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DIRECT AND INVERSE PROBLEMS
FOR THE DIRAC OPERATOR WITH SPECTRAL PARAMETER
LINEARLY CONTAINED IN BOUNDARY CONDITION

ITPAMI TA OBEPHEHI 3AJAYI [1JIA OIIEPATOPA [ITIPAKA
I3 CHHEKTPAJIbHUM ITAPAMETPOM, .
10 JITHIMHO BXOOJUTDH 10 TPAHUYHOI YMOBHU

We investigate a problem for the Dirac differential operators in the case where an eigenparameter not
only appears in the differential equation but is also linearly contained in the boundary condition. We
prove uniqueness theorems for the inverse spectral problem with a known collection of eigenvalues and
normalizing constants or two spectra.

HocnifzKeHo 3agady A/ AudepeHiaapHnX onepaTopis [ipaka y BUNagKy, KOJM BJIACHUIA MapaMeTp
He TiJIbKU MPHUCYTHIN y AudepeHiaibHOMY piBHAHHI, ajie i JIHIHO BXOAUTH /10 TPAHUYHOI YMOBH.
[loBe/ieHO TeopeMH €JMHOCTI B 0OepHEHiii CrieK TpaJsibHiil 3a/1a4i 3 BiIOMUM HAOOPOM BJIACHUX 3HAUYEHb i
HOPMYIOUUX CTAJIMX 200 /IBOX CNEKTPiB.

Let us consider the canonical system of Dirac differential equations

ly := By + Q(x)y = Ay, xe(0,m), (1
[ 0 1] { p(x) g J ¥ (%)

where B = , Qx) = , y(x) = , p(x) and
-1 0 g(x) —p) Yo (x)

q(x) are real valued functions in L,(0,m), A is a spectral parameter.

By L we denote the boundary-value problem generated by equation (1) with the
boundary conditions

U(y) := y»(0) =0, 2
V(iy) := k(}’z(n)"'Hyl(n)) - Hyjy|(n) — Hyy,(m) =0, 3

where H, H, and H, arereal numbers. We assume that p := HH, — H, > 0.

Boundary-value problems often appear in mathematics, mechanics, physics, geo-
physics and other branches of natural properties. The inverse problem of reconstruc-
ting the material properties of a medium from data collected outside of the medium is
central importance in disciplins ranging from engineering to the geosciences.

Eigenvalue dependent boundary conditions were examined even before the time of
Sturm and Liouville [1]. Linear conditions like (2) and (3) were investigated in [2, 3].
Direct and inverse problems for Dirac operators are fairly well studied (see [4 — 6] and
references therein).

The inner product in the Hilbert space H = L,(0,m)@ L,(0,1)@ C is defined
by

Y,Z) :=

S t—3a

1
(yl (x)zl(x) + yz(x)zz(x))dx + E}’3Z3
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for
yi(x) 21(x)
Y= |y»n®|, Z=|znkx|eH
y3 23

Define an operator T (see [3]) acting in H such that

[ BY'(x) + Q(x) y(x) ]
T(Y) :=
Hlyi(n) + H,y (1)

with

D(T) = {YEH: Y=(y19y2’y3)T’ yp)’z GAC[()’TC]a

IY € H, y,(0)= 0, y;(0) = y,(m) + Hyl(n)}.

Itis clear that T is a closed operator in H and the eigenvalue problem of operator T
is adequate problem of (1) — (3).

1. Properties of spectrum. In this section, we investigate some properties of
operator T and its spectrum. We assume that g(x) = 0 (see [4]).

Lemma 1. (i) Two eigenfunctions y(x,\;) = [y;(x,7,), y2(x,7ul)]T, z(x,\y) =

= [5,(x,A9), 25(x, A" corresponding to different eigenvalues L, and \, are
orthogonal in the sense of

T 1
DG ) 200 hg) + 9y (A 29 (A e + S = 0. )
0

(i1) All eigenvalues of the operator T (or problem L) are real numbers and
all eigenfunctions are real valued.

