UDC 517.9
Nguyen Buong (Vietnam. Acad. Sci. and Technol. Inst. Inform. Technol., Hanoi, Vietnam),
Dang Thi Hai Ha (Vietnam. Forestry Univ.)

## TIKHONOV REGULARIZATION METHOD FOR SYSTEM OF EQUILIBRIUM PROBLEMS IN BANACH SPACES* МЕТОД РЕГУЛЯРИЗАЦІЇ ТІХОНОВА ДЛЯ СИСТЕМИ ЗАДАЧ ПРО РІВНОВАГУ В БАНАХОВИХ ПРОСТОРАХ

The purpose of the paper is to investigate the Tikhonov regularization method for solving a system of ill-posed equilibrium problems in Banach spaces with a posteriori regularization parameter choice. An application to convex minimization problems with coupled constraints is also given.

Метою роботи є дослідження методу регуляризації Тіхонова для розв’язку системи некоректних задач про рівновагу в банахових просторах з апостеріорним вибором параметра регуляризації. Наведено застосування методу до задач опуклої мінімізації із зчепленими обмеженнями.

1. Introduction. Let $X$ be a real reflexive Banach space, $X^{*}$ be its dual space which both are assumed to be strictly convex, and let $K$ be a nonempty closed (in the strong topology) and convex subset of $X$. For the sake of simplicity norms of $X$ and $X^{*}$ are denoted by the symbol $\|$.$\| . Assume that the space X$ possesses the property: weak convergence and convergence in norm for any sequence in $X$ follow its strong convergence. The symbol $\left\langle x^{*}, x\right\rangle$ denotes the value of the linear and continuous functional $x^{*} \in X^{*}$ at the point $x \in X$. Let $U^{s}, s \geq 2$, be the generalized duality mapping of the space $X$, i.e., $U^{s}$ is the mapping from $X$ onto $X^{*}$ satisfying the condition

$$
\left\langle U^{s}(x), x\right\rangle=\left\|U^{s}(x)\right\|\|x\|, \quad\left\|U^{s}(x)\right\|=\|x\|^{s-1}
$$

Concerning $U^{s}$, assume that

$$
\left\langle U^{s}(x)-U^{s}(y), x-y\right\rangle \geq m_{s}\|x-y\|^{2},
$$

where $m_{s}$ is some positive number.
Let $F_{j}, j=1, \ldots, N$, be a family of bifunctions from $K \times K$ to $(-\infty,+\infty)$, i.e., $F_{j}$ all satisfy the following set of standard properties.

Condition 1. The bifunction $F$ is such that:
(i) $F(u, u)=0 \forall u \in K$;
(ii) $F(u, v)+F(v, u) \leq 0 \forall(u, v) \in K \times K$;
(iii) for every $u \in K, F(u,):. K \rightarrow(-\infty,+\infty)$ is lower semicontinuous and convex;
(iv) $\varlimsup_{t \rightarrow+0} F((1-t) u+t z, v) \leq F(u, v) \forall(u, z, v) \in K \times K \times K$.

Consider the system of equilibrium problems: find $u_{*} \in K$ such that

$$
\begin{equation*}
F_{j}\left(u_{*}, v\right) \geq 0 \quad \forall v \in K, \quad j=1, \ldots, N . \tag{1}
\end{equation*}
$$

In the case of a single equilibrium, i.e., $N=1$, problem (1) was called equilibrium problem, and shown in [1-3] to cover monotone inclusion problems, saddle point

[^0]problems, variational inequality problems, minimization problems, Nash equilibria in noncooperative games, vector equilibrium problems, as well as certain fixed point problems (see also [4]). For finding approximative solutions of (1) there exist several approaches: the regularization approach in [5-8], the gap-function approach in [810], and the dynamical system or iterative procedure approach in [1, 2, 7, 11-21]. In particular, this problem are considered in Banach spaces in [9, 17].

In the case $N>1$, we are only aware of result [6] in Hilbert spaces where on base of constructing the resolvant of bifunction, which is a set-valued operator, P. L. Combettes and S. A. Hirstoaga study the block-iterative algorithms, and a regularization method only for the particular case $N=1$.

