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NON-EXISTENCE THEOREM
EXCEPT THE OUT-OF-PHASE AND IN-PHASE SOLUTIONS
IN THE COUPLED VAN DER POL EQUATION SYSTEM

TEOPEMA IIPO HEICHYBAHHS# PO3B’SA3KIB

3A BUHATKOM PEKUMY CUHXPOHHUX KOJIMBAHb
TA PEXKUMY KOJIMBAHbB VY ITPOTU®A3I

A1 CUCTEMM 3’°€JHAHUX PIBHSHDb BAH JEP ITOJISA

We consider the coupled van der Pol equation system in this paper. Our coupled system consists of two van
der Pol equations which are connected by the linear terms with each other. In this paper, we consider that two
distinctive solutions (the out-of-phase and in-phase solutions) exist in the dynamical system of the coupled
equations and we give the answers to some of the problems.

PosnstHyTO cucTeMy 3’enHaHMX piBHAHB Bau mep Ilons. Llg cucrema ckiamaeThest 3 ABOX piBHSAHB Ban mep
ITos, 110 OB’ s13aHi Mixk cOOOFO JIHIHHUMY WwieHaMH. Y CTaTTi PO3NIISIHYTO BUITAI0K, KOJIM JMHAMIYHA CHCTEMa
3’€IHAHUX DIBHSAHb M€ JIBa PI3HUX PO3B’SA3KH (y PEKMMi CHHXPOHHHUX KOJIMBAaHb TA y PEXKHUMi KOJIHBaHb Y
npotudasi), i JaHO BIJNOBIIl Ha AEAKI NUTAHHS.

1. Introduction. In the course of studying the periodic solution of the differential
equation with nonlinear perturbed terms

'+ 3= ef(z,2),

where x = x(¢) and ' denotes the derivative with respect to time ¢ (we use ’ for the
symbol of derivative hereinafter), the method of averaging (using Fourier series) was
established by Kryloff and Bogoliuboff of the Kiev school of mathematics after 1930 in
connection with the asymptotic methods [1—3]. The method of averaging was used for
the first time by van der Pol, and then Kryloff and Bogoliuboff gave the full justification
of the method. After that, Urabe considered more general forms than the above equation
using moving coordinate system [4, 5]. Hayashi studied nonlinear oscillations mainly
from the viewpoint of physics [6, 7] and Minorsky did it from the mechanical point of
view [8].

On the other hand, the group around Mitropolsky and Samoilenko [9] investi-
gated nonlinear systems of differential equations with lag and some classes of integro-
differential and difference equations, and they developed a method for the solution of
problems concerning the existence of periodic solutions and construction of algorithms
for calculating these solutions. However, there still exist difficult problems arising in
nonlinear coupled systems or in the case of a large number of degrees of freedom with
nonlinearity due to the inevitable computing complexity of the system.

We treat the van der Pol equation system with coupling presented below by the
positional difference. Let y = y(t) and z = z(¢t) be two real valued functions. We
consider the dynamical system

Yy —e(l—y?)y +y=Fk(y—2),
Esk

)

2 —e(1 =222 +2z=k(z—vy), to<t.

© B. T. NOHARA, A. ARIMOTO, 2009
1106 ISSN 1027-3190. Vkp. mam. sxcypn., 2009, m. 61, Ne 8



NON-EXISTENCE THEOREM EXCEPT THE OUT-OF-PHASE AND IN-PHASE SOLUTIONS ... 1107

Here, k,e (> 0) are constants and ¢ indicates an initial time. When k& = 0, the
dynamical system 3. o turns into two independent van der Pol oscillators [10]. The
single van der Pol oscillator is a well-known classical problem. Many studies on the
van der Pol equation have been carried out, and the fact that the van der Pol equation
has a unique limit cycle is known and proved by the Poincaré — Bendixson theorem (see,
for example, [11]). However, the coupled van der Pol system, that is, the dynamical
system X, 1, constructs a three-dimensional manifold. Therefore, we cannot apply the
Poincaré - Bendixson theorem to the dynamical system 3. j, to analyze the system.
“Does there exist the limit cycle in 3. ;?” [12], “If there exists the limit cycle, how
many limit cycles are there?” [13] and “Are the limit cycles ‘stable’ or ‘completely
unstable’ or ‘semistable’?” are still open problems we have.

In this paper, we first show the generalized van der Pol equation and analyze it.
Then the analysis of the coupled van der Pol equation system is carried out based on the
formation of our method after defining the out-of-phase and in-phase solutions, which
are new concepts arising when the system is coupled. We consider that there exist two
distinctive solutions (out-of-phase and in-phase solutions) in the dynamical system 33, ;.
Finally, we give answers to some of the above open problems.

2. Preliminaries. In this section, we present the analysis of the system X ;, that
is, a coupled harmonic oscillator with linear coupling in order to reveal the features of
the system X ;. Before discussing our problem, note that we show easily the existence
and uniqueness of the solution of our dynamical system X, ;.

Proposition 2.1 (existence and uniqueness theorem: see [14], Section 4.6). In the
system of differential equations

71 fi(ze, .. @)
X/ = f(X), X = P f(X) = : 5
Tn fn(xlv"wxn)
let each of the functions fi1(x1,...,%n),.., fo(1,...,2,) have continuous partial
derivatives with respect to 1, . . . , Ty, Then, the initial-value problem x' = f(x),x(tg) =

= x" has one, and only one, solution x = x(t), for every x° in R™.
Note that X, ;, has a fixed point: (0,0, 0,0) and the eigenvalues of the system are

et V4 —¢e24 et V4 —8k—e214
-_ 54 = )
2 2

ry =
. 1 g2 .
We now consider 0 < e < 2and 0 < k < 57 % so that the system is unstable.

Next we consider the system X j to clarify the nature of the system X, ;. First
we give the following definitions. Let &5 (t) = col(y(¢),y/(t), 2(t), 2/(t)) be a solution
of Ee,k~

Definition 2.1. If, in the dynamical system 3. i, one has

y(t) + =(t) = 0,

where &x,(t) is not equivalent to 0, then the system is out-of-phase and the non-trivial
solutions of y(t) and z(t) are called the out-of-phase solutions.
Definition 2.2. If in the dynamical system 3. i, one has
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y(t) = =(t) =0,

where Ex(t) is not equivalent to 0, then the system is in-phase and the non-trivial
solutions of y(t) and z(t) are called the in-phase solutions.