Proof. (i) Since the eigenfunctions y(x,A;) and z(x,A,) are the solutions of
the system (1), the following equalities hold:

yé(x,ll)+{P(X)—M}yl(x,%]) =0,
yi(-xvx‘])-i-{p(-x)+7\‘]}y2(-x’7\‘]) = O’

0’

25(x, Ap) + {p(x) = Ay} 7y (x, 1)

21, A) H{p(x) + Ay} 25 (x, Ay) 0.

If the multiply these equalities by z;(x,X,), — 2,(x,A,), — y,(x,A;) and y,(x,})),
respectively, to get

d
E{h(x’}‘l)ﬁ(xv?‘z) - yl(x,kl)zz(x,kz)} =

= A=A { ) 2 hy) + yo (64 25(x Ay |

Integrate last equality from 0 to © with respect to x to obtain
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Ay =) [{n @A) (0 h0) + 3206 A 2 (6, Ay) e =
0

= {0 ) (0 h) = v, (A z(xAy) |

Since the functions y(x,A;) and z(x,A,) are eigenfunctions, the equality
T
(;\’1 - }\’2) J { yl(-xa A’]) Zl(-x’ 7\'2) + yz(.x, ?\,1) ZZ(x’ }\'2) } dx =
0

= y(m, 7‘1)22(75’ 7¥2) = ¥ (m, 7L1)21(7t, 7“2) (5)

is valid. On the other hand, from (3) we have
M [y ) + Hy(mA) | = Hyy(m ) + Hypy(m, L),

A [, hy) + Hoy(mhy) | = Hizy(mAy) + Hyzy(m,Ay).

Let us multiply these equalities by z,(m, A,) + Hz;(®,A,) and y,(m, X))+ Hy, (T, ),
respectively, and subtract side by side to get

Ay =) [ v Ay + Hy (m A ][ (. Ay) + Hzy(m,Ay) | =

= —p( 3™ A) 5 Ay) = ¥, (A (1)), 6)
The proof is completed by using (5) and (6).
(i) Let A # A, then y(x,A) and Yy(x,A) are the different eigenfunctions of

operator T associated with eigenvalues A and L, respectively. From (i) we have

S — 3

_ _ 1 _
(yl(x, A yl(x’x)"')’z(x’}") yZ(x,k))dx + E)’3Y3 =0,

then
f 2 2 1 2
J{|y1(x,7\.)| +|y2(x,7\,)| }dx+5|y3| = O’
0

hence, y;(x,A) = y,(x,A) = y; = 0. This contradiction gives the proof of (ii).
The lemma is proved.
Let us denote the solutions of (1) by ©(x,A) and W (x,A) satisfying the initial

conditions
0 Hy, -\
0(0,A) = s W(mA) = , @)
1 AMH — H|

respectively.
It is shown in [7] that every solution of equations (1) satisfying the above initial
conditions, has a representation as follows:

sin Ax n sin At
QA = [ ] + [k, z)( ]dt, ®)

—Cos Ax 0 —Cos At
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Kii(x, 1) —Kp(x,1)

where K(x,t) = and Kij(x,.)eLz(—x,x), i,j=1,2, for
Koi(x,1) =Ko (x,1)

every fixed x €[0,m].

One can easily check that the following asymptotic formulae hold for sufficiently

large |A|:
¢;(x. %) = O(exp|t|x), j=12 O<x<m, ©)
¢j(x.0) = O(|A|exp|t|x), j=12 0<x<m, (10)
v 0 = O(|Aexp|t|(m-x)), j=12 0O<x<m, (11)

where T = ImA.
The characteristic function A(A) of the problem L is defined as follows:

A = A(@y(mA) + Ho(mA)) = Hio (T, 1) + Hy, (T, 1) (12)
and zeros of A(A) coincide with the eigenvalues of problem L.