In this paper, on the base of the idea in [22] we present the Tikhonov regularization method constructing the regularized solution, the posteriori regularization parameter choice depending on $h$ when $F_{j}$ are given by the approximations $F_{j}^{h}, h>0$, in the general case $N>1$, and an application for convex minimization problem with coupled constraints.

Set

$$
S_{j}=\left\{u_{*} \in K: F_{j}\left(u_{*}, v\right) \geq 0 \quad \forall v \in H\right\}, \quad j=1, \ldots, N, \quad S=\bigcap_{j=1}^{N} S_{j} .
$$

From now on, suppose that $S \neq \varnothing$. In addition, we assume that $F_{j}$ all are hemicontinuous in the variable $u$ for each fixed $v \in K$ and weakly lower semicontinuous in the variable $v$ for each fixed $u \in K$ instead of (iv) and (iii) in condition 1, respectively.

The strong and weak convergences of any sequence are denoted by $\rightarrow$ and $\rightharpoonup$, respectively.
2. Main results. First, we formulate the following facts in $[1,3]$ which are necessary in the proof of our results.

Proposition 1. (i) If $F(., v)$ is hemicontinuous for each $v \in K$ and $F$ is monotone, i.e., satisfies (ii) in condition 1 , then $U_{*}=V_{*}$, where
$U_{*}$ is the solution set of $F\left(u_{*}, v\right) \geq 0 \forall v \in K$,
$V_{*}$ is the solution set of $F\left(u, v_{*}\right) \leq 0 \forall u \in K$, and it is convex and closed.
(ii) If $F(., v)$ is hemicontinuous for each $v \in K$ and $F$ is strongly monotone, i.e., there exists a positive constant $\tau$ such that

$$
F(u, v)+F(v, u) \leq-\tau\|u-v\|^{2}
$$

then $U_{*}$ contains a unique element.
Each set $S_{j}$ is closed convex (Proposition 1 (i)). Hence, $S$ is closed convex, too.
We construct the Tikhonov regularization solution $u_{\alpha}$ by solving the single equilibrium problem

$$
\begin{gather*}
F_{\alpha}\left(u_{\alpha}, v\right) \geq 0 \quad \forall v \in K, \quad u_{\alpha} \in K, \\
F_{\alpha}(u, v):=\sum_{j=1}^{N} \alpha^{\mu_{j}} F_{j}(u, v)+\alpha\left\langle U^{s}(u), v-u\right\rangle, \quad \alpha>0,  \tag{2}\\
\mu_{1}= \\
0<\mu_{j}<\mu_{j+1}<1, \quad j=1,2, \ldots, N-1,
\end{gather*}
$$

and $\alpha$ is the regularization parameter.
We have the following results.

Theorem 1. (i) For each $\alpha>0$, problem (2) has a unique solution $u_{\alpha}$.
(ii) $\lim _{\alpha \rightarrow+0} u_{\alpha}=u_{*}, u_{*} \in S,\left\|u_{*}\right\| \leq\|y\| \forall y \in S$.
(iii) If $F_{j}(u, v)$ are bounded, i.e., there exists a positive constant $C$ such that $\left|F_{j}(u, v)\right| \leq C \forall u, v \in U$ with $\|u\|,\|v\| \leq \tilde{C}$, that also is a positive constant, then we have

$$
\begin{gathered}
\left\|u_{\alpha}-u_{\beta}\right\| \leq \frac{|\alpha-\beta|}{2 m_{s} \alpha}\left\|u_{*}\right\|^{s-1}+ \\
+\frac{\sqrt{|\alpha-\beta|}}{2 m_{s} \alpha} \sqrt{|\alpha-\beta|\left\|u_{*}\right\|^{2(s-1)}+4 m_{s} \alpha C(N-1)}, \quad \alpha, \beta>0
\end{gathered}
$$

Proof. It is easy to verify that $F_{\alpha}(u, v)$ is a bifunction, i.e., $F_{\alpha}(u, v)$ satisfies condition 1 , and strongly monotone with constant $m_{s} \alpha>0$. Therefore, (2) has a unique solution $u_{\alpha}$ for each $\alpha>0$.