1
Proposition 2.2. Assume that k is irrational and such that 0 < k < ok The

dynamical system X

y' +y=Fk(y—2),
20,k
2+ z=k(z—vy), to<t,

has only two families of periodic solutions. A family of periodic solutions is in-phase

and its period is T = 2m. The other is the out-of-phase solution whose period is
2w
T = ———. There exists no other family of periodic solutions.
N Jamily of p

Proof. Onmitted.
3. Analysis of the generalized van der Pol equation. In this section, we consider
the differential equation W ,, 4,

Wemp: w"” —e(w — ¢) + mw =0, (3.1

where w = w(t), ¢ = ¢p(w,w’),0 < & < 24/m, and’ denotes the derivative with respect
to t. We call this the generalized van der Pol equation since we obtain the ordinary van
der Pol equation if we set W, 1 2., that is, m = 1, ¢(t) = w?(t)w’(t). However, we
have no restriction regarding m € R and ¢ = ¢(w, w’) (but we simply write ¢ = ¢(t)
instead of ¢(w,w’)) in this section. We can write this in a matrix form as

Ty = Aty — €€, (3.2)

Aw<0 1)7 xw<w>a §<0>
—-m € w’ 1)

We know that the solution x,,(¢) can be written as

where

t
Ty (t) = et g (1) — s/eAw(t*S)f(s)ds. (3.3)

to

Here, A, has two eigenvalues r and its complex conjugate 7:

e+ Vidm —e24 e —V4m -2
r=-— T S —
2 ’ 2

We now see that A, has a spectral representation
Aw = 7"P1 + fPQ,
E=P + P, PP,=PP =0.

Hence, from the relation
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rPL=A,—TP,= A, — f(E — Pl),

we obtain i )
(Aw - 77)7 P2 = —

r—rT r—r

P =

(r—A,).

Using this, we simply write the exponential function of A,, as follows:

1 ((ert _ eft)Aw n (T,eft _ ,,—,ert)).

et = " Py 4 €™ P, = _
r—7

We can easily obtain

?

et —et L esin(vt)
—— =€ )

_ =Tt :
I - S50,

r—r 2 0
where
N T—
ﬁ:#. (3.4)

Hence, we have

Awt _ et/2 sin(Jt) _ esin(dt)
e e ( 3 Ay + cos(Ut) 5o

and we see that, by virtue of equation (3.3), the solution of equation (3.2) satisfies

sin ((t —to)) [ —e/2 1

w(t) = Le(t—to)
Ty(t) =e 3

+ cos (I(t — to)) p Tw(to)—
—-m /2

t

in (¢t — —</2 1
_E/ee(t—s)/Q sin ( (19 5)) /

to

x ds. (3.5)
(s to, w(to),w'(to))

In equation (3.5), ¢ (s; to, w(to), w(to)) means the function ¢ of s defined by the solution
with the initial condition of w(tp), w’(ty) at time ¢.
Here, we define

sin(vt)
UL9) o= cos(9t) 3
—Jsin(vt) cos(vt)

and give the following lemma:
Lemma 3.1. The following relation is true:

Sinfft) ) Lo = [T ) v [T

-m  £/2 —1/2 1/¢ -1/2 1/e
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2
Proof. We easily prove this by using the relation of m = 92+ % from equation (3.4).
We can rewrite equation (3.5) using Lemma 3.1 as

-1

—-1/e 0 —1/e 0
Ty (t) = ec(t—t0)/2 U_(t—16) () Xay (to)—
—1/2 1/e —1/2 1/e
/ 1/ 0 -
—1/e
75/65(t75)/2 U_(t_s)(ﬁ)x
J —1/2 1/e
—1/e 0 0
X / ds.

—-1/2 1/ ) \o(s;to, w(to), w (to))

—-1/e 0
Multiplying both sides of the above equation by e~=(*=%)/2{7,_, (¥9) /

-1/2 1/e
we obtain

—1/e 0
efs(tfto)/2Ut_t0(19) / Ty(t) =

~1/2 1/

t

-1/ O

= / Ty (to) —sU_tU(ﬁ)/e*E(S*tO)/zUs(ﬂ)x
—-1/2 1/e b

—1/e 0 0
% ds =
~1/2 1/ ) \@(s;to, w(to), w' (to))

—-1/e 0
xw(tO) = Ut (19))(
-1/2 1/e
X/eie(sfto)/z ) ¢(S;t07w(t0)7wl(t0))ds'
7 cos(1s)

Here, we set a0 = w(to) and B0 = w’(to) for simplicity and define the following
symbols:

t
in (9
Is(tato;awOaﬁwO) ::/e_E(s_tO)/2$¢(S;t0aawOaﬁwO)dSa
to

t

I.(t, to; awo, Puwo) 2=/€_E(s_t°)/2 cos(Us) ¢ (s; to, o, Buwo ) ds.

to
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Thus, we obtain the equation

—1/e 0

e~=t=0)/2y, _, (9) T (t) =
~1/2 1/e
*1/6 0 Qw0 Is(t7t0§aw0a/6wo)
= - U*to (’19) : (3.6)
_1/2 1/5 ﬁwO Ic(tyto;aw07ﬁw0)

We utilize the following relations in computing equation (3.6):
U(0)U,(9) = Usrs(9),
U7 (0) = U_y(9),
Uog(¥) = E.

Remark 3.1. The multiplication of equation (3.6) by —¢ yields

1 0
e—=t=t0)/2y,_, (9) Lo (t) =
e/2 -1
1 0 Qlyy I(t, to; wo, Buw
= N +ev_, ) (£ 05 @wo, Buo) || 3.7)
6/2 -1 ﬁwO Ic(tvto;awOaﬁwO)

We simply substitute € = 0 into equation (3.7) and obtain the solution of the harmonic
oscillator w” + mw = 0 as follows:

1 0 10\ (@0
2w ()] __y = Uto—t(v/m) | =
0 -1 0 —1/\Buwo
Qw0
- Utfto (\/’I’T’L) o . (38)
ﬁwO

Here, a0 and 6/1,5 are arbitrary initial values, that are independent of € and not necessari-

ly equal to au,p and B0, respectively. We establish that the period 7 of a non-trivial

periodic solution of equation (3.8) is 7 = 27/\/m from det (U, (y/m) — 1) = 0.
Theorem 3.1. Suppose that lim_,o, e =*"/%x,,(t) = 0. Then

Is(t, to; Qtwos Buw —1/e 0O Ol
lim (t, 05 w0, Buwo) — U, () / 0

oo Ic(tat();awmﬂw(]) _1/2 ]-/E ﬂwO

Proof. The above equation follows from directly equation (3.6).