We define norming constants by

o, =

S 3

1
(970e,) + 9301, )dx + S0l (13)

Lemma 2. The eigenvalues of the problem L are simple and separated.
Proof. Let us write the following equations:

V5,0 + {p(x) = My (x,h) =
YA + {p(x) + Ay, (e, h) = 0,
05(x,A,) + {p(x) =X, } @ (x, 1) =
@1(x,A,) + {p(x) + A, } @y(x, A,) =

[
e

[
L

[
e

Multiply these equalities by @;(x,%,), — @,(x,A,), —y;(x,A) and y,(x,A), re-
spectively, to get

d
s G EERSE HEYMATHCYS) o

= O, = V{01 A) W (6 + 9,004, ) Wa(x, ) ]
After integrating last equalities from O to 7 with respect to x, we obtain

[ 01 M) W6 A) — @, (A ) Wy (6 M) | =

= (=0 [{o1 ) Wi ) + @(x 4, wo(x, )
0

Let the functions @(x,%,) be an eigenfunction. Use (2) to get
T
J{onG ) w00 + 0y A )y (e M) fax =
0
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1
= _x{%(n,l,,)\llz(nsx)—(Pz(n,kn)\lll(n,k)—W1(0,7M)} =

n

A(?»)

= ——{(p2(1r M)+ Hoymh) Hw, () + Hy (A |+ ———— —

If we pass throuth the limitas A — A, and use the equality y(x,1,) = B,¢(x,2,),
then

0

b1 1 )
Bn{J‘{(plz(‘x’}\’n)_{—(p%(‘x’}\’n)}dx+Bq)g} = A()\*n)

Hence, A'(A,) = B,o,, where B, = —y,(0,,). Itis obvious that A'(A,) # 0.
So, eigenvalues of the problem L is simple.

Since the function A(A) is an entire function of A, the zeros of A(A) are sepa-
rated.

The lemma is proved.

Theorem 1. For the eigenvalues M, and the normalizing numbers o, of the
problem (1) — (3), the following asymptotic formulae hold:

0
A, = A, +€,, (14)
o, = T+Y,, (15)
where €,, v,€l, and kg are the zeros of Ay(A) := —cosAn+ H sinAw,

ie., 7»2 = n+larctani.
T H
Proof. Using (8), we get

AAN) = M-cosAn+HsinAn) — H;sinAn + H, cosAT +

Y
+ A (Kyy(mn+ HE) (ro0))sin M dt + A [( Kyy(r,1) + HEK p(m,1) ) cos e dt —

0

O —y 3

T
— J(HKy (o) + HyKy (0 ) sinAe dr — [( HyKy (1) + HyKoy (1, 1) ) cos A dt
0

S t—3a

Since the eigenvalues are the zeros of A(A), we can write the following equation
for them:

H H
— CcOSAT + Hsin A — Tlsinkn +Tzcos7m +

Y
(Ky (m.0)+ HK, (m,1) ) sin At dt + J(Kzz(n,t)+HK12(n,t))cos Aedr —
0

+

O — 3

1 T
XJ HlKll(n,t)+H2K21(n,t))sinktdt -
0
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1
»

(H\K5(m,0) + HyKy, (1) ) cos At dt = 0.

S — 3

Denote
0
7\'}1

+%}, n=0,*x1,£2,...,

G, = {keC: |A]=

26,n=0,il,i2,...}, A = -

Gy = {n: [h-20

where 8 is a sufficiently small number.
Since |A0(k)| > Cj exp(|‘c|1'c) for A e 65 and |A(7\.)—A0(7\.)| < Cj exp|1¢|ﬂ:

for sufficiently large values n and A € G, , we have

|a,M)| = Csexp(]t|n) > |A) -2,
Using the Rouche theorem, we establish that, for sufficiently large n, the functions

Ay(M) and Ay(A) + { A(?L) - Ao(k)} = A(L) have the same number of zeros inside
the contour G, . Thatis, they have (2n+1) numbers of zeros: A_,,...,Aq,...,A,.