Now we shall prove that

$$
\begin{equation*}
\left\|u_{\alpha}\right\| \leq\|y\| \quad \forall y \in S \tag{3}
\end{equation*}
$$

Since $y \in S$, then $F_{j}\left(y, u_{\alpha}\right) \geq 0, j=1, \ldots, N$. Consequently,

$$
\begin{equation*}
\sum_{j=1}^{N} \alpha^{\mu_{j}} F_{j}\left(y, u_{\alpha}\right) \geq 0 \quad \forall y \in S \tag{4}
\end{equation*}
$$

This fact, $u_{\alpha}$ is the solution of (2) and property (ii) in condition 1 of $F_{j}$ give

$$
\left\langle U^{s}\left(u_{\alpha}\right), y-u_{\alpha}\right\rangle \geq 0 \quad \forall y \in S
$$

that implies (3). It means that $\left\{u_{\alpha}\right\}$ is bounded. Let $u_{\alpha_{k}} \rightharpoonup u_{*} \in X$, as $k \rightarrow+\infty$. First, note that $u_{*} \in K$, because $K$ also is weakly closed in $X$. We prove that $u_{*} \in S_{1}$. Indeed, from (ii) in condition 1 and (2) we have

$$
\begin{aligned}
F_{1}\left(v, u_{\alpha_{k}}\right)+ & \sum_{j=2}^{N} \alpha_{k}^{\mu_{j}} F_{j}\left(v, u_{\alpha_{k}}\right) \leq \alpha_{k}\left\langle U^{s}\left(u_{\alpha_{k}}\right), v-u_{\alpha_{k}}\right\rangle \leq \\
& \leq \alpha_{k}\left\langle U^{s}(v), v-u_{\alpha_{k}}\right\rangle \quad \forall y \in K
\end{aligned}
$$

By virtue of weak lower semicontinuous property of the bifunction $F_{j}(u, v)$ in the variable $v$ we obtain $F_{1}\left(v, u_{*}\right) \leq 0 \forall v \in U$, i.e., $u_{*} \in S_{1}$. Now, we shall prove that $u_{*} \in S_{j}, j=2, \ldots, N$. From (2) and property (ii) in condition 1 of the bifunction $F_{1}$ it implies that

$$
F_{2}\left(y, u_{\alpha_{k}}\right)+\sum_{j=3}^{N} \alpha_{k}^{\mu_{j}-\mu_{2}} F_{j}\left(y, u_{\alpha_{k}}\right) \leq \alpha_{k}^{1-\mu_{2}}\left\langle U^{s}(y), y-u_{\alpha_{k}}\right\rangle \quad \forall y \in S_{1}
$$

Tending $k \rightarrow \infty$, we have got

$$
F_{2}\left(y, u_{*}\right) \leq 0 \quad \forall y \in S_{1} .
$$

Therefore, $F_{2}\left(u^{*}, y\right) \geq 0 \forall v \in S_{1}$, i.e., $u_{*}$ is a minimizer of the convex functional $F_{2}\left(v, u_{*}\right)$ on the set $S_{1}$. Since $S_{1} \cap S_{2} \neq \varnothing$, then

$$
u_{*} \in \arg \min _{v \in K} F_{2}\left(u_{*}, v\right),
$$

i.e., $F_{2}\left(u_{*}, y\right) \geq 0 \forall y \in K$.

Set $\tilde{S}_{i}=\bigcap_{k=1}^{i} S_{k}$. Then, $\tilde{S}_{i}$ is also closed convex, and $\tilde{S}_{i} \neq \varnothing$.
Now, suppose that we have proved that $u_{*} \in \tilde{S}_{i}$, and need to show that $u_{*}$ belongs to $S_{i+1}$. Again, by virtue of (2) for $y \in \tilde{S}_{i}$ we can write

$$
F_{i+1}\left(y, u_{\alpha_{k}}\right)+\sum_{j=i+2}^{N} \alpha_{k}^{\mu_{j}-\mu_{i+1}} F_{j}\left(y, u_{\alpha_{k}}\right) \leq \alpha_{k}{ }^{1-\mu_{i+1}}\left\langle U^{s}(y), y-u_{\alpha_{k}}\right\rangle \quad \forall y \in \tilde{S}_{i} .
$$

After passing $k \rightarrow \infty$, we obtain

$$
F_{i+1}\left(y, u_{*}\right) \leq 0 \quad \forall y \in \tilde{S}_{i}
$$

Since $\tilde{S}_{i} \cap S_{i+1} \neq \varnothing$, then $u_{*}$ also is an element of $S_{i+1}$, i.e., $F_{i+1}\left(u_{*}, y\right) \geq 0$ $\forall y \in K$. Inequality (3) and the weak convergence of $\left\{u_{\alpha_{k}}\right\}$ to $u_{*} \in S$, which is a closed convex subset in the strictly convex space $X$, give the strong convergence of $\left\{u_{\alpha_{k}}\right\}$ to $u_{*}:\left\|u_{*}\right\| \leq\|y\| \forall y \in S$.