Before stating the next theorem, we prepare the following proposition.

Proposition 3.1 (the property of autonomous systems) (for example, see [14]). The followi-
ng statements are equivalent:
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(1) there exists T > 0 such that x.,(tg + 7) = x4, (to) for some to,
(2) there exists T > 0 such that X, (t + T) = () for any t.
Without warning, we often use this nature hereinafter.
Theorem 3.2. Let x,,(t) be a solution of W, ,, 4. Then the following statements
are equivalent:
(1) for some tgy, one has

I (tO + 7, to; Qo B’wo)

I.(to + 7, to; wo, Buwo)

—Uto(ﬁ)<1—e”/2UT(q9)> “l/e 00} oo ; (3.9)
~1/2 1/2) \ Buwo

(ii) for some ty, one has

—1/5 0 [€27300)
—1/2 1/2/) \ Buwo

Is(t + 7, to; Qo 61110)

= Uy, (V) (1 - eET/2UT(19)>
Ic(t + T, tO; Q05 ﬁwO)

IG t7t ;Oé} ) M
+e~ 72U, (9) =t 803 Gwor Buo) for any t; (3.10)

Ic(t7 tO; Q0 ﬁwO)

(iil) x,(t) is periodic with period T.

Proof. (i))=-(i). If we set t = t; in equation (3.10), we obtain equation (3.9).

(i)=-(iii). We assume that equation (3.9) is satisfied. Setting ¢ = ¢y + 7 in equati-
on (3.6) and using equation (3.9), we obtain x,,(tg + 7) = 4 (to). Therefore, by
Proposition 3.1, we have z,,(t + 7) = z,,(¢).

(iii)=-(ii). The substitution ¢ + 7 instead of ¢ in equation (3.6) leads to

—-1/e 0

T2 () Tp(t+7) =
-1/2 1/e
—1/5 0 Q0 Is(t'i_TvtO;awOaﬁwo)
_ —U_yy (9) : (3.11)
~1/2 1/e) \ Buwo Ie(t + 7,05 cwo, Buo)

Assuming ., (t+7) = x,,(t) and multiplying both sides of equation (3.11) by e*7/2U_ (1),
we have
—-1/e 0

est=t0)/2r7, () To(t) =
-1/2 1/e

—1/e O Qg I(t + 7, to; 0o, Pu
/ o) ey @) ( 05 @wo, Bwo)

—1/2 1/ ) \ Buo I.(t + 7, t0; awo, Buwo)
(3.12)

_ GET/QU,T(’&)
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The equation of both right-hand sides of equations (3.6) and (3.12) yields equation (3.10).

Theorem is proved.

Here, we set m = 1 and ¢ = w?w/’, that is, the ordinary van der Pol equation is
considered. Then we give the next proposition, which states how the orbit of ¢ — 0
shapes. This problem was studied in [1, 4], where the periodic orbit was obtained. For
example, in [15], this orbit was reduced under the assumption that the requirements of
the Poincaré expansion theorem are satisfied. However, we give a new proof without
this assumption.

Proposition 3.2. Let the periodic solution of the van der Pol equation be w(t,¢).
The orbit of W¢ 1 424 (the van der Pol equation) as € — 0 is presented by

w?(t,0) 4+ w'?(t,0) = 4,

where w(t,0) = lin%) w(t,€). The period of W, 1 2y, Which is denoted by 7(g), is
e— ’
represented as
7(g) = 27 + o(e). (3.13)

Proof. We rewrite equation (3.9) for the peridic condition of the van der Pol equation
as follows:

—e7(e 0’6)
Ut0(9)<1 — e @2y, (e)) -

—1/2 1/ ) \W'(to:€)

IS(tO + T(E)7 th ’U)(to, 6)7 w/(t()a 8))
_ 7 (3.14)

Ie(to + 7(¢), to; w(to, €), w'(to, €))
V4 — €2 . . . .
where 6 = A the van der Pol equation, the solution w and its period 7 depend

on the paremater ¢ so that we denote them by w(t,e) and 7(g), respectively. From
equation (3.14), we obtain

{COS Oty o (/27 (E) cosf(to + 7(¢))
€ €

ot .
_% <e(s/2)T(E) sin 0 ( 09+ () B sme@to) }w(t0,€)+

C(e/2)r () SINO(t0 + T (e sin 6t
—I—{e(/Q)() (095 ())— ego}wl(toﬂ):

t(J-’rT(E) . 9
=— e_E(S_tO)m%(w2(s75)w’(s,5))ds,

to

{_Hsin Oto 4 e/ fsinf(to + 7(¢)) N
€

g
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+

N =

(_6(5/2)7(8) cosf(to + 7(e)) + cos 9750)}“’('507 )+

+ {e—<e/2>f<e> cosflio + 7(e)) _ conbt } w'(to,€) =

€ €

to+7(e)

= - / e~ 10/ 2 cos s (w (s, €)w' (s, €) ) ds.
to

. . dr(e)

We assume that ¢ — 0 in the above equation. Let 7 = 7 . Note that w(¢,0) =
€ le=0
JVi_ 2

= cos(tg — t)w(to, 0) — sin(to — t)w’ (tg, 0) and § = TE —1,7(e) = 2m, e — 0.

Then we have
(7 costo + 71 sintg)w(ty,0) + (—mwsinty + 71 costo)w’(tg, 0) =
= 72 (sintow’(to,0) — costow(to,0)) (w?(to,0) + w2 (to, 0)),
(—msinty + 71 costo)w(to,0) + (—m costy — 71 sintg)w’(tg,0) =
= 72 (sintow(to,0) + costow’ (to,0)) (w?(to, 0) + w2 (to, 0)).
From the above relations, we have
w?(to,0) +w'?(ty,0) =4, 1 =0.

Since g is an arbitrary initial time, we finally obtain the orbit as ¢ — 0 considered in
the proposition. We also have equation (3.13) from 7; = 0.

Proposition is proved.

Remark 3.2. Proposition 3.2 is consistent with the earlier results (see, for example,
[4, p. 104] and [15, p. 133]).

