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ON REMOVABLE SETS OF SOLUTIONS
OF SECOND-ORDER ELLIPTIC AND PARABOLIC
EQUATIONS IN NONDIVERGENT FORM

PO YCYBHI MHOXUHMU PO3B’A3KIB EJIIIITUYHUX
TA TAPABOJIIYHUX PIBHAHD APYT'OI'O TOPAAKY
Y HEAUBEPTEHTHIN ®OPMI

We consider nondivergent elliptic and parabolic equations of the second order whose leading coefficients
satisfy the uniform Lipschitz condition. We find the sufficient condition of removability of compact with
respect to these equations in the space of Holder functions.

Po3mIsIHYTO HEIMMBEPreHTHI eNNTHYHI Ta NapaOoliuHi PIBHSHHS JAPYroro IOPSJKY, Y SIKHX KOeQilieHTH mpu
CTapIINX 4YIeHAX 33J0BONBHAIOTE ONHOPinHY yMoBy Jlimmmus. 3HaieHo 10CTaTHIO yMOBY YCYBHOCTI KOMITa-
KTy BIJIHOCHO IMX PiBHAHB y IpocTopi (yHKiit I'enpaepa.

Introduction. The subject of this paper is finding the sufficient condition of removabi-
lity of compact for nondivergent elliptic and parabolic equations in the space C%* (E)
This problem have been investigated by many researchers. For the Laplace equation the
corresponding result was found by L. Carleson [1]. Concerning the second-order elliptic
equations of divergent structure, we show in this direction the papers T. S. Gadjiev,
V. A. Mamedova [2], E. I. Moiseev [3]. For a class of nondivergent elliptic equations
of the second order with discontinuous coefficients of the removability condition was
considered by I. T. Mamedov [4]. Note also the papers E. M. Landis [5], T. S. Gadjiev,
V. A.Mamedova [6], in which the conditions of removability have been obtained for a
compact in the space of continuous functions. In [7], T. Kilpelainen and X. Zhong have
studied the divergent quasilinear equation without minor members proved the removabi-
lity of compact. Removable sets for pointwise solutions of elliptic partial differential
equations was found by J. Diederich [8]. Removable singularities of solutions of linear
partial differential equations were considered in R. Harvey, J. Polking [9]. Exceptional
sets at the boundary for subharmonic functions were investigated by B. Dahlberg [10].

The aim of our paper is to consider the removability question from the single point of
view for nondivergent elliptic and parabolic equations. The paper consists of three parts:
in the first part, we consider the Dirichlet problem for nondivergent elliptic equation of
the second order; in the second part, we consider the Neumann problem for nondivergent
parabolic equation of the second order; in the third part, we consider the mixed problem
for nondivergent parabolic equation of the second order.

As opposed to previous works, in this paper, in terms of Hausdorff measures, more
exact geometrical characteristics of removability are given. Note that in most cases
in previous papers, characteristics of removability were basically presented for narrow
class of equations in terms of capacities. The value of our paper is that for the first
time in this work, we are considering the wide classes of the nondivergent elliptic
and parabolic equations with minor members. Besides, the removability conditions of
compact is obtained in terms of Hausdorff measure.
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1486 T. S. GADIJIEV, V. A. MAMEDOVA

1. Let’s consider Dirichlet problem for nondivergent elliptic equation of the second
order. Let D be a bounded domain situated in n dimensional Euclidean space R™ of
points x = (z1,...,2,),n > 3, 9D be its boundary. Consider in D the elliptic equation

Lu= iaii( x)u,, —l—Zb u, + c(x)u =0, (D

ij=1

in supposition that {a;;(x)} is a real symmetric matrix, moreover,

€)% < Zaw 2)6& <y ¢?, €€R", weD, )
i,j=1
aij(x)ECl (5), ,j=1,...,n, 3)
‘bz(ﬂf)|§b0, 7b0§0($)§0, izlv"'vna x € D. (4)
ou 0%u

Here, u; = i,j=1,...,n,v € (0,1] and by > 0 are constants.