Let $u_{\beta}$ be a solution of (2) when $\alpha$ is replaced by $\beta$. By virtue of (ii) in condition 1 we have $F_{j}\left(u_{\alpha}, u_{\beta}\right)+F_{j}\left(u_{\beta}, u_{\alpha}\right) \leq 0$. Therefore, from (2) it follows

$$
\sum_{j=1}^{N}\left(\alpha^{\mu_{j}}-\beta^{\mu_{j}}\right) F_{j}\left(u_{\alpha}, u_{\beta}\right)+\alpha\left\langle U^{s}\left(u_{\alpha}\right), u_{\beta}-u_{\alpha}\right\rangle+\beta\left\langle U^{s}\left(u_{\beta}\right), u_{\alpha}-u_{\beta}\right\rangle \geq 0
$$

or

$$
m_{s} \alpha\left\|u_{\alpha}-u_{\beta}\right\|^{2} \leq|\alpha-\beta|\left\|u_{\beta}\right\|^{s-1}\left\|u_{\alpha}-u_{\beta}\right\|+\sum_{j=1}^{N}\left|\alpha^{\mu_{j}}-\beta^{\mu_{j}}\right|\left|F_{j}\left(u_{\alpha}, u_{\beta}\right)\right| .
$$

Using (3), the boundedness of $F_{j}$ and the Lagrange's mean-value theorem for the function $\alpha(t)=t^{-\mu}, 0<\mu<1, t \in[1,+\infty)$, on $[\alpha, \beta]$ if $\alpha<\beta$ or $[\beta, \alpha]$ if $\beta<\alpha$ we have conclusion (iii).

Theorem is proved.
Remark. Obviously, if $u_{\alpha_{k}} \rightarrow \tilde{u}$ where $u_{\alpha_{k}}$ is the solution of (2) with $\alpha=\alpha_{k} \rightarrow 0$, as $k \rightarrow+\infty$, then $S \neq \varnothing$.

Let $F_{j}^{h}$ be the approximation bifunctions for $F_{j}$ satisfy the condition

$$
\begin{equation*}
\left\|F_{j}(u, v)-F_{j}^{h}(u, v)\right\| \leq h g(\|u\|)\|u-v\|, \tag{5}
\end{equation*}
$$

whith the bounded (image of bounded set is bounded) nonegative function $g(t), t \geq 0$. Note that condition (5) was used in the regularizing the variational inequality

$$
\left\langle A\left(x_{*}\right), x-x_{*}\right\rangle \geq 0 \quad \forall x \in K, \quad x_{*} \in K,
$$

where $A$ is a hemicontinuous monotone from $X$ into $X^{*}$, and is given approximatively by the hemicontinuous monotone operators $A_{h}$ also from $X$ into $X^{*}$ such that

$$
\left\|A_{h}(x)-A(x)\right\| \leq h g(\|u\|) .
$$

By setting $\tilde{F}(u, v)=\langle A(u), v-u\rangle$ and $\tilde{F}^{h}(u, v)=\left\langle A_{h}(u), v-u\right\rangle$ we see that $\tilde{F}(u, v)$ and $\tilde{F}^{h}(u, v)$ are the bifunctions satisfying condition (5).

Since $F_{j}^{h}$ are also the bifunctions, then the following single equilibrium problem:

$$
\begin{gather*}
F_{\alpha}^{h}\left(u_{\alpha}^{h}, v\right) \geq 0 \quad \forall v \in K, \quad u_{\alpha}^{h} \in K, \\
F_{\alpha}^{h}(u, v):=\sum_{j=1}^{N} \alpha^{\mu_{j}} F_{j}^{h}(u, v)+\alpha\left\langle U^{s}(u), v-u\right\rangle, \quad \alpha>0, \tag{6}
\end{gather*}
$$

has a unique solution denoted by $u_{\alpha}^{h}$ for each $\alpha, h>0$. As well as for the variational inequalities [23, 24] or the operator equation of Hammerstein type [25, 26], we have the following conclusion.

