
j=3

α
µj−µ2
k Fj(y, uαk

) ≤ αk1−µ2〈Us(y), y − uαk
〉 ∀y ∈ S1.

Tending k →∞, we have got

F2(y, u∗) ≤ 0 ∀y ∈ S1.

Therefore, F2(u∗, y) ≥ 0 ∀v ∈ S1, i.e., u∗ is a minimizer of the convex functional
F2(v, u∗) on the set S1. Since S1 ∩ S2 6= ∅, then
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u∗ ∈ arg min
v∈K

F2(u∗, v),

i.e., F2(u∗, y) ≥ 0 ∀y ∈ K.

Set S̃i =
i⋂

k=1

Sk. Then, S̃i is also closed convex, and S̃i 6= ∅.

Now, suppose that we have proved that u∗ ∈ S̃i, and need to show that u∗ belongs
to Si+1. Again, by virtue of (2) for y ∈ S̃i we can write

Fi+1(y, uαk
) +

N∑
j=i+2

α
µj−µi+1
k Fj(y, uαk

) ≤ αk1−µi+1〈Us(y), y − uαk
〉 ∀y ∈ S̃i.

After passing k →∞, we obtain

Fi+1(y, u∗) ≤ 0 ∀y ∈ S̃i.

Since S̃i ∩ Si+1 6= ∅, then u∗ also is an element of Si+1, i.e., Fi+1(u∗, y) ≥ 0
∀y ∈ K. Inequality (3) and the weak convergence of {uαk

} to u∗ ∈ S, which is a closed
convex subset in the strictly convex space X, give the strong convergence of {uαk

} to
u∗ : ‖u∗‖ ≤ ‖y‖ ∀y ∈ S.

Let uβ be a solution of (2) when α is replaced by β. By virtue of (ii) in condition 1
we have Fj(uα, uβ) + Fj(uβ , uα) ≤ 0. Therefore, from (2) it follows

N∑
j=1

(αµj − βµj )Fj(uα, uβ) + α〈Us(uα), uβ − uα〉+ β〈Us(uβ), uα − uβ〉 ≥ 0

or

msα‖uα − uβ‖2 ≤ |α− β|‖uβ‖s−1‖uα − uβ‖+
N∑
j=1

|αµj − βµj ||Fj(uα, uβ)|.

Using (3), the boundedness of Fj and the Lagrange’s mean-value theorem for the function
α(t) = t−µ, 0 < µ < 1, t ∈ [1,+∞), on [α, β] if α < β or [β, α] if β < α we have
conclusion (iii).

Theorem is proved.
Remark . Obviously, if uαk

→ ũ where uαk
is the solution of (2) with α = αk → 0,

as k → +∞, then S 6= ∅.
Let Fhj be the approximation bifunctions for Fj satisfy the condition

‖Fj(u, v)− Fhj (u, v)‖ ≤ hg(‖u‖)‖u− v‖, (5)

whith the bounded (image of bounded set is bounded) nonegative function g(t), t ≥ 0.
Note that condition (5) was used in the regularizing the variational inequality

〈A(x∗), x− x∗〉 ≥ 0 ∀x ∈ K, x∗ ∈ K,

where A is a hemicontinuous monotone from X into X∗, and is given approximatively
by the hemicontinuous monotone operators Ah also from X into X∗ such that∥∥Ah(x)−A(x)

∥∥ ≤ hg(‖u‖).
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By setting F̃ (u, v) = 〈A(u), v− u〉 and F̃h(u, v) = 〈Ah(u), v− u〉 we see that F̃ (u, v)
and F̃h(u, v) are the bifunctions satisfying condition (5).

Since Fhj are also the bifunctions, then the following single equilibrium problem:

Fhα (uhα, v) ≥ 0 ∀v ∈ K, uhα ∈ K,

Fhα (u, v) :=
N∑
j=1

αµjFhj (u, v) + α〈Us(u), v − u〉, α > 0,
(6)

has a unique solution denoted by uhα for each α, h > 0. As well as for the variational
inequalities [23, 24] or the operator equation of Hammerstein type [25, 26], we have the
following conclusion.

Theorem 2. If h/α→ 0 as h, α→ 0, then uhα → u∗.

Proof. From (4) with that uα is replaced by uhα, (5), (6) and the properties of the
bifunctions Fhj it follows

N∑
j=1

αµj
[
Fj(y, uhα)− Fhj (y, uhα)

]
+ α〈Us(uhα), y − uhα〉 ≥ 0 ∀y ∈ S.

Therefore,

ms‖y − uhα‖2 ≤ 〈Us(y), y − uhα〉+
1
α

N∑
j=1

αµj
∣∣Fhj (y, uhα)− Fj(y, uhα)

∣∣ =
=
〈
Us(y), y − uhα

〉
+
h

α
(N − 1)g(‖y‖)‖y − uhα‖,

for α ≤ 1. Thus,

‖y − uhα‖ ≤
1
ms

[
‖y‖s−1 +

(N − 1)h
α

g(‖y‖)
]
. (7)

It means that {uhα} is bounded, when h, α, h/α → 0. Since X is reflexive, then there
exist a subsequence {uk := uhk

αk
} ⊂ {uhα} and an element x̃ ∈ X such that uk ⇀ x̃ as

k → +∞, and K is also weak closed. Hence, the element x̃ is an element of K. By
repeating the proof in Theorem 1 we obtain that x̃ ∈ S and uhα → x̃ = u∗.