4. Analysis of the coupled van der Pol equation system. 4.1. Formation of the
Sfundamental equations for the analysis. We now set

y(to) = o, Y (to) = fo, z(to) = Ao, 2'(to) = po,

and define some new symbols as follows:

V4 —¢?
0+ =,
2
4 —e2 -8k
07 :: —————————————
2 b

IE(t, to; ao, Bo, Mo, o) i=

t

— /ee(t—s)/QSin (0+(t =)

0 ¢i($;t07a0,ﬁ07)\0,uo)d87
+

to
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Ici(t7t07 «o, ﬁOa )‘07 l’LO) =
t

= /65(“5)/2 cos (0= (t — 5)) p+(s;t0, 20, Bo, Ao, o) ds,

to

where a double sign + in equations corresponds in order.
Let x4 (t) = y(t) + z(¢t) for y,z € X, . Then we have the differential equation
We.1,4, corresponding to equation (3.1) of the previous section, that is,

1"

Weg,: 2 —e(@y —¢4) + 24 =0.
We again define other symbols as follows:

I+ (t,to; o, Bo, Ao, o) ==

t

(s sin (045

::/e e to)/2§:|Z)¢i(5;t07a03ﬂ07)\0mu0)d57
to

I+ (t,to; o, Bo, Mos o) =
t
= /6_5(3_“)/2 cos (0+8) b+ (83 to, 0, B0, Ao, o) ds.

to

Before obtaining the fundamental equations for the analysis, we prepare the next
lemma.
Lemma 4.1. The following relation is true:

I+ (t, to; o, Bo, Aos fo) I+ (t — to,0; 0, Bo, Ao, o)
= Uto (ai)

I+ (t, to; oo, Bo, Ao, fo) I+ (t —to,0; a0, o, Ao, o)

Proof. For I, we have

Isi(tato;a07ﬁ07)\0uﬂo) =
/ in(0..5)
(s sin(f4s
2/6 ( to)/QTiQH(S;to,ao,ﬁm)\ovuo)ds:
to

¢+ (s 4 to; to, ao, Bo, Ao, pto)ds’ =

t—to .
— / o—es /25 (6=(s" + to))
0 ei

(by virtue of the property of autonoumous systems)

$+(s";0, g, Bo, Ao, po)ds’ =

t—to . ,

_ / — (0+(s" + to))
0+

0
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t—to
in(0
= cos(f+tp) / e‘ss/Qwéi(s;0,040,50,)\07M0)d3+
9 t—to
i t
+% / e™%/2 cos(0+8)p (530, g, Bo, Mo, f10)ds =
0

= cos(0+to) Ls+(t — to,0; o, Bo, Ao, o)+

sin(64t
+% Ic:l:(tft()ao;aOvﬂO,)\OaﬂO)' (41)

For I.4, we have

Ies (t,t0; a0, Bos Ao, o) = =01 sin(0+to) Ls+(t — to, 0; o, Bo, Ao, po)+
+ cos(0+to) Lot (t — to, 0; 0, Bos Aos f1o)- (4.2)
From equations (4.1) and (4.2) we obtain

Is:l:(t7t0; Qo, 607 )\0,#0)

IC:t(ta th aOvﬂO» )‘07#0)

Sin(eito)
cos(0+to) o, I (t — to, 0; ag, Bo, Ao, o)

—01 sin(f=tg) cos(fxto) | \Lex(t — to, 05 0, Bo, Ao, o)
Using the definition of the rotational matrix U, we prove the lemma.

As the fundamental equation for x, (¢), that is, y(¢) + z(¢), we have the follo-

wing linear system of integral equations using integral symbols defined above, which
corresponds to equation (3.6):

-1/ 0 xy(t
est=t)/2y, () / +(1)
“1y2 1)\ )

*1/8 0 ﬂf+(t0) Is+(t7t0;a0750;)\07/140)
_ ) v, 43)
—1/2 1/e) \#'s (to) It (t, to; 0, Bos Aoy 10)
By applying Lemma 4.1 to the above equation, we obtain
e—a(t—to)/QUt7t0 0,) —1/e 0 z4(t) _
—1/2 1/e) \a/ (1)
—1/€ 0 l’+(t0) Is-i-(t_tOvO;aO)ﬁOa)‘Onu’O) (4 4)
—1/2 1/e) \a' (to)

I (t —to,0; a0, Bo, Xos o)

If we set x_(t) = y(t) — z(¢) for y, z € X, 1, then we obtain W, 1_9 ¢ _, that is,

ISSN 1027-3190. Vkp. mam. scypH., 2009, m. 61, Ne 8



NON-EXISTENCE THEOREM EXCEPT THE OUT-OF-PHASE AND IN-PHASE SOLUTIONS ... 1117

We’lfgk’qgi N E(Z‘L — (ZS,) + (1 — 2]{3)33‘, =0.

In the same way, we obtain the linear system of integral equations for x_(t) = y(t) —
—z(t):

e=et=10)/2,_ (9_) -1/ 0 z_(t) _
o —1/2 1/e) \2" (t)

~1/e 0 \[z_(to) I (t = to, 0; a0, Bo, Ao, po)

—1/2 1/ ) \aL(to) I._(t —t0,0; a0, Bo, Mo, o)

4.2. Necessary and sufficient condition for the periodicity of the coupled van der
Pol equation system. We give the necessary and sufficient condition for the periodicity
of the solutions of the coupled van der Pol equation system in this subsection. First, the
following theorem holds in the same way as Theorem 3.1.

Theorem 4.1. Suppose that lim,_. e==*/?col(z4 (t), 2/, (t)) = 0. Then

Is:l:(tvto;a()aﬁ()v)\Ov:uO) 71/6 0 $i(t0)
tlim - Ut() (gﬂ:)
Ic:ﬂ:(t7t0;a0750a)\07u0) _1/2 1/6 J’J:t(to)

In this theorem, a double sign £ corresponds in order.

Proof. Onmitted.

Below, we state some properties for the case where the system has the periodicity.
Remember that &s(t) = col(y(t), ¥/ (), 2(t), 2/ (t)).

Theorem 4.2. Suppose that &s(t + 7) = Exi(t), then the following relations are
equivalent for a fixed t:

(@) z4(to) =0, 2’ (to) = 0;

(i) Is4(to + nT,to; o, Bo, Ao, to) = 0, Iey(to + n7,t0; 0, B0, Aoy po) = 0, n =
=1,2,....