Theorem 2. If $h / \alpha \rightarrow 0$ as $h, \alpha \rightarrow 0$, then $u_{\alpha}^{h} \rightarrow u_{*}$.
Proof. From (4) with that $u_{\alpha}$ is replaced by $u_{\alpha}^{h}$, (5), (6) and the properties of the bifunctions $F_{j}^{h}$ it follows

$$
\sum_{j=1}^{N} \alpha^{\mu_{j}}\left[F_{j}\left(y, u_{\alpha}^{h}\right)-F_{j}^{h}\left(y, u_{\alpha}^{h}\right)\right]+\alpha\left\langle U^{s}\left(u_{\alpha}^{h}\right), y-u_{\alpha}^{h}\right\rangle \geq 0 \quad \forall y \in S
$$

Therefore,

$$
\begin{aligned}
m_{s}\left\|y-u_{\alpha}^{h}\right\|^{2} & \leq\left\langle U^{s}(y), y-u_{\alpha}^{h}\right\rangle+\frac{1}{\alpha} \sum_{j=1}^{N} \alpha^{\mu_{j}}\left|F_{j}^{h}\left(y, u_{\alpha}^{h}\right)-F_{j}\left(y, u_{\alpha}^{h}\right)\right|= \\
= & \left\langle U^{s}(y), y-u_{\alpha}^{h}\right\rangle+\frac{h}{\alpha}(N-1) g(\|y\|)\left\|y-u_{\alpha}^{h}\right\|,
\end{aligned}
$$

for $\alpha \leq 1$. Thus,

$$
\begin{equation*}
\left\|y-u_{\alpha}^{h}\right\| \leq \frac{1}{m_{s}}\left[\|y\|^{s-1}+\frac{(N-1) h}{\alpha} g(\|y\|)\right] . \tag{7}
\end{equation*}
$$

It means that $\left\{u_{\alpha}^{h}\right\}$ is bounded, when $h, \alpha, h / \alpha \rightarrow 0$. Since $X$ is reflexive, then there exist a subsequence $\left\{u_{k}:=u_{\alpha_{k}}^{h_{k}}\right\} \subset\left\{u_{\alpha}^{h}\right\}$ and an element $\tilde{x} \in X$ such that $u_{k} \rightharpoonup \tilde{x}$ as $k \rightarrow+\infty$, and $K$ is also weak closed. Hence, the element $\tilde{x}$ is an element of $K$. By repeating the proof in Theorem 1 we obtain that $\tilde{x} \in S$ and $u_{\alpha}^{h} \rightarrow \tilde{x}=u_{*}$.

Theorem is proved.
Now, we study the problem of choosing $\alpha=\alpha(h)$. For this purpose, consider the function $\rho(\alpha):=\alpha\left(a_{0}+t(\alpha)\right)$, where $t(\alpha)=\left\|u_{\alpha}^{h}\right\|$ for each fixed $h>0$. Obviously, from (5), (6) and property (ii) in condition 1 of $F_{j}^{h}$ it implies that

$$
\begin{gathered}
m_{s} \alpha_{0}\left\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\right\|^{2} \leq\left|\alpha_{1}-\alpha_{2}\right|\left\|u_{\alpha_{2}}^{h}\right\|^{s-1}\left\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\right\|+ \\
+\sum_{j=1}^{N}\left|\alpha_{2}^{\mu_{j}}-\alpha_{1}^{\mu_{j}}\right|\left|F_{j}^{h}\left(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h}\right)\right|
\end{gathered}
$$

for $\alpha_{i} \in\left[\alpha_{0},+\infty\right), i=1,2$, and $\alpha_{0}>0$, where

$$
\left|F_{j}^{h}\left(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h}\right)\right| \leq\left|F_{j}^{h}\left(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h}\right)-F_{j}\left(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h}\right)\right|+\left|F_{j}\left(u_{\alpha_{2}}^{h}, u_{\alpha_{1}}^{h}\right)\right| .
$$

