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ASYMPTOTIC EXPANSIONS OF SOLUTIONS

OF THE FIRST INITIAL BOUNDARY-VALUE PROBLEM
FOR SCHRODINGER SYSTEMS IN DOMAINS

WITH CONICAL POINTS. II"

ACUMIITOTUYH PO3KJIAIU PO3B’SI3KIB
MEPIIOI TOYATKOBOI KPAMOBOI 3AJ1AUI
JJIs1 CACTEM LIPEJIHTEPA B OBJIACTAX
3 KOHIYHUMU TOYKAMMU. 11

This paper is concerned with asymptotic expansions of solutions of the first initial boundary-value problem
for strongly Schrddinger systems near a conical point of the domain boundary.

Po3missHYTO acCMMNTOTHYHI PO3KJIaAM PO3B’S3KIB MEPIIOT MOYATKOBOI KpaioBoi 3a/1a4l sl CHIIBHO LIpEJIiHre-
POBHX CHCTEM Ol KOHIYHOT TOYKH MeXi 007acTi.

1. Introduction and notations. At the present there exists a comprehensive theory of
boundary-value problems for elliptic, parabolic, and hyperbolic equations and systems
with a smooth boundary. One of the central results of this theory consists in the fact
that if the coefficients of the equation and of the boundary operators, its right-hand side,
and the boundary of the domain are sufficiently smooth, then the solution itself of the
problem is correspondingly smooth. (In the parabolic and hyperbolic cases, the initial
and boundary conditions must also satisfy the so-called compatibility condition; see,
e.g., [L,2]).

However, many important applied problems reduce to the study of boundary-value
problems for partial differential equations in non-smooth domains. Such questions have
been discussed extensively in the literature since the appearance of the fundamental work
[3] of Kondartiev in 1967. By now the theory of boundary-value problems for elliptic
equations in non-smooth domains has been worked out in much detail, with a large
literature on it. We refer the survey paper [4] and the monographs [5, 6] for the results.
Parallel with this theory, the boundary-value problems for non-stationnary equations and
systems have been studied by many athors, such as Melinikov [7], Ngok [8], Eskin [9],
Kokotov and Plamenevskii [10, 11], Matyukevich and Plamenevskii [12], . ... In these
works, they used results and methods of elliptic boundary-value problems in nonsmooth
domains to prove the assertions on the unique solvability, on the smoothness and the
asymptotic expansions of solutions near the singularities on the boundary.

Boundary-value problems for Schrodinger equations and Schrodinger systems in a
finite cylinder Qr = Q x (0,T) have been studied by many authors (see, e.g., [1, 2,
13, 14]). In this paper, we continue the investigation presented in [15— 18], in which we
considered the first initial boundary-value problem for strongly Schrodinger systems in
an infinite cylinder Q, = Q2 x (0, 00), where (2 is a bounded domain with conical points.
The existence, uniqueness and smoothness of generalized solutions to the problem were
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givenin [15, 16, 18]. The aim of [17] and this paper is to derive the asymptotic expansion
of the generalized solution of this problem in a neighbourhood of the singular point.

Let ) be a bounded domain in R™. Its boundary 0f2 is assumed to be an infinitely
differentiable surface everywhere except the coordinate origin, in a neighbourhood of
which Q coincides with the cone K = {z: x/|z| € G}, where G is a smooth domain
on the unit sphere S™~!'. We begin by recalling some notations and functional spaces
which will be frequenly used in this paper:

Qr = Qx(0,7), St = 002 x (0,T), Qoo = 2 x (0,00), See = N x (0,00),

x=(x1,...,2,) € Q u(z,t) = (u1(z,t),...,us(x,t)) is a vector complex function,
R . .
du ’u
a, |12 _ a, |2 R 1 s
|D U| *ng ul|7 ut](at]avat] >7
S 8Jul 2