Proof. (i) = (ii). Substituting t = ¢ty + n7 into equation (4.3), we obtain

-1/ O ro(tg +n7
€_snT/2Um—(9+) / +( 0 ) _
—1/2 1/e) \a! (to + n1)

_1/5 0 $+(t0) IS+(t0+TLT,t0;0€O,ﬁO,)\O7MO)
= , - U*to (9+)
—1/2 1/e) \o (to) Iy (to + nT,to; a0, Bos Ao, o)

From the assumption of the theorem, we have

y(to +nr) y(to) Qg
y'(to+nt) |  [Y(t)| |5
dtotnr) | | =) | |
2 (to +nt) ' (to) Ho
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The substitution of this result yields

—1/e 0 x4 (t
e_EnT/2Un7—(9+) / +( 0) —

-1/2 1/e) \a' (to)
—1/e 0\ [z4(to)
—1/2 ]./E {IT/Jr(t())

Iy (to + n7,to; g, Bo, Aos o)
U, (64) . 4.5)

IC+(t0 + nr, th Qq, ﬂ07 )‘Oa HO)

Using the relation from (i), that is, 1 (9) = 0 and 2/, (t9) = 0, we arrive at (ii).

(i1) = (i). The substitution of (ii) into equation (4.5) leads to

.’L‘+(t0) =0,

$/+(t0) = 07

which means that (i) holds.

In the same manner, we obtain the next theorem.
Theorem 4.3. Suppose that {s(t + 7) = Ex(t). Then the following relations are
equivalent for a fixed t:

(i) x_(t) =0, 2" (to) =0;

(11) Is—(tO + nT, to;a())ﬂ()a)‘o’,u‘o) = Oa IC—(tO + nT, to;a0a607>\07,u0) = 07 n =
—1,2.....

Proof. We can prove this theorem by the same manner as Theorem 4.2.
Lemma 4.2. The following relations are equivalent:

() &t +71) =E=(1),

(i) z4(t+7) =24(t).
Theorem 4.4 (necessary and sufficient condition for the periodicity). The solution of
the dynamical system 3. j, with the initial condition

y(to) = ao, Yy (to) = Po, z(to) = Ao, 2 (to) = po

has a period T if and only if

Fi(c)=0, (4.6)
where
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F:t(f‘:) _ <1 _ e—s‘r/?UT(ai)) i2 . , (t ) +
3 — T4 (lo

Is:l: (7_7 07 «, ﬂo; )\Oa MO)
+e . 4.7)

I (7,0; a0, Bo, Aos o)

Proof. Necessity. Xy has a period, that is, E&x(t + 7) = &x(t) for some 7 > 0,
because x4 (t + 7) = x4 (¢) and 2/, (t + 7) = 2/, (¢) from Lemma 4.2. Therefore, we
have the following equation by the same procedure which yields equation (3.9):

10\ [aslto)

— ety
(1 Url0:) 1)\

Is:l:(tO + T, tO; Q, /807 >‘03 ;U'O)
+ U4, (0+) =0. (4.8)

I+ (to + 7,t0; 0, B0, Ao, fo)

The second term is computed by Lemma 4.1 as

I+ (to + 7, to; o, Bo, Ao, o) I (7,05 ag, Bo, Ao, o)
U_4, (01) = , (4.9

It (to + 7, t0; 0, Bo, Ao, Ho) Lo+ (7, 0; g, Bo, Ao, o)
and the substitution of this result into eqaution (4.8) leads to equations (4.6) and (4.7).

Sufficiency. Here, we prove that Fy = 0 = x4 (to + 7) = x4 (to), which is
equivalent to x4 (t + 7) = x4 (¢). Using equation (4.9) in equation (4.7), we have

Cer L0\ [zx(to)
€ /2Uto+‘l'(9i) =

e/2 -1 x'y (to)

L0 ) [zx(to)
= Uto(ezl:) +

e/2 —1)\a/(t)

I+ (to + 7, to; o, Bo, Ao, o)
te . (4.10)

Iy (to + 7,t0; 00, o, Ao, to)

On the other hand, the substitution of ¢ = ¢y + 7 into equation (4.3) yields

1 0 ry(to+ 7 1 0 xy(t
U (0,) +{to+7)) _ +(to) N

e/2 —1)\a (to+7) e/2 —1)\a (to)
I (to + 7, to; o, Bo, Ao, o)
+eU—t,(6+) ;
Iy (to + 7, to; o, Bo, Ao, fo)
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that is,

1
O A () =
6/2 —1 .’tg_(to +T)

:Uto(e-l-) +
e/2 —1) \ &, (to)

Isi(to + 7, to; o, Bo, Ao, Ho)
te . 4.11)

Iy (to+ 7,t0; a0, o, Ao, o)

Similarly, we have

]sf (tO + T, t07 a07ﬁ0a )‘07/’60>
te . (4.12)

I._(to+ T,t0; 00, o, Ao, o)

The subtraction of equation (4.10) from equations (4.11) and (4.12) leads to

1 0 Ty(to+ 7 x4 (t
e_ET/QUtO+T(9i) j:( 0 ) _ i( O) _ 0

/2 -1 2! (to + 7) x! (to)
Therefore, we obtain
x4 (to + 7) = x4 (to),
2y (to + 1) = 2/, (to).

Consequently, F1 () =0 = x4 (tg + 7) = 1 (to) is proved.
Theorem is proved.
5. Non-existence theorem of periodic solutions except the out-of-phase and in-

phase solutions in ¥ ;. Let y = y(¢,¢) and z = z(¢,¢) be two real-valued functions
2

depending on the parameter € and 0 < e < 2, 0 < k < 3~ % Our objective equation
system 3. i, is as follows:

Yy —e(l—y?)y +y=Fk(y—2),
Esk

)

2 —e(1-2)2 +z2=k(z—y), to<t,
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with the initial condition
y(t()ag) = CY()(S), y/(t075> = ﬁo(s)a
2(to,€) = Ao(e), 2 (to,€) = pole),

where the initial condition also depends on the parameter ¢ because we write ag(e),
Bo(g), Ao(e) and pg(g) deliberately.
Here, we give the assumption on periodic solutions of the dynamical system X, ;.
Assumption 5.1 (periodic solutions of X, ). Periodic solutions of 3. ;. satisfy

y(t + T(E),e) =y(t,e), z(t + 7(5),5) = z(t,¢e), |7(e)| < T, (5.1)

where T indicates a period of 3. i, and T' is independent of the parameter €. Moreover,
periodic solutions and their derivatives satisfy

ol <M, Wl <M, |t <M, (el <M, (52)

where M is independent of the parameter € and t.