Theorem is proved.
Now, we study the problem of choosing α = α(h). For this purpose, consider the

function ρ(α) := α(a0 + t(α)), where t(α) = ‖uhα‖ for each fixed h > 0. Obviously,
from (5), (6) and property (ii) in condition 1 of Fhj it implies that

msα0‖uhα1
− uhα2

‖2 ≤ |α1 − α2|‖uhα2
‖s−1‖uhα1

− uhα2
‖+

+
N∑
j=1

|αµj

2 − α
µj

1 | |Fhj (uhα2
, uhα1

)|

for αi ∈ [α0,+∞), i = 1, 2, and α0 > 0, where∣∣Fhj (uhα2
, uhα1

)
∣∣ ≤ ∣∣Fhj (uhα2

, uhα1
)− Fj(uhα2

, uhα1
)
∣∣+ ∣∣Fj(uhα2

, uhα1
)
∣∣.

Therefore, if Fj(u, v) all satisfy condition (iii) in Theorem 1, then
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msα0‖uhα1
− uhα2

‖2 ≤

|α1 − α2|‖uhα2
‖s−1 + hg(‖uhα2

‖)
N∑
j=1

|αµj

2 − α
µj

1 |

×
×‖uhα1

− uhα2
‖+ C

N∑
j=1

|αµj

2 − α
µj

1 |.

Hence,

‖uhα1
− uhα2

‖ ≤ c̃,

c̃ =
d

2msα0
+

1
2msα0

√
d2 + 4msα0C(N − 1)|α1 − α2|,

d =
[
‖uhα2

‖s−1 + h(N − 1)g(‖uhα2
‖)
]
|α1 − α2|.

Thus, uhα1
→ uhα2

as α1 → α2. It means that t(α) is continuous on [α0,+∞). So, is the
function ρ(α). We shall choose α̃ = α(h) satisfying the following equation:

ρ(α) = hpα−q, p, q > 0. (8)

Theorem 3. Assume that Fj(u, v) all satisfy condition (iii) in Theorem 1. Then,
we have:

(i) for each fixed h > 0 there exists at least a value α̃ = α(h) satisfying (8),
(ii) limh→0 α(h) = 0, and
(iii) if q ≥ p, then limh→0 h/α(h) = 0.
Proof. First, from (7) we can obtain the following inequality:

αqρ(α) ≤ α1+q

[
a0 + ‖y‖+

1
ms
‖y‖s−1

]
+ αq

(N − 1)h
ms

g
(
‖y
∥∥)

for a fixed element y ∈ S. Therefore,

lim
α→+0

αqρ(α) = 0.

On the other hand,

lim
α→+∞

α1+qρ(α) ≥ a0 lim
α→+∞

αq+1 = +∞.

The intermidiate value theorem gives (i).
The second conclusion is proved by using the inequality

0 ≤ α(h) ≤ a−1/(1+q)
0 hp/(1+q)

that is followed from α1+q(h)
[
a0 + t(α(h))

]
= hp.

Since [
h

α(h)

]p
= [hpα−q(h)]αq−p(h) = ρ(α(h))αq−p(h) =

= α(h)[a0 + t(α(h))]αq−p(h) ≤

≤ [a0 + ‖y‖+
1
ms
‖y‖s−1]α1+q−p(h) + αq−p(h)

(N − 1)h
ms

g(‖y‖),
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then
lim
h→0

h/α(h) = 0.

Theorem is proved.
3. Application. We consider the following convex minimization problems with

coupling constraints: find u∗ ∈ K such that

ϕ(u∗) = min
u∈S

ϕ(u),

S =
{
ũ ∈ K : Fj(ũ, v) ≥ 0 ∀v ∈ K, j = 1, . . . , N

}
,

(9)

where ϕ is a weak continuous convex functional on X, and Fj all are the bifunctions.
In addition, assume that ϕ(u) ≥ 0 for each u ∈ X and is Gateau differentiable with
the derivative A. Then, u∗ solves (9) iff it solves the following variational inequality
problem:

〈A(u∗), v − u∗〉 ≥ 0 ∀v ∈ K, Fj(u∗, v) ≥ 0, j = 1, . . . N,

that is studied in [27] and [28] in the finite-dimensional Hilbert space Rn. The presence
of the functional constraints Fj(u∗, v), which couple the parameters and the variables
of the problem, is the basic distintion of this statement from the standard one. Set

FN+1(u, v) = ϕ(v)− ϕ(u).

It is easy to verify that FN+1(u, v) is a bifunction. The regularized solution of problem (9)
can be constructed by solving the single equlibrium problem

Fα(uα, v) ≥ 0 ∀v ∈ K, uα ∈ K,

Fα(u, v) :=
N+1∑
j=1

αµjFj(u, v) + α〈Us(u), v − u〉, α > 0,

µ1 = 0 < µj < µj+1 < 1, j = 2, 3, . . . , N,

and α is the regularization parameter.
Note that the nonegative property of ϕ permits to obtain the estimate (3). From the

proof of Theorem 1 it implies that ϕ(v) ≥ ϕ(u∗) ∀v ∈ S =
N⋂
j=1

Sj .

In particular, if the bifunctions Fj all are defined on the whole space X, then we
introduce additionally the bifunction F0(u, v) := dis(v,K)− dis(u,K), where

dis(x,K) = min
y∈K
‖x− y‖.

Then, we have the following single equilibrium:

Fα(uα, v) ≥ 0 ∀v ∈ X, uα ∈ X,

Fα(u, v) :=
N+1∑
j=0

αµjFj(u, v) + α〈Us(u), v − u〉, α > 0,

µ0 = 0 < µj < µj+1 < 1, j = 2, 3, . . . , N,

and α is the regularization parameter.
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