\Uti|2 = Z

i=1

- — | = /2 .
, de =dzy ... de,, r=|x|=\/2i+...+22;

ot

Hé(Q) — the space of all functions u(z) = (ui(x),...,us(x)) which have generali-
zed derivatives D%u;, |a| <1, 1 < i < s, satisfying
1
e = 3 [ -0 DR < oo
[a]=0g

H"¥(e77", Q) — the space of all functions u(z,t) which have generalized deri-

I, .
ale, lo) < 1,1 <5<k, 1<i< s, satisfying

vatives D%u;,

l k
||U||?:Il.k(e—'yt’ﬂoc) = / Z \Dau|2 + Z |7.Lt_7‘ |2 6_27tdxdt < +00;
o \lal=0 =1

in particular
1

lllfoqe—r oy = D [ D% uffe™ dadt;

lo|=0¢y__

HU*(e77 Q) — the closure in H!"F(e=7, Q) of the set of all infinitely differenti-
able in 2, functions which belong to H"**(e=7* Q) and vanish near S, ;
Hé’k(e_”, Qo) — the space of all functions w(z,t) which have generalized deri-

. 0y _ . e
vatives D®u;, Sl <L, 1< <k, 1< < s, satisfying

ot
! k
[lull? Z p2OFlal=0| Doy 4 Z lugi |* | e 2" dxdt < +oo;

H* (e Qo) — :
O ‘a|:0 j=1

Hj (e 7", Qo) — the space of all functions u(x, t) which have generalized derivatives
D*(ui)ys, || +7 <1, 1 < i < s, satisfying

l
||u||?{;3(e_’7t7900) = Z 7”2(6+|a‘+J_l)|Dautj\26_27tdxdt < 4o0;
|0“+j:0900
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1642 NGUYEN MANH HUNG, CUNG THE ANH

Let X be a Banach space. Denote by L>°(0,00; X) the space consisting of all
measurable functions u: (0,00) — X, t — u(x, t) satisfying

l|]| oo (0,00;x) = €sSsUP Hu(x,t)HX < 400.
t>0

Consider the differential operator of order 2m

m

L(z,t,D) = Y DP(apy(x,t)D?),

[pl,|q|=0

where a,,, are s x s-matrices of measurable bounded in Q.. complex functions, a,, =
= (=1)lr ‘Hq|aj‘m. Suppose that a,,, are continuous in = €  uniformly with respect to
t € [0,00) if |p| = |g| = m, and for each ¢ € [0, 00) the operator L(x,t, D) is uniformly
elliptic in Q with ellipticity constant ag independent of time ¢, i.e., we have

ST apgla )EPEmT > aol€* )
Ip|=|q|=m

for all ¢ € R™\ {0}, n € C*\ {0} and (z,t) € Q.
In this paper we study the following problem: Find a function w(z,t) such that

(=)™ YL(z,t,D)u —u; = f(z,t) in Q, (1.1)
ult=o = 0, (1.2)
O
— = i =0,...,m—1 1.
6V~] SOO O) ] 07 7m 7 ( 3)

where v is the outer unit normal to S...

A function u(z,t) is called a generalized solution of the problem (1.1)—(1.3) in the
space H™O (e~ Q) if and only if u(x,t) belongs to H™ (e, Q) and for each
T > 0 the following equality holds

m

(D)™t Y~ / apg DIuDPydzdt + / u dzdt = / fadadt, (1.4)
[pl,|q|=0 Qr Qr Qr
for all test function n € H™(Qr), n(z,T) = 0.
Putting
Bluu)(t)= Y (-1 / apg D uDPudz, (e, t) € H™O(e 7, Q).
Ipl,lq|=0 Q

For a.e. t € [0,00), the function = — wu(x,t) belongs to ﬁlm(Q) On the other hand,
since the principal coefficients a,, are continuous in z €  uniformly with respect
to t € [0,00) and the ellipticity constant ao independent of ¢, repeating the proof of
Garding’s inequality [19, p. 44] we have the following lemma.