87331‘7 i = axi&rj’
Besides we’ll suppose that the lower coefficients of the operator £ are measurable
functions in D. Let A € (0, 1) be a number. Denote by C* (ﬁ) a Banach space of the
functions u(z) defined in D with the finite norm

uw(x) —u(y
[ullgor(py = sup |u(z)| + sup [u@) —u )] )|
zeD x,ny |gc — y|
Ty

The compact E C D is called exceptional with respect to the equation (1) in the
space C%* (D) if from

Lu=0, z€D\E, ulyp =0, ux)e c"* (D) Q)

it follows that u(z) = 0 in D.

Denote by B (z) and Sg (2) the ball {z: |z — 2| < R} and the sphere {z: |z —
—z| = R} of radius R with the center at the point z € R"™ respectively. We’ll need
the following generalization of mean value theorem belonging to E. M. Landis and
M. L. Gerver [11].

Let the domain G be considered between the spheres Sg (0) and Sar (0) and let the
part of the boundary of this domain, which is located strictly inside of lair R < |x| < 2R,
be a smooth surface. If we specify it in this way, it shows 0G N {z : R < |z| < 2R}
should not be AG. Further, let in G the uniformly positive definite matrix {a;;(z)},
i,j =1,...,n, and the function u(z) € C? (G) N C' (G) be given. Then there exists
the piecewise smooth surface ¥ dividing in G the spheres Sk (0) and Sz (0) such that

/ ’ mes,,G

R2
. . . ou .
Here K > 0 is a constant, depending only on the matrix {a;;(x)} and n, and 5, 52
v

ds < Koscu

derivative by a conormal determined by the equality

3ux _
= 3 a4y @2 s ),
’L

1,j=1
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ON REMOVABLE SETS OF SOLUTIONS OF SECOND-ORDER ELLIPTIC AND PARABOLIC ... 1487

where cos (72, 2;), j = 1,...,n, are directing cosines of unit external normal vector
to 2.

Remark 1. We say that 3 divides the spheres Sg (0) and S2g (0) in G, if there
exists such € > 0 that each broken, laying in G and connecting the points belonging to
¢ neighbourhood of Sk (0) and € neighbourhood Sar (0) has not an empty intersection
with e.

Denote by W4 (D) a Banach space of the functions u(x) given in D with the finite

norm
1/2

||u||W21(D) = / (“2 + Z u?) dx )
5 i,j=1
and let W} (D) be a completion C§° (D) by the norm of the space Wy (D).

By m3; (A) we’ll denote the Hausdorff measure of the set A of order
s > 0. Further everywhere the notation C'(...) means that the positive constant C
depends only on content of brackets.

Theorem 1. Let D be a bounded domain in R", E C D be a compact. If with
respect to the coefficients of the operator L the conditions (2)—(4) are fulfilled, then for
exceptionality of the compact E with respect to the equation (1) in the space C* (E)
it sufficies that

mi 2N E) = 0. (6)

Proof. At first we show that without loss of generality we can suppose the condition
dD € C* to be fulfilled. Suppose that the condition (6) provides the exceptionability
of the compact E for the domains, whose boundary is the surface of the class C'!, but
dD ¢ C*' and when fulfilling (6) the compact F is not exceptional. Then the problem
(5) has nontrivial solution u(x), moreover u|, = f(z) and f(z) # 0. We always can
suppose the lowest coefficients of the operator £ to be infinitely differentiable in D.
Moreover, without loss of generality, we’ll suppose that the coefficients of the operator
L are extended to a ball B O D with saving the conditions (2)—(4). Let f*(z) =
= max {f(x),0}, f~(x) = min {f(z),0}, and u*(x) be solutions of the boundary-
value problems generalized by Wiener (see [12])

Lut =0, zeD\E,  u*[,, =0 u|,=f"

It is evident, that w(x) = u'(x) + w™ (z). Further, let D’ be a domain such that
— —
oD' € C', D c D', D C B, and 9*(x) be solutions of the problems

L% (z) =0, =z e D'\E,
0|, =0, 0|, =fF, 0 (x) € COMND).
By the maximum principle for z € D
0<ub(z) <9t (x), 9 (z)<u (v)<0.