Hereinafter, we consider only periodic solutions restricted by Assumption 5.1. Before
stating the main theorem, we prepare the following lemma.

Lemma 5.1. Let y(t,¢),2(t,€) be a periodic solution of 3. k satisfying Assump-
tion 5.1. Assume that there exists liII(l) 2+ (to, €) and 1in(1) 2+ (to,€) = 2+ (to,0). Then

e— £—>
there exists a solution y(t) and z(t) of the degenerated system X such that
lim z4(t,e) = x+(¢,0) = y(t) + 2(t) and lin(l)x'i(t,e) = 2/ (t,0) = y'(t) £ 2'(1).
E— e—
Let 74(g) and 74(0) be periods of x4 (t,e) created by 3. ) and x4 (t,0) by X,
respectively. Then lirr(l) 7+ (e) = 74(0).
E—
Proof. We only show that lin% xy(t,e) = z4+(¢,0) = y(t) + 2(¢t) and lir% T+(e) =
e— e—

= 74(0). From equation (4.4), z4(t,¢) and z/, (¢, ) are represented as

-1

x4 (t,€) _ elimto)/2 1 0 y

x' (t,¢) e/2 -1
L0\ [zy(toe)

xUty—1(6+) +

e/2 =1\ (to,¢)

-1

Lees(t—to)/2 Y Ui o(01) s+ (t — to, 05 o, Bo, Ao, o) _

5/2 _1 IC+(t_tO7O;a07/30))\07MO)
inf, (to—t in 6, (to —t
cos€+(t0_t)+§w _w
— e(t—t0)/2 0. 0,
2 sin 6, (to—t in6, (to—t
0+sin0+(t0ft)+iw C039+(t0ft)ffw
1 0, 2 b,
-1
5 x4 (to,€) 4 eetlt=t0)/2 1 0 y
'y (to, ) /2 —1
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Is+(t - th 07 040750; A07#0)
Ic+(t - t070;a05 ﬁOv )\Oa ,U/o)

xUty—1(0+)

We take € — 0 in both sides of the above equation. By virtue of Assumption 5.1, i.e., by
virtue of the relations |y(t,e)| < M, |/ (¢,€)| < M, |z(t,€)| < M, and |2'(t,e)| < M,
the second term vanishes. Therefore, we have

liH(l) x4 (t,e) = x4 (t,0) = cos(to — t)x4(to,0) — sin(ty — t)z’ (to,0),

(5.3)
ahi% ol (t,e) = 2!, (t,0) = sin(to — t)z4(to,0) + cos(to — t)a’ (to,0).
In the same manner, we obtain
lir% x_(t,e) =x_(t,0) = cos V1 —2k(tg — t)x_(to,0) —
£—
sinv1 — 2k(tg — t)
- a?_(to, 0),
V1-—2k 54
lir%x'_ (t,e) = 2" (t,0)V/1 — 2ksin V1 — 2k(tg — t)x_(to,0) +
+cos V1 — 2k(tg — t)a’_(to,0).
From equations (5.3) and (5.4), we construct y and z as follows:
z4(¢,0) +z_(¢,0 z4(t,0) —z_(¢,0

2 ’ 2

We easily find that y and z satisfy 3¢ . From equations (5.3), (5.4) and (5.5), we obtain

gii%x:t(t’ E) = I:I:(t70) = y(t) + Z(t>7

(5.6)
lim 2y (t,e) = 2! (t,0) =y (t) £ 2/ ().
Furthermore, using the assumption on periodic solutions, we have
r1(t+7(e),6) = 2£(t,€), (5.7)
x4 (t+ 74(0),0) = z4(¢,0). (5.8)

From equations (5.6), (5.7) and (5.8), we get
lir% 7}(5) = Ti(O).

27
V1I—2k
We give the next main theorem for X, .
Theorem 5.1 (non-existence of periodic solutions except the out-of-phase and in-

phase solutions). Let y(t,¢) and z(t,€) be a periodic solution of . i, which is analytic
2

1 ¢
with respect to € on the segment [0,e), where 0 < g9 < 2,0 < k < 3~ go’ and k is

Also we obtain 74 (0) = 27 and 7_(0) =

irrational. Then this solution is either out-of-phase or in-phase.
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Preparations for the proof. We assume that the periodicity is built up and a period
(but unknown) is 7(¢) depending on e. Then we have the following relation from
Theorem 4.4:

where

10\ [2x(toe)
Fu(e) = (1- e 20, ) (02)) +
e/2 —1) \z (to,¢)

Is:t (T(‘S)v 0; a0(5)7 /60(5)7 )\0(5), NO(E))
+e
Ici(7(5)7 0; 040<E>7 ﬁo(g), )‘0(5>7 MO(ED

First, we take ¢ — 0 in F, (¢) = 0. Then we have

1 — cos(7(0)) sin(7(0)) x4 (to,0)

—0. (5.9)
—sin(7(0)) 1 —cos(7(0))/ \ 2/, (t0,0)
Here, 7(0) = lin(l) 7(e).
On the other hand, taking ¢ — 0 in F_(¢) = 0, we have
sin(v/1 — 2k7(0))
1 —cos(v1 —2k7(0 z_(tg,0
( o) V- 2k t0, 00} _ . (5.10)

VT = 2ksin(vT = 2k7(0)) 1— cos(vI—2kr(0))) \z"(t0,0)

Equations (5.9) and (5.10) must hold simultaneously because we have the following
results for each tg:

. . . [34(t0,0)
(i) Equation (5.9) implies = 0 or 7(0) = 2. In the latter case, we
.’L‘/+ (to, O)
set 7_(0) = 2 for the sake of convenience.
(i) Similarly, equation (5.10) implies 7-(f0,0) 0 or 7(0) 27 In
, . = 7(0) = —/0—.
Y. P , VI— 2k
Tr_ (to, O)
27
the latter case, we set 7 (0) = ——— for the sake of convenience.
+(0) = =5
1 2
(iii) If k is irrational and satisfies 0 < k < — — %, then j7(0) # I7_(0),
j,l =1,2,3,..., j # . Therefore, we obtain following two conditions: a condition
x4 (tg,0 2 x_(tg,0
+(t0.0) =0and 71 (0) = —="__ and another condition is (t0. 0) =
'y (o, 0) V1-2k z’_(to,0)

and 7_(0) = 2, since (i) and (ii) must hold simultaneously. We take some ¢y in the
above consideration, but we find that ¢y can be taken arbitrary in this stage. Consequently,
the former condition means out-of-phase and the latter in-phase.
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24 (t0,0 z_(to,0
Note that the condition of +(t0,0) = 0 and (to,0) = 01is ap(0) =

xi‘,—(t070) 'r/—(thO)
= 5o(0) = Ao(0) = p(0), that is, the origin.