Thus, the eigenvalues {A,}, 5, areof the form A, = AJ+e,, where lim ¢,
n— oo

=0.
In last equality, if we put A" +¢, instead of A, and use A,(A0+e,) =

= A'o(kﬁ) g, +o(g,), weget £, €l,.
Hence, the asymptotic formula (14) for the eigenvalues A, of the problem (1) - (3)

is true.
Finally, to prove (15), we can write the following equalities from (8):

©,(x,A,) = sinA, x+ f,(x), @y(x,A,) = —cosA, x+g,(x),
where
fx) = [Ky(nsinh,ede + [ Kpp(x,n)cos ke,
0 0
X X
2,(x) = [Ky(x.0)ysind, e + [ Ky(x.tycos e,
0 0

and f,(x), g,(x)el, forall x e (0,m). Using (3) and (13), we get

I
(9F0en,)+ @30, h,) ) ax + —S(Hom,) + By, A)) =
p

o, =
n

n

St—3a

dx +7v,.

S — 3

Hence, o, = n+vy,, v,€l,.
The theorem is proved.
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Remark 1. If the function Q(x) is differentiable, eigenvalues and normalizing
numbers of the problem (1) — (3) satisfy the following asymptotic estimates:

y, = 2042 b

n n
o, = n+h+§—",
n n

where (,,E,€l,, §,, v, €l..

2. Weyl solution, Weyl function. Assume that a vector function ®(x,A) =

Dy(x, 1)
is a solution of the system (4) that satisfies the conditions ®,(0,1)
D (x, 1)

1 and A(D,(m) + HO(n)) = H,®,(n) + H,P,(m). The function P(x,A) is
called the Weyl solution of the boundary-value problem L.
Ci(x, )

Cr(x,))

Let C(x,A) = ( ] denote solutions of system (1) that satisfy the initial

1
conditions C(0,A) = [ ] It is clear that the functions Wy (x,A) and C(x,A) are
0

entire with respect to A. Then the function W (x,A) can be represented as follows:

VA = y(0,M)e(x,A) + AR C(x, 1)

or
\ll(x77\‘) _ _ WZ(O’X)
—A(k) = C(x,\) —A(X) Q(x,\). (16)
Denote
W2(07 7\')
M = - —=—" 1
A) ALY (17
It is clear that
D(x,\) = C(x,A) + Mo (x,N). (18)

The function M(A) = — ®,(0,A) is called the Weyl function for the problem L.

The Weyl solution and Weyl function are meromorphic functions with respect to A
having poles in the spectrum of the problem L. Relations (17) and (18) yield

W (x,A)
D(x,\) = ——. 19
(x, 1) A (19)
The lemma is proved.
Theorem 2. The following representation is true:
1 - 1 1
MA) = ———+ + . (20)
oty (k= Ag) % {an(x—xn) am}

Proof. Note that Y (x,A) = Wy, (x, M)+ fi, W,(x,A) = Y, (x,A) + f,, where
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fixh) = Jsin?»(t—x)lpl(t,k)p(t)dt+Jcosk(t—x)luz(t,K)p(t)dt,
HaA) = [eoshe—x)y, e, Mp@yde = [ sin k(= x)y, (6 Wp(o) dr .

If we use these equalities, we get

V0.0 ¥euOh) _ vpOM+fh  WepOd) _
V00 w00 w00+ vy (0.4)

— (\IIOZ(O’ 7\‘) + fZ)WOl(()’ 7\‘) - (\IIOI(O’ 7\‘) + f])\lfo2(0, 7\«) _
(W10, + f)w(0,2)

f fi

M) — My(\) =

= =2 - Ly ).
A A o)
- (A
since [AW| > Cg|A[e ™M we have Ml‘iin e “"“% = 0 and, for
A € Gy, the equality
Ho__h
M) = My(A) = —— - ——M,(A
(A) = My(A) AN A o)
yields
lim e, sup [M(A) — My(M)| = 0. 1)