But according to our supposition 91 (z) =9~ (z) = 0. Hence, it follows that u(z) = 0.
So, we’ll suppose that D € C*. Now, let u(z) be a solution of the problem (5), and
the condition (6) be fulfilled. Give an arbitrary € > 0. Then there exists a sufficiently
small positive number § and a system of the balls { B, (z*)}, k =1,2,..., such that

ry <6, EC :leBrk (%) and
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1488 T. S. GADIJIEV, V. A. MAMEDOVA

Zrn 2+)\ (7)

Consider a system of the spheres {Bgm 2*)}, and let D, = D N Bay, (2%), k =
= 1,2,.... Without loss of generality, we can suppose that the cover {Bgrk (xk)} has
a finite multiplicity ag(n). By the Landis—Gerver theorem, for every k there exists a
piecewise smooth surface ¥ dividing in Dy, the spheres S,., (z¥) and Sa,, (z*) such
that

/‘au’dngoscumesnDk. ®)
v Dy, 2

Since u(x) € C%* (D), there exists a constant H; > 0, depending only on the function
u(z), such that

oscu < Hj (27“k)’\ . 9
Dy,
Besides
mes, Dy < mes,, By, (z%) = Q.2"rg, k=1,2,..., (10)
where 2, = mes,, B; (0) . Considering (9), (10) in (8), we get
/‘a“‘dsgclr;g—“*, k=1,2,..., (11)
v
Yk

where C; = K H,2"HA,
Let Dy, be an open set, arranged in D\E, whose boundary consists on unifi-

cation of ¥ and I', where & = :L_lek, I = dD\ ;:L—j1 D/, D} be a part of Dy,

remained after the partition of points, arranged between the ¥ and Sa,, (z%), k =
=1,2,.... Denote by D%, an arbitrary connected component of Dy, and by M -elliptic
operator of a divergent structure

b= Z < ai)

According to the Green formula for any functions z(x) and w(z) belonging to the
. . -/
intersection C? (D%) N C*'(Dy;), we have

Ow 0z
/ (2Bw —wBz)dx = / (ZE)V - w&/) ds. (12)
Dy oD,

Since D € O, we have u(z) € C2 (D4) N C (E’E) (see [13]). Supposing in (12)

z=1, w=u?, we get
/B dx—/u—ds

oD¢,

But |u(z)| < M < oo for & € D. Therefore allowing for (11) and (7) we conclude

/B(u2)d$ < QMCL()Z/ ’gz’ ds < 2Maoclz7’z‘*2+>\ < CQE, (13)
klek

k=1
=

where Cy = 2MaoC,.
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On the other hand
n
B(u?) = 2uBu + 2 Z a;j (x) u,uj,
ij=1

and besides .
B(z) = £u+2di(x)ui —c(z)u,
i=1

Oa;; . . ..
where d; = E 111 %@ —bi(x),i=1,...,n. It is clear that by virtue of conditi-
= j

ons (3), (4) fdz(x)| <dy < o0,i=1,...,n. Thus from (13) we obtain
2 / chL(x)uyldz -2 / u%(x)dw + 2 / Z @i (T) Uy, Uy, dr < Cae.
D! i=1 D! D! 4,j=1
)] Y =

Hence, it follows that for any o > 0

27/|Vu|2dx<2d0/|u|

Dy, Dy

dx + Coe <

u,
i

d
§d0/\/\Vu|2dx+%n/u2dx+Cgsg
DY, DL,

donM>?mes,, D

gdoA/\quda:Jr 3

Dy,

+ Cae. (14)

Supposing A = dl from (14) we conclude
0

/ Vul? de < Cs,
Dy,
donM?mes,, D

A
Hence, it follows that

C . .
where C5 = + =2 (without loss of generality, we suppose that ¢ < 1).
Y

/|Vu|2 dx < C4 (Cg,E, D)
D

Thus u(xz) € W3 (D). From the boundary condition and mes,,_1 (0DNE) =0
we get u(z) € Wi (D). Now, let ¢ > 2 be a number, which will be chosen later,
DY = {z: x € D, u(z) > 0} . Without loss of generality, we suppose that the set Dy
isn’t empty. Supposing in (12) z = 1, w = u we get

/M(u")dmza / u” !
D

oDy,

du

ov

‘ds < Cs (ap,M,0,C1)e.