Lemma 1.1. There exist two constants g and Ao (pio > 0, \g > 0) such that

(=)™ B(u, w)(t) > pro|u(@, )| 3y ) = Mol|ul@, D7, (15)

Jor all u(z,t) € I—Ofm’o(e*”ft, Neo)-
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Therefore, using the transformation u = e**o*

operator L(z,t, D) satisfies

v if necessary, we can assume that the

(=)™ B(u, u)(t) > pollullFmq) (1.6)

forall u(z,t) € H™O (677", Q). This inequality is a basic tool for proving the existence
and uniqueness of solutions of the problem.

2. Smoothness of generalized solutions. In this section we summarize the known
results on the smoothness of generalized solutions of the problem (1.1)—(1.3).

Denote by m™ the number of multiindexes which have order not exceeding m, pg is
the constant in (1.6). The following theorem was proved in [18].

Theorem 2.1. Let

. 0 =
i) sup{‘ W1l (2,1) € Qoo 0 < Ipl, lal < m} = p < +o0;

ot
p1 =const >0, for2< k< h+1;
i) fu € L™=(0,00; La(Q)), for k < h+1;
iii) fix(x,0) =0, for k < h.

*

Then for every v > vg = M, the problem (1.1)—(1.3) has exactly one generalized
0

2p
o
solution u(x,t) in the space H™° (e~ Q). Moreover, u(w,t) has derivatives with

[e]
respect to t up to order h belonging to Hm*o(e_(%"‘l)"ft, Qo) and the following estimate

holds:
h+1

||uth 2Hm,0(6—(2h+1)wt7gao) < Cz ”ftk ”%C’O(O,OO;LQ(Q))’
k=0
where C'is a positive constant independent of u and f.

From now forward, for the sake of brevity we will write ~;, instead of (2h+1)~,
h=1,2,....

In order to study the smoothness with respect to (x,t) and to establish asymptotic
formulas of solutions of the problem (1.1)—(1.3), we assume that coefficients a,,(x,t)
of the operator L(z,t, D) are infinitely differentiable in Q... Moreover, we also assume
that a,,(,t) and its all derivatives are bounded in Q.

First, we recall two basic lemmas.

Lemma 2.1 [16]. Let f, fi, fir € L>°(0,00; Lo(K)) and f(x,0) = fi(x,0) = 0.

If u(z,t) € H™(e™ 7" Q) is a generalized solution of the problem (1.1)—(1.3)

in the space H™°(e=7 Q) such that v = 0 whenever |x| > R = const, then
u € H2M™O(e=t K..) and the following estimate holds:

||UH§{3,,'T”’O(6_71‘,KOO) <

<C |:||fH%°°(O,oo;L2(K)) + ”ftH%O"(O,oo;LQ(K)) + ||ftt||2L°°(O,oo;L2(K)):|a

where C = const .
Denote by Lo(0,¢, D) the principal part of the operator L(zx,t, D) at origin 0. We
consider the Dirichlet problem for the system

(=)™ 'Lo(0,t, D)u = F(z,t), =€ K. 2.1)
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1644 NGUYEN MANH HUNG, CUNG THE ANH

Lemma 2.2 [16]. Let u(x,t) be a generalized solution of the Dirichlet problem for
the system (2.1) for a.e. t € [0,00) such that w = 0 whenever |x| > R = const,
and u(z,t) € HéTfl_l’O(e_W’f,KO@). Let F € H;,’O(e_“ft,Koo). Then u(z,t) €
€ Héerl’O(e’”’t,Koo) and

HuH?{;mH«U(e—wt,KN) < C HF”?—I;;’O(e—’Yt,KOQ) + ||u||§{§7ff'l_1’0(e_7t,l(oo) )

where C' = const.