Therefore, if $F_{j}(u, v)$ all satisfy condition (iii) in Theorem 1, then

$$
\begin{aligned}
m_{s} \alpha_{0}\left\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\right\|^{2} & \leq\left[\left|\alpha_{1}-\alpha_{2}\right|\left\|u_{\alpha_{2}}^{h}\right\|^{s-1}+h g\left(\left\|u_{\alpha_{2}}^{h}\right\|\right) \sum_{j=1}^{N}\left|\alpha_{2}^{\mu_{j}}-\alpha_{1}^{\mu_{j}}\right|\right] \times \\
& \times\left\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\right\|+C \sum_{j=1}^{N}\left|\alpha_{2}^{\mu_{j}}-\alpha_{1}^{\mu_{j}}\right|
\end{aligned}
$$

Hence,

$$
\begin{gathered}
\left\|u_{\alpha_{1}}^{h}-u_{\alpha_{2}}^{h}\right\| \leq \tilde{c}, \\
\tilde{c}=\frac{d}{2 m_{s} \alpha_{0}}+\frac{1}{2 m_{s} \alpha_{0}} \sqrt{d^{2}+4 m_{s} \alpha_{0} C(N-1)\left|\alpha_{1}-\alpha_{2}\right|}, \\
d=\left[\left\|u_{\alpha_{2}}^{h}\right\|^{s-1}+h(N-1) g\left(\left\|u_{\alpha_{2}}^{h}\right\|\right)\right]\left|\alpha_{1}-\alpha_{2}\right| .
\end{gathered}
$$

Thus, $u_{\alpha_{1}}^{h} \rightarrow u_{\alpha_{2}}^{h}$ as $\alpha_{1} \rightarrow \alpha_{2}$. It means that $t(\alpha)$ is continuous on $\left[\alpha_{0},+\infty\right)$. So, is the function $\rho(\alpha)$. We shall choose $\tilde{\alpha}=\alpha(h)$ satisfying the following equation:

$$
\begin{equation*}
\rho(\alpha)=h^{p} \alpha^{-q}, \quad p, q>0 . \tag{8}
\end{equation*}
$$

Theorem 3. Assume that $F_{j}(u, v)$ all satisfy condition (iii) in Theorem 1. Then, we have:
(i) for each fixed $h>0$ there exists at least a value $\tilde{\alpha}=\alpha(h)$ satisfying (8),
(ii) $\lim _{h \rightarrow 0} \alpha(h)=0$, and
(iii) if $q \geq p$, then $\lim _{h \rightarrow 0} h / \alpha(h)=0$.

Proof. First, from (7) we can obtain the following inequality:

$$
\alpha^{q} \rho(\alpha) \leq \alpha^{1+q}\left[a_{0}+\|y\|+\frac{1}{m_{s}}\|y\|^{s-1}\right]+\alpha^{q} \frac{(N-1) h}{m_{s}} g(\|y\|)
$$

for a fixed element $y \in S$. Therefore,

$$
\lim _{\alpha \rightarrow+0} \alpha^{q} \rho(\alpha)=0 .
$$

On the other hand,

$$
\lim _{\alpha \rightarrow+\infty} \alpha^{1+q} \rho(\alpha) \geq a_{0} \lim _{\alpha \rightarrow+\infty} \alpha^{q+1}=+\infty
$$

The intermidiate value theorem gives (i).
The second conclusion is proved by using the inequality

$$
0 \leq \alpha(h) \leq a_{0}^{-1 /(1+q)} h^{p /(1+q)}
$$

that is followed from $\alpha^{1+q}(h)\left[a_{0}+t(\alpha(h))\right]=h^{p}$.
Since

$$
\begin{gathered}
{\left[\frac{h}{\alpha(h)}\right]^{p}=\left[h^{p} \alpha^{-q}(h)\right] \alpha^{q-p}(h)=\rho(\alpha(h)) \alpha^{q-p}(h)=} \\
=\alpha(h)\left[a_{0}+t(\alpha(h))\right] \alpha^{q-p}(h) \leq \\
\leq\left[a_{0}+\|y\|+\frac{1}{m_{s}}\|y\|^{s-1}\right] \alpha^{1+q-p}(h)+\alpha^{q-p}(h) \frac{(N-1) h}{m_{s}} g(\|y\|),
\end{gathered}
$$

then

$$
\lim _{h \rightarrow 0} h / \alpha(h)=0
$$

Theorem is proved.
3. Application. We consider the following convex minimization problems with coupling constraints: find $u_{*} \in K$ such that