But, on the other hand
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1490 T. S. GADIJIEV, V. A. MAMEDOVA

M (u’) = ou® *Mu+o(oc —1)u"? Z aij(x)uu; =

ij=1
n n
= Uu"_lzdi(x)ui —ou’c(x) +o(o — 1)u” 2 Z a;;(z)uu;.
i=1 ig=1

Hence, we conclude

olo—1) / u”? Z a;j(x)u;ujde + o / u“_lzdi(:c)uidm < Cse. (15)
i=1

+ i,j=1 +
DZ DZ

Let DY = {z: z € D,u(z) > 0}, D{ be an arbitrary connected component of Dy .
Subject to the arbitrariness of ¢ from (13) we get

(0 — 1)fy/u‘7_2 (Vul® dz < do/u”_lz|ui|d:ﬂ.
i=1

DY DY

Thus, for any i > 0

(0—1)7/ 721V dx <d (ZW) dx+—/ 7dz.  (16)

Df Df Df
But, on the other hand

n

I = —UZ/xiu"_luidx = —Z / x; (u7), dx = n/u"dm,

i=1

and besides, for any 3 > 0

DY DY
< 02—6/7"2u”dx+ % 772 |Vul|” dx
Dy DY

where r = |z|. Denote by w(D) the quantity sup |z|. Without loss of generality, we’ll
xeD
suppose that w(D) = 1. Then

u’dz —|— = [ w2 |Vul? dx.
ﬂ/ [Vul

Thus

UB o o o—2 2
_ 2z < — :
(n 2)/udm_2ﬁ/u |Vul” dz

Df DY
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Now, choosing 3 = ﬁ, we get finally
o
0'2 2 2
/ u’dx < 2 / u? ™% |Vu|” dz. 17

Subject to (17) in (16) we conclude

d doo?
(0 — 1)7/u"_2|Vu|2dx < ( 057”0 + 2;1;) /u”_2 |Vul? de. (18)

DY D

Now, choose p such that

dopn i doo?

—1 .
(0 —1)y>— 2y’

(19)

Then from (17)—(19) it will follow that u(z) = 0 in DY, and thus u(z) = 0 in D.
(-1
d

A/. Then (19) is equivalent to the condition
on

2 2
o> (5255 (&
oc—1 0%
2
n><d0). 21
gl

Let’s choose and fix such big o > 2, that by fulfilling (21) the inequality (20) was
true. Thus the theorem is proved, if with respect to n the condition (21) is fulfilled. Show
that it is true for any n. For this, at first, note, that if n > 3, then condition (21) will

take the form )
d
. (B2,
v

Besides, the assertion of the theorem remains valid if in the problem (5) we replace

Suppose that y =

At first, suppose, that

the condition u|,p, p = 0 by the conditions u|. = 0and 81 =0, where T, UT =

ov

Ty
= OD\E.
Now, let the condition (21) be not fulfilled. Denote by k the least natural number,
for which
do\2
n+k><(0. (22)
Y

Consider (n + k)-dimensional semi-cylinder D' = D x (—dp,0¢) X ... x (=g, 0),
where the number dy > 0 will be chosen later. Since w(D) = 1, we have w(D’) <
< 1+ 8pvk. Let’s choose and fix &y such small that, along with the condition (22), the

condition ,
!
n+k>(¢wgn> (23)
Y

is fulfilled too.
Let
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1492 T. S. GADIJIEV, V. A. MAMEDOVA

Yy = (1‘1,...7$n,$n+1,. ..,JinJrk), E/ =F x [—507(50] X ... X [—60,50] .

k times
Consider on the domain D’ the equation

n n

29 = Z Qi ((E)??w + Z aa? + Zbl(l')'l% + C(l’)'ﬂ =0. (24)

i,j=1 i=1 n+1i i=1

It is easy to see that the function ¥ (y) = u (x) is a solution of the equation (24) in
D'\ E'. Besides, m’;T* =2 (E) = (280)*m; 2T (E) = 0, the function ¥ (y) vanishes

on (8D X [=0,d0] X ... X [—60,50]>\E’ and % =0atx,,; =+d,i=1,...,k,
1%

k times
where % is a derivative by the conormal, generated by the operator £'. Noting that
Y (L) = ~v(L),do (L") = dp (L) and subject to the condition (23), from the proved
above we conclude that ¢ (y) =0, i.e., D'.