Summarizing above, when € = 0, there exists no periodic solutions except the out-

2
of-phase and in-phase solutions, in which periods are 7, (0) = ﬁ and 7_(0) =
= 27, respectively. This fact is consistent with Proposition 2.2. Before proving the main
theorem, we prepare two propositions and give the following definitions in order to
prove the propositions using the inductive method.

Definition 5.1. The statement P (v), v =1,2,3, ..., is defined as follows:

74 (to, 0 Yo (t oval (¢,
If +(t0,0) = 0, then there exist derivatives 0724 (t,€) and 24 6), and
2 (t O) Oev oev
+\b0;
v t aI/ / t7
M:OandM:Oatezo.
Oe” Oe¥
Definition 5.2. The statement P_(v),v =1,2,3, ..., is defined as follows:
z_(tg,0 Ve (t o’z _(t,
If (to,0) = 0, then there exist derivatives 0" (V’E) and z:a_(y 6), and
.Z‘L (t(), 0) € €
o’x_(t ova’ (t,
Mz()and#g):()ataz().

Oev e
Proposition 5.1. P (v)is true forv=1,2,3,....

Proposition 5.2. P_(v) is true forv =1,2,3,....
Proof. We prove only Proposition 5.1 using the inductive method because Proposi-

tion 5.2 can be proved by the same manner.

(i) 4 (t,0) defined in equation (5.3) satisfies the differential equations '/ (¢,0) +
+ 24(t,0) = 0 with the initial conditions x4 (t9,0) and 2/, (to,0). By uniqueness of

x4 (t,0 x4 (to,0
the solution, we must have +(50) = 0 for +(t0,0) = 0. Hence,
z!, (t,0) ', (to,0)
I+(t7€)
lim = 0 from Lemma 5.1. Then we have
e—0 /
x (t,€)

Y2 (s,€)y (s,¢) + 22(s,€)7 (5,6) =

= (e (5.6) = 2(5,0)) 2y (5,2)—

—2'(s,€)(y(s,€) — 2(s,€))z4(s,6) = 0, &—0. (5.11)

Since we have F () = 0 by the periodicity condition, i.e.,

_ L0 ) [xi(toe)
(1 - e OrU0.)) N
e/2 —1)\a/ (to,€)
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7(¢)

-3 9

/ 6—55/2511127"'8)(y2(t0 + S,E)y/(to + S;E) +
+

0

+ 22 (to + 5,2)2 (to + 8,€))ds

+e =0. (5.12)
7(e)

e /2 cos(04s) (2 (to + s,€)y' (to + s,€) +

+ 2%(to + s,€)2 (to + s,€))ds

Dividing equation (5.12) by &, we obtain

71 (to, €)
1 0
(1 —e T2y, (9+)) , ) +
e/2 —1 'y (to, €)
€
7(¢) (0
6—53/2M (yQ(to +s,8)y (to + s,¢€) +
J +
+ 2%(to + 5,€)2 (to + 5,¢))ds
. =0. (5.13)
7(¢)
/ 6785/2 COS(0+5) (y2(t0 + 57€)y/(t0 + 538) +
0

+ 2% (to + s,8)2 (to + s,¢))ds

We take ¢ — 0 in equation (5.13). Then the second term vanishes from equati-
Oz (t0,0) _ lim T4 (to, €) — 24 (to,0) and

on (5.11) and there exist the derivatives 1
E— I

axi{—(thO) — lim .Ti,,_(to7€) - xi‘r(tO)O)

. Here we can take arbitrary t(, therefore, we

Oe e—0 I3
t ox’, (t,0 ) t,
have the derivatives 02+(t,0) and x+( ) Furthermore, we obtain M =0
92, (£,0) o 0 Oe
and ik AU L/ 0.
Os

Note that, in the computation of the limit, we can exchange the limit and the integral.
We show below this fact. The integral of equation (5.13) is written as follows using T'
defined in equation (5.1):

7(e)

in(0

[ eI (1 45,21 0+ 5.2) + 200+ 5,0)2 10 +,9)) ds =
+

0

T

_es/o5in(04s

= [t =P 20 1 st 4 5,00+
0

+2%(to + 5,)2' (to + 5,€))ds,
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where

1, fors < 7(e),

]-'r(s)(s)
0, fors> 7(e).

Now we find

L) (s)e to + s,6)y (to + s,€)+

_es/o5in(0s
/2 ‘(9++ )(yQ(

<

+2°(to + 5,)2' (to + 5,€))

1
< Q—‘y2(t0 +5,)y (to + 5,6) + 2%(to + 5,€)2 (to + 5,¢)| < M
+

for 0<s<T.

Here, for the sake of convenience, we use the same symbol M as in relations (5.2), but

they are different from each other. Then we can apply the bounded convergence theorem
and we obtain

7(e)

. _es/o5in(045

gll% e ¢ /2 (++ )(y2(
0

to +s,)y (to + s,6)+

+2%(to + 5,€)7' (to + 5,€))ds =
T

in(6
= / lim ].7.(8) (8)6765/27811,1( +8) (yQ(to —+ S, €)yl(t0 + S, €)+
e—0 9+
0

+2%(to + 5,2)2' (to + 5,€))ds =

T
= / 1-(0)(s)sins lir% (v (to + s,8)y (to + s,8)+
£—
0

+22(to + 8,€)2' (to + 8,€))ds = 0.

In the above equation, we use the relation 7(¢) — 7(0) as € — 0. In fact, we have

lim 4 (t+7(¢),€) = x4 (t +7(0),0) from the assumption lim ri(t,e) = 24(t,0) =

= y(t) + 2(t) and the periodicity conditions lim . (t+7(e),e) =24(t,0) and 4 (t +
E—

+ 7(0), 0) =x4(t,0).

0" x4 (to,0
(ii)) We assume that P, (v), v < n, is true, i.e., there exist % and
6”
o’ (t,0 Oz (tg,0 v’ (to, 0
Telto,0) g P10, 0) _ 5 9724 (t0,0) _ 0, v = 0,1,2,...,n. Then we

v dev T e

e
show that P (n + 1) is true. Dividing equation (5.12) by "!, we obtain

ISSN 1027-3190. Vkp. mam. scypH., 2009, m. 61, Ne 8



NON-EXISTENCE THEOREM EXCEPT THE OUT-OF-PHASE AND IN-PHASE SOLUTIONS ...

1127
n ayl‘+(t0,0)
i (toe) =y ——h e
= Oe
(1 _6757(6)/2UT(E)(0+)) Lo et +
e/2 -1 0"z (t0,0)
/ Pyltoe) = Do 5 e
v=1
€n+1
7(g) (0 / (i 4 )
/ e—es/2sm(+s){(gg+(t0 +s,e) — z(to + s,s))2u—
o, e
0
x4 (to + s,¢
—2(to + s,¢€) (y(to +s,6) —z(to + 376))+(05n)}d5
+ 7(e) / (t + ) - O
/ e==5/2 cos(0,.5) { x4 (to + 5,6) — 2(to + 5, 5))221%(357”5’5_
0
t
2 (to + s,€) (y(to + s,€) — 2(to + s, 5))W}d‘s
z1(to +5,¢)

Here, if we take ¢ — 0, then the second term vanishes since lim
£

ETL
z!, (to + s,€)

= 0, lim 1 = 0. Therefore, we find that there exist the derivatives
£— gn

ot (tg,0 o’ (ty,0) . _ . .

83;:_510 ) o :L__Elo ) Since t( is arbitrary, we have the existence of
otz (¢,0 ontla! (¢,0 . Tz (¢,0

a;nt(l’ ) 9en +(1 ) Furthermore, we obtain 8:%(1’) = 0,
ot (t,0)

Hentl -

(iii) From (i) and (ii), we obtain that P (v) is true for any v € N.

The fact that the —part, i.e., P_(v), is true for any v € N can also be proved in the
same way using the relation

y2(37 5)3//(37 £)— ZQ(S,E)Z/(&E) =
= (z_(s,e) + z(s,e))Qm’_(s,e)—F
+2'(s,€) (y(s,€) + 2(s,€))x_(s,€).

We obtain the following lemma from Propositions 5.1 and 5.2.
Lemma 5.2. We assume that y(t,c) and z(t,¢) are analytic with respect to the

x4 (to,0 z(to, € z_(tg,0
parameter €. If +(t0, 0) = 0, then +(t0,€) = 0. Moreover, If (t0,0) =
', (to,0) 'y (to,€) z’_(to,0)
z_(to, €
=0, then (to, ) =
' (to,€)
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. ‘T+(t07€) .T_(tg,&)
Proof of Theorem 5.1. From Lemma 5.2, if # 0 and #
Ii{- (th E) zl (th 5)
x4 (to,0) x_(to,0) L )
=% 0, then # 0 and # 0. However, this is inconsistent
', (to,0) x’_(to,0)

with Proposition 2.2 under the assumption that k is irrational, which states that the
dynamical system X, does not have solutions except the out-of-phase and in-phase
x4 (t,€) x_(t,e)
ones. Therefore, we have =0 or = (. Consequently, the
@' (t,€) x’ (t,e)
dynamical system 3. ; does not have any other periodic solutions except the out-of-
phase and in-phase solutions.
We give the following consideration for Theorem 5.1.
Remark 5.1. We consider the averaged system of X, ;. First, using the symbols
x4+ and 2_, we transform X j into

1"

T, +ry = Z(x;_(él—a:a_ —z%) - 23:/_x+a:_),

" £ ’ ’
z_ 4+ (1-2k)z_ = 1(x7(4 —2% —2%) - 2x+x+x,>.
Passing to polar coordinates xy = a sinf,, 9[:,+ =aqcosfy, x_ =a_sinf_, P

= a_+v/1 — 2kcosf_ and averaging the right-hand side of the obtained system with
respect to the phase variable 6, §_, we obtain the following averaged system:

a) = 35—2(16(11 — 2a1a3 — a?),
! € 2 _ 3
ay = 3—2(16a2 — 2aza7 — aj),
(5.14)
0, =1,

0, =1 — 2k,

where a1, as, 01, 62 denote the averaged counterparts of ay, a_, 6, 6_. From the
two dimensional system given by the first two equations of equation (5.14), we find

. 4 4
four fixed points: (0,0), (4,0), (0,4), WAl
unstable and two stable, while the last one is a saddle. Paying attention to the phase
variables, we conclude that the averaged system has four invariant tori: one unstable
zero-dimensional (the zero solution, i.e., the origin), two stable one-dimensional (the
limit of the out-of-phase and in-phase solutions), one semistable two-dimensional.

According to a theorem from [16], for small enough ¢, in proximity of the above-
listed invariant tori of the averaged system, the corresponding analytically smooth invari-
ant tori of the system X j lie, which have the same dimensions and stability. For small
enough ¢, periodic trajectories on the semistable two-dimensional torus cannot be put in
the form of analytic functions in ¢ satisfying the condition of periodicity.

We also present the next theorem, which shows that the orbits of 3. as ¢ — 0
become the specific orbits in X .

). The first three are focuses, one
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e
8

Theorem 5.2. Let k be irrational and let 0 < k < . The orbit of 3¢ 1. as

| —

e — 0 is presented by
Y (,0) +y%(t,0) = 4,

22(t,0) + 2"(t,0) = 4
at in-phase, i.e., y(t,0) — z(t,0) = 0, and

12
2 Yy (t70)
t,0 — =1
v+ T =4
2
2 Z (t,O)
t,0 —— =4

at out-of-phase, i.e., y(t,0) + 2(t,0) = 0.
The period of in-phase and out-of-phase, which are denoted by 7 (¢) and T7_(¢), are
represented as

2
1-—2k

T4 (€) =27 4 o(e), T_(e) = + o(e).

Proof. We prove this theorem as the same procedure of Proposition 3.2 without any
special assumptions.
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