‘M—”" AeGy

The vector functions @ (x, A,) (¢ (x, 7»2 )) and y(x,A,)(y,(x, kg )) are eigenfunc-

tions of the problem L(L;). Therefore, there exists constants Bn(Bg) such that

vh,) = B0, (wo(xAy) = Byog(xAy).
Since y,(0,A,) = B,®,(0,1,), we get the following equalities:

B, = w,(0.1,), Bg = ‘Voz(097‘2)~
Since y,(0,A) and A(A) are the analytic functions at the point A = A, and

n

y,(0,A,) # 0, AA,) = 0, A’(A,) # 0, we have that the functions M(A) and
M, () have simple poles at these points. Hence, using the equalities o, ¢,(0,%,) =

= N(h,) and @, (0,4)af = - AG(AD), we get

n

Res(MOyA=1,) = Y2O0r) 1
A(L,) o,

(22)
Wz(o,kn) _ L

RCS(MO(}\.),XZXI,!) = W = 0"
0\ o,

Denote T', = {A:|A|=|L,|+¢€}, where & is a sufficiently small number. Consi-
der the contour integral
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I,(x) =

wadu, AeintT, .

2151'r A—

By virtue of (21), we have lim /,(x) = 0. On the other hand, according to the theo-
n— oo
rem on residues, relation (22) yields

1 1
I,(x) = -M®) + My(A) - Z S 2

A, €intT, Oc11(7\’r1_7") A eintT, o (7\.0 7\,)

Hence,as n— oo, lim [, (x) = 0 imply
n— oo

- 1 1
MO = My(A) + - . 23
M) = My Eo[ocn(k—%n) ag(x—xg)J (23)

It follows from the function M (A) that

<1 1
My(\) = 2—0[ ]

oo A-A0 x?,

The comparison of the last two equalities yields

1 - 1 1 1 - 1 1
MA) = —+ ) —|——+— 1|+ - =
oph ,,%ag (x—xg xﬁ] ,go(ocn(k—kn) ag@_xg))
1 1 1
+ - +
chl og(A=2%) chk

+ i 1 . 1 _ 1
= 0‘0» A ol o) -2 )

Hence,

1 - 1 1
MOy = — 4 " ,
“ 0y (A =2) E‘l{am 06,,(7»—7»,,)]

The theorem is proved.

3. Inverse problem. In this section, we investigate the inverse problem of the re-
construction of a boundary-value problem L from its spectral characteristics. We con-
sider three statements of the inverse problem of the reconstruction of the boundary-va-

lue problem L from the Weyl function, from the spectral data {A,,a,},,, and

from two spectra {A,,1,},5¢-

Let us formulate a theorem on the uniqueness of a solution of the inverse problem
with the use of the Weyl function. For this purpose, together with L we consider the

boundary-value problem L of the same form but with potential Q(x). It is assumed
in what follows that if a certain symbol o denotes an object related to the problem L,
then & denotes the coresponding object related to te problem L .

Theorem 3. If M(\) = M(\), then L = L. Thus, the boundary-value prob-
lem L is uniquely defined by a Weyl function.
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Proof. We introduce a matrix P(x,\) = [ij(x,K)] ja=12- by the formula
I 0T 1
P(x,?»)[~ _ ] = ( ]
¢ D@ ¢ D
For the Wronskian of the solutions

3 0 - D,
(p = ~ s Q] = ~ )
(03} @,

W{pG, ), &)}

we have

P06, M) D,y (x,A) — @y (x, ) D, (x,1) = 1.