The theorem is proved.

Remark 2. As is seen from the proof, the assertion of the theorem remains valid
if, instead of the condition (3), it is required that the coefficients a;;(x), i, =1,...,n,
have to satisfy in domain D the uniform Lipschitz condition.

2. Let’s consider Neumann problem for nondivergent parabolic equation of the
second order. In the case of Laplace operator, the question on removability sets relati-
ve to the Neumann problem was studied in the papers [2] and [3]. The questions of
removability for solutions of the first boundary-value problem for elliptic and parabolic
equations were considered in the papers [5] and [14]. In the paper [15] the analogous
questions of boundary-value problems are considered for linear and quasilinear elliptic
equations.

Let’s consider cylindrical domain Qr = Q x (0,7), 0 < T < oo, in (n+1)-
dimensional Euclidean space of the points (x1,...,2,,t) in R*"*1 n > 2 where
Q) C R" is a bounded domain, Of2 is its boundary. Let E, be some compact set lying on
00N, E=Eyx(0,T), Qo= {(x7t): x €N t= 0}. I'(Qr) =QoU (092 x (0,T)) be
a parabolic boundary Q)7. Let’s consider the following boundary-value problem in Q7 :

Lu= Z Q5 (l‘, t)umixj + ZbZ(xa t)umi + C(.’177 t)u —u; =0 in Qr, (25)

i,j=1 i=1

@
ov

=0, (26)
L(Qr)\E

ou . . . .
where 5, 52 derivative by conormal. 0f2 is a sufficiently smooth surface.

14
Let’s call the set E removable relative to the second boundary-value problem (25),
(26) in C°* (Qr), 0 < A < 1, if from

ou

% =0, U(J,‘,t) € CO.VA (@T) ’ (27)

T(QT)\E

it follows that u(z,t) = 0 in Qr, i.e., problem (25), (26) has only trivial solution.
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Relative to the coefficients we assume the fulfilment of the following conditions:

WP <D ai(m, &g <77 HEP, €€ En, (28)
1,7=1
|laij(z,t) — aj (y,t) | < ki |z —yl, (29)
bi(l‘,t) S bo7 —bo S c(m,t) S 0. (30)
| |

Here v € (0,1], 4,5 = 1,n, by > 0, k; are constants. Besides, the lower coefficients are
the functions measurable in Q7.

Denote by Bp (z) and Sg (z) the ball {z: |z — z| < R} and the sphere {z: |z —
—z| = R} of radius R with the center at the point z € R".

We assume that u(z,t) is a solution of the first boundary-value problem for heat

t
conduction equation and consider the function z(z) = / u?(z,t)dt. Let’s fix an arbi-
0

trary t°, 0 < t% < T. At above mentioned conditions on coefficients, for an arbitrary
€ > 0 we can find the surfaces X;, isolating the ball of radius r; from the ball of radius
2r; in the cylinder Q7 and isolating the singular points I" (Q7) so that

I

The existence of such surfaces follows from [11].
Let Dy, be an open set, situated in Q7 \ E, whose boundary consists of unification of

Y and I', where X = ]:leEk, Dy = DN By, (%), k =1,2,T = 9D\ ;le Dy, D,:f be a

part of Dj, remained after elimination of points, arranged between the X, and Sy, (z*),

ds < C7 osc uri"_2. 31
r; <r<2r;

k=1,2,.... Denote by D, an arbitrary connected component Ds;.
Further,
t t t
0z " 0z - - ou
D = . %W = ZQVi/UUxidt = /QUZViUxidt = Q/uadt,
=1 =1 0 0 =1 0

where v; are directive cosines. Here, we are to take into account that by virtue of cylinder
property of Q7 v; remain fixed at any ¢. By Green formula

t

/ 2/|un|2dt dx—i—/ /uutdt dx_Z/—ds

DE 0 DE 0

or

20/t|Vzu|2dtd:c+/[ (x,t) — u? (2,0) d$<2/’

=

and allowing for u|, = 0 we have

m

t
Cs
V,ul|? dtdr < =2 osc  2r"72
//| r | - 2 z;rjgr§2rj J
i=

Ds 0
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Since |u(x1,t) — u(xa, t)| < Cs o1 — 2o we have

|2(x1) — 2(22)| < / |u(z1,t) + u(ws, )| |u(ws, t) — u(zy, t)|dt <

< 203SQ11P lul |z, — 332|/\ [t| < Cylay — 332|/\7
T

and so

t m
-//|Vmu|2 dtdx < %@Zr;ﬁ%q < Cge.
j=1

Ds 0

Hence, by virtue of arbitrariness of € we obtain that

t
//!Vmu’2dtda? =0,
0

Ds

or ’Vlu(x,t)‘ = 0. Hence, allowing for u; = Au = 0, we have u(x,t) = const. But
ulg, = 0, therefore u(x,t) = 0.

Now let u(z,t) be a solution of problem (25), (26). Taking the function z(z) and
treating as in the work [15], allowing for the above mentioned estimations z(x) we’ll
obtain u (x,t) = 0.

So, the following theorem is proved.

Theorem 2. Let Qr = Q x (0,T) be a cylindrical domain in R*™*, n > 2,
E C Qp be some compact, and let conditions (28)—(30) be fulfilled relative to the
coefficients. Then for removability of the compact E relative to problem (25), (26) in the
space CO* (@T), it suffices that

mi 2N E) = 0.

3. Let’s consider the mixed boundary-value problem for the second order nondi-
vergent parabolic equation. Let I'; and I's be such two sets that I' (Qr) \E =T'; UT,
and Fl N FQ = J.

Let’s consider the following mixed problem:

n n
Lu = Z Q5 (:Cv t)uﬁlfiilfj + sz((ﬂ, t)uzi + C(:U, t)u —u; =0 in Qr,
ij—=1 i=1

(32)
ou

u|F1 = 07

I

We find solution of problem (32) from the class C*! (Q7) N C® (Q7\E) .

Theorem 3. Let Qp C R, n > 2, be a cylinder, E C Qr be a compact, and
let conditions (28)—(30) be fulfilled relative to the coefficients. Then for removability of
the compact E relative to problem (32) in the space C (@T) it suffices that

m7PNE) = 0.
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The Theorem 3 is proved by the same ideas that in Theorem 1.
Let’s consider the following equation in Qr:

—l—Zbi(x, g, + c(z, t)u+b(z,t,u, Vu) —u, = 0. (33)

i=1

Assume that a;;(z,t) are bounded, measurable functions satisfying condition (28),
bi(z,t), c(x,t) satisfy condition (30) and

k
|b(z,t,u, Vu) | < g(u)- |Vu|?, /g(u)du <00, k< oo. 34)
0
For equation (33) we consider the problem
Lu=0 in Qr\E, u =0. (35)
W lr@ene

We try to find a solution of this problem in the class
{Wh@nne™ @), 0<u@t) <k}

Theorem 4. Let Qr be a cylindrical domain in R, n > 2, E C Qp be some
compact, and let relative to the coefficients of equation (33) conditions (28), (30), (34)
be fulfilled. Then for removability of the compact E relative to problem (35) it suffices
that

m"H_2+>‘(E) =0.
Before we pass to the proof, let’s note that if the solutions are sought in the class

{W3(Qr)nC°(Qr), 0 < u(x,t) <k}, then the set E is removable if

ml 2 (E) < oo.

(z,t) 1 t
Proof of Theorem 3. The function 9(x,t) = / exp ()\/ g (g(T)dT)) dt
0 1.Jo

is a subsolution of the linear operator
"0 0 0
L, = — | ajj(z,t)— | — =.
' JZ:l oz, (‘”(I )8a:i> ot

Further, analogously to the proof of Theorem 1, we obtain that ¥(z,t) = 0, which
proves the theorem.
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