Let w be a local coordinate system on S™~1. The principal part of the operator
L(z,t, D) at origin 0 can be written in the form
i0
o
where @ is a linear operator with smooth coefficients. From now forward the following
spectral problem will play an important role

Lo(0,t,D) = 7 *"Q(w,t,rD,, D), D, =

Q(w,t,\,Dy)v(w) =0, weQG, (2.2)
D? v(w) =0, weodG, j=0,....,m—1. (2.3)

It is well known [5, p. 146] that for every ¢ € [0, c0) its spectrum is discrete.

Theorem 2.2 [16]. Let u(x,t) be a generalized solution of the problem (1.1)—(1.3)
in the space H™ (e ™7 Q) and let fir € L>=(0,00; HY(Q)) for k < 2m + 1+ 1,
fur(2,0) = 0 for k < 2m + [. In addition supppose that the strip

mfﬁglm)\<2m+lfﬁ
2 2
does not contain points of spectrum of the problem (2.2), (2.3) for every t € [0, 00).
Then u(z,t) € HE™ M (e=2mtit Q) and the following estimate holds:
2m~+1+1

||u||?{§m+l(€*72m+zt7goo)gc Z |‘ftk||iw(07oo;]—[(l](ﬂ))?
k=0

where C' = const.

3. Asymptotic expansions of generalized solutions. In this section we will derive
asymptotic expansions of generalized solutions of the problem (1.1)—(1.3) in a nei-
ghbourhood of the conical point, in the case that the condition imposed on the spectrum
of the problem (2.2), (2.3) in Theorem 2.2 is not satisfied. The following result was
obtained in [17].

Theorem 3.1. Let u(x,t) be a generalized solution of the problem (1.1)—(1.3)
in the spaces I;'m’o(e*“,ﬂoo), and let fp. € L>(0,00; H5(Y)) for k <1+ 2m+1,
fir(2,0) =0 for k < 1+ 2m. Assume that in the strip m — % <ImA<2m+1— E,

2
there exists only one simple eigenvalue \(t) of the problem (2.2), (2.3) such that

oIm+1—1— g < ImA(t) <2m+l—g.
Then the following representation holds:
u(z,t) = e(z, )r=0 g (, 1),

where c(z,t) € Vlﬁfgzrtl) (e m2mttt Q) up € Ham T (emv2mtit Q).
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Attention is now turned to the case that the strip m — 5 <ImA<2m+1 — 5

contains finite simple eigenvalues A1 (t), ..., Ay, (t) of the spectral problem (2.2), (2.3).

Consider in K the Dirichlet problem for the system

M
Lo(0,t, D)yu = r=200=2m N "1n® 1 £ (w, 1), (3.1)
s=0

where w is a local coordinate system on S™ 1.

Lemma 3.1 [4, p. 17]. Let fs(w,t),s =0,..., M, be infinitely differentiable functi-
ons of w. Then there exists a solution of the Dirichlet problem for the system (3.1) having
the form

M+p

ule,t) = r~20 3 It (w,1),

s=0

where fg, s =0,..., M+ w, are the infinitely differentiable functions of w, u =1 if Ao
is a simple eigenvalue of the problem (2.2), (2.3) and p = 0 if g is not an eigenvalue
of this problem.

From now forward, we denote

Laoc[0, 00) = {c(t): e(t) € Lo[0,T) forall T > o}.

Lemma 3.2. Let u(z,t) be a generalized solution of the Dirichlet problem for
the system (2.1) for a.e. t € [0,00) such that u = 0 whenever |x| > R = const, and
let uge € Hy™™0(e= " Koo), Fp € Hy (e " Koo) for k < h, B/ < B <m+1.
Assume that the straight lines

Im)\:—ﬁ+2m+l—g and Im)\:—ﬂ'+2m+l—g

do not contain points of spectrum of the problem (2.2), (2.3) for every t € [0,00), and
in the strip

n

—ﬁ+2m+l—g<lm)\<—6'+2m+l— 5

there exists only one simple eigenvalue \(t) of the problem (2.2), (2.3). Then the following
representation holds:

u(z,t) = c(t)r~*De(w, t) + ui (2, 1), 3.2)

where ¢ is an infinitely differentiable function of (w,t) which does not depend on the
solution, ¢ € Lo 10c[0,00) and (uq)g. € H2m 0 (=t K ) for k < h.
Proof. From Theorem 3.2 in [20], it follows that

u(a,t) = c(t)r= D g(w, t) + uy (x, 1), (33)

where ¢(w, t) is the eigenfunction of the problem (2.2), (2.3) which correspond to the
eigenvalue A(t), uy € H;ZWH’O(e*W, K), and
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1646 NGUYEN MANH HUNG, CUNG THE ANH

c(t) = i/F(w,t)r‘imwm_”w(x,t)dx,
K
where 1 is the eigenfunction of the problem conjugating to the problem (2.2), (2.3)
and which corresponds to the eigenvalue A(t). Since ImA(¢) > 3’ —2m — 1 + g and

F e HZ;,O(e‘Vt, K), 80 ¢(t) € La 10c[0, 00). Hence the assertion is proved for A = 0.
Assume that the assertion is true for 0,1,...,h — 1. Denoting u;» by v. From (2.1)
we obtain

h
(=)™ 1L0(0 t,D)yv=Fu + (—-1)™ Z ( )L()tk (0,¢, D)ugh—r, 3.4
k=1

where
Z 0% a,,(0,t)
LOtk == TDPD(I'

[p|=lgq|=m

Putting Sy (w,t) = 1~ B¢ (w, t). Since p(w,t) € C=(w,t) [21], from (3.3) it follows
that

h

Xh:l ( ) Loy (0,t, D)ug—r = (Z) Low (0,2, D) [(¢So)pn—r ]+

k=1

+Z< )LW 0,t, D) (u1)n—r

Using the induction hypothesis, we obtain

h h

Z (Z) I/OtlC (O7ta D)uth*’€ = Fl - Z (Z) Cth*kLO(O7t7D)(SO)tk7 (35)

k=1 k=1
where Fy; € H5?(e= =1t K_). From (3.4) and (3.5) we see that

h

(71)m71L0(07t’ Dy =F, — (-1)™ Z (Z) cen—r Lo(0,t, D)(Sp)¢x, (3.6)

k=1

where F, € Hlﬂ/0 (e K ). Hence by arguments used in the proof of case h = 0 we
can find

h
=v= Z < )th k(So)er + d(t)So + e, (3.7)

where d(t) € La 10c[0,00), us € H2’,”+l’0(e_7ht,Koo). From this equality it follows
that

h
h
So1 = Ugh — Z (k) Cth—lc(50>tk —(h— ]‘)ct}l71(50>t = cn-1(So)¢ + dSo + us.
k=2
(3.9)
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Now differentiating the equality (3.3) (h — 1) times by ¢. As a result we obtain

h—1 h—1
Uph—1 = Z ( k ) cen—k—1(S0)er + (ug)gn-1. 3.9
k=0
We rewrite (3.9) in the form
h—1 h—1
5072 = Ugh—1 — Z ( k ) Cth—k—l(SO)tk = Cth,—1S0 + ('U;l)th,—l. (310)
k=1

Then

— (h-1
(50)2)75 = Uph — ( k ) [Cth—k(so)tk + Cth—k—l(So)thrl =
k=1

(]

h

h
= Uph — Z (k‘) Cth—k(SO)tk + Cth—l(SO)t.

k=1

From this equality and (3.7) we obtain
(So,2)t = ¢n—1(S0)¢ + dSp + ua.

Putting S; = Sal(U1)th—17 Sy = Sglug — SaQ(SO)t(U1)th—1. It is easy to check
that

50715072 = Cth—1 + 51, (3615072% =d+ 5.

It follows that
t

I(t) = Cth—