$$
\begin{gather*}
\varphi\left(u_{*}\right)=\min _{u \in S} \quad \varphi(u) \\
S=\left\{\tilde{u} \in K: F_{j}(\tilde{u}, v) \geq 0 \quad \forall v \in K, \quad j=1, \ldots, N\right\}, \tag{9}
\end{gather*}
$$

where $\varphi$ is a weak continuous convex functional on $X$, and $F_{j}$ all are the bifunctions. In addition, assume that $\varphi(u) \geq 0$ for each $u \in X$ and is Gateau differentiable with the derivative $A$. Then, $u_{*}$ solves (9) iff it solves the following variational inequality problem:

$$
\left\langle A\left(u_{*}\right), v-u_{*}\right\rangle \geq 0 \quad \forall v \in K, \quad F_{j}\left(u_{*}, v\right) \geq 0, \quad j=1, \ldots N
$$

that is studied in [27] and [28] in the finite-dimensional Hilbert space $\mathbf{R}^{n}$. The presence of the functional constraints $F_{j}\left(u_{*}, v\right)$, which couple the parameters and the variables of the problem, is the basic distintion of this statement from the standard one. Set

$$
F_{N+1}(u, v)=\varphi(v)-\varphi(u)
$$

It is easy to verify that $F_{N+1}(u, v)$ is a bifunction. The regularized solution of problem (9) can be constructed by solving the single equlibrium problem

$$
\begin{gathered}
F_{\alpha}\left(u_{\alpha}, v\right) \geq 0 \quad \forall v \in K, \quad u_{\alpha} \in K, \\
F_{\alpha}(u, v):=\sum_{j=1}^{N+1} \alpha^{\mu_{j}} F_{j}(u, v)+\alpha\left\langle U^{s}(u), v-u\right\rangle, \quad \alpha>0, \\
\mu_{1}= \\
0<\mu_{j}<\mu_{j+1}<1, \quad j=2,3, \ldots, N,
\end{gathered}
$$

and $\alpha$ is the regularization parameter.
Note that the nonegative property of $\varphi$ permits to obtain the estimate (3). From the proof of Theorem 1 it implies that $\varphi(v) \geq \varphi\left(u_{*}\right) \forall v \in S=\bigcap_{j=1}^{N} S_{j}$.

In particular, if the bifunctions $F_{j}$ all are defined on the whole space $X$, then we introduce additionally the bifunction $F_{0}(u, v):=\operatorname{dis}(v, K)-\operatorname{dis}(u, K)$, where

$$
\operatorname{dis}(x, K)=\min _{y \in K}\|x-y\|
$$

Then, we have the following single equilibrium:

$$
\begin{gathered}
F_{\alpha}\left(u_{\alpha}, v\right) \geq 0 \quad \forall v \in X, \quad u_{\alpha} \in X, \\
F_{\alpha}(u, v):=\sum_{j=0}^{N+1} \alpha^{\mu_{j}} F_{j}(u, v)+\alpha\left\langle U^{s}(u), v-u\right\rangle, \quad \alpha>0, \\
\mu_{0}= \\
0<\mu_{j}<\mu_{j+1}<1, \quad j=2,3, \ldots, N,
\end{gathered}
$$

and $\alpha$ is the regularization parameter.

1. Bianchi M., Schaible S. Generalized monotone bifunctions and equilibrium problems // J. Optimiz. Theory and Appl. - 1996. - 90. - P. 31-43.
2. Blum E., Oettli W. From optimization and variational inequalities to equilibrium problems // Math. Stud. - 1994. - 63. - P. 123-145.
3. Oettli $W$. A remark on vector-valued equilibria and generalized monotonicity // Acta Math. Vietnam. 1997. - 22. - P. 215-221.
4. Göpfert A., Riahi H., Tammer C., Zalinescu C. Variational methods in partially ordered spaces. - New York: Springer, 2003.
5. Chadli O., Schaible S., Yao J. C. Regularized equilibrium problems with an application to noncoercive hemivariational inequalities // J. Optimiz. Theory and Appl. - 2004. - 121. - P. 571-596.
6. Combettes P. L., Hirstoaga S. A. Equilibrium programming in Hilbert spaces // J. Nonlinear and Convex Anal. - 2005. - 6, № 1. - P. 117-136.
7. Konnov I. V., Pinyagina O. V. D-gap functions for a class of monotone equilibrium problems in Banach spaces // Comput. Methods Appl. Math. - 2003. - 3, № 2. - P. 274-286.
8. Stukalov A. C. Regularization extragradient method for solving equilibrium programming problems in Hilbert spaces // Zh. Vych. Mat. i Mat. Fiz. - 2005. - 45, № 9. - P. 1538-1554.
9. Konnov I. V., Pinyagina O. V. D-gap functions and descent methods for a class of monotone equilibrium problems // Lobachevskii J. Math. - 2003. - 13. - P. 57-65.
10. Mastroeni $G$. Gap functions for equilibrium problems // J. Global Optimiz. - 2003. - 27. - P. 411-426.
11. Antipin A. S. Equilibrium programming: gradient methods // Automat. and Remote Control. - 1997. 58, № 8. - P. 1337-1347.
12. Antipin A. S. Equilibrium programming: Proximal methods // Zh. Vych. Mat. i Mat. Fiz. - 1997. - 37, № 11. - P. 1327-1339 (Comput. Math. and Math. Phys. - 1997. - 37, № 11. - P. 1285-1296.
13. Bounkhel M., Al-Senan B. R. An iterative method for nonconvex equilibrium problems // J. Inequalit. Pure and Appl. Math. - 2006. - 7, Issue 2, Article 75.
14. Chadli O., Konnov I. V., Yao J. C. Descent methods for equilibrium problems in Banach spaces // Comput. and Math. Appl. - 2004. - 48. - P. 609-616.
15. Konnov I. V. Application of the proximal point method to nonomonotone equilibrium problems // J. Optimiz. Theory and Appl. - 2005. - 126. - P. 309-322.
16. Konnov I. V., Schaible S., Yao J. C. Combined relaxation method for mixed equilibrium problems // Ibid. - 2003. - 119. - P. 317-333.
17. Mastroeni $G$. On auxiliary principle for equilibrium problems // Techn. Rept Dep. Math. Pisa Univ. 2000. - № 3. - P. 244-258.
18. Moudafi A. Second-order differential proximal methods for equilibrium problems // J. Inequal. Pure and Appl. Math. - 2003. - 4, Issue 1, Article 18.
19. Moudafi A., Théra M. Proximal and dynamical approaches to equilibrium problems // Lect. Notes Econ. and Math. Syst. - 1999. - 477. - P. 187-201.
20. Noor M. A. Auxiliary principle technique for equilibrium problems // J. Optimiz. Theory and Appl. 2004. - 122. - P. 371-386.
21. Noor M. A., Noor K. I. On equilibrium problems // Appl. Math. E-N7otes (AMEN). - 2004. - 4.
22. Buong Ng. Regularization for unconstrained vector optimization of convex functionals in Banach spaces // Zh. Vych. Mat. i Mat. Fiz. - 2006. - 46, № 3. - P. 372-378.
23. Buong Ng. Convergence rates and finite-dimensional approximations for a class of ill-posed variational inequalities // Ukr. Math. J. - 1996. - 48, № 9. - P. 1-9.
24. Buong Ng. On ill-posed problems in Banach spaces // South. Asian Bull. Math. - 1997. - 21. - P. 95-193.
25. Buong Ng. Operator equations of Hammerstein type under monotone perturbations // Proc. NCST Vietnam. - 1999. - 11, № 2. - P. 3-7.
26. Buong Ng. Convergence rates in regularization for the case of monotone pertubations // Ukr. Math. J. 2000. - 52, № 2. - P. 285-293.
27. Antipin A. S. Solution methods for variational inequalities with coupled constraints // Comput. Math. and Math Phys. - 2000. - 40, № 9. - P. 1239-1254 (Transl. from Zh. Vych. Mat. i Mat. Fiz. - 2000. 40, № 9. - P. 1291-1307).
28. Antipin $A$. S. Solving variational inequalities with coupling constraints with the use of differential equations // Different. Equat. - 2000. - 36, № 11. - P. 1587-1596 (Transl. from Differents. Uravneniya. - 2000. - 36, № 11. - P. 1443-1451).

[^0]:    *This work was supported by the Vietnamese Fundamental Research Program in Natural Sciences № 100506.