Take this into account and multiply both sides of the following equation from left by
P, _d)lJ
-0 P

(Pll(X,M Plz(x,x))[@l élJ ) (cpl cInJ
Prsd)  PasMN\§, @) e @)
in order to get

(Pll(x»k) Plz(x»X)J ~
Pyi(x,A)  Pn(x,A)

the matrix (

[(Plci)z —019; 9P +‘I)1(T>1J
0D - D20, 02 @) + D2,

or
Py = 06N D, (x,0) — @06, M), (x, 1),
Py(x,A) = —@(x, M) D, (x,A) + @, (x, V)P (x, L),

] (24)
Py(x,A) = @,(x, M) D, (x,A) — Dy (x, 1) P, (x,A),
Py () = — @, (x, V)@, (x, h) + @, (x, 1), (x, 1),
(p](x97\’) = P11¢’1(x,7\-) + })12()(, }\,)(T)2(X, )\*)’
(PQ(X’A') = P21¢)](x97") + P22(x97\')q)2(x’}\')’
(25)

@, (x, 1) = P (x, )@ (x,A) + Py (x, )P, (x, 1),

D, (x,A) = Py (x, )D,(x, L) + Ppy(x, ) D,(x, ).
Relations (16) and (18) yield

a1 = BEDLOEDROD] g [k B |
) AV AV
_ NED[#00 -0 b ] HCRSRRAERS
Po(x,A) = A + @ (x, ) Ay i0)

ISSN 1027-3190. Ykp. mam. sxypn., 2009, m. 61, N° 9
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@[ -6, ] V) )
Pl = A ©0M Ty A |
L u@EM[906 M) - e ()] v h) A
Py, M) ~1 = A +Oa(r )| T -

It follows from the representations of the solutions @ (x,A) and W (x,A), the inequa-

lity |A(X)| > Cs | l| e‘ m A , and the Lebesque lemma that

lim max P AMN-1 = 1 P. A —1

oo 0<x | 1102 1| At 05k [P 1] =

LeR AeR

= lim max |P12(x 7u)| = lim max |P2](x K)| = 0. (26)
A— e 0<x<m A—>oo 0<x<T
AeR AeR

According to (18) and (25), we have

Py = @6 WGy 0) = G5 M6, ) + (M) = M) 9, (x, M) Gy (x, 1),
Po(x,h) = C(x, M§y(x,h) = 9,(x, M) Cy(x, 1) + (MA) = MA) 9, (x, M) P, (x, 1),
Py, ) = 0y MG (0, A) = Co(x, WPy (x, ) + (M) = M) 0y (x, M) 9y (x, M),
Pp(x,h) = Cy(x, M (x, 1) = Ci(x, )@,y (x, 1) + (M(W) = ML) 9y (x, M) B (x, 1),

Thus, the functions Pj (x, A) are entire with respect to A for every fixed x as

M(\) = M(L). From (26) we have

Py(x,N) =1, Py(x,A) =0, Ppy(x,A) 1, Py(x,h)

Il
e

Substituting these relations in (25), we get
(pl(-xs 7\') = (T)](x’}\‘)’ (p2(x9}\‘) = (pz(-x’}\')s
D, (x,0)

D,(x,)), Dy(x,L) = Dy(x,})

forall x and A. Hence, L = L.

Theorem 4. If A, = 71" and o, =0, forall neZ, then L= L. Thus,
the problem L is uniquelly defined by spectral data.

Proof. Since A, =4,, o, =&, forall neZ and

MQ)

1
ao(x Xo) nz;[a;ﬁ an(x—xn)]’

- 1 — 1 1
M}\, = = ~ ~ P’y
» ao(x—x0)+z{agxo+a(x—x)J

n=1

we get
M) = M.

From Theorem 4 we prove that L = L.
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Let us consider the boundary-value problem L; in which we take the condition

y,(0,A) = 0 instead of the boundary condition (2) of the problem L. Let {u,},s,

be the eigenvalues of the problem L.

Theorem 5. If A, =A, and W, ={i, forall neN, then L=L, ie., the

problem L is uniquelly determined by the sequences {\,} and {u,}.

~ A
Proof. Since A, =A,, AEX; is an entire function in A. Moreover, A(A) =
~ ) . A .
= A(L), since lim —— = 1. On the other hand, it is easy to see that y,(0,A,) =
A— o0 A(L)
o (0.5 o : A(,) .
= y,(0,A,) as u, =[i,. So, from the equality o, = _%(0—77»,1)’ a, =0, is

obtained. Thus, the proof is completed by Theorem 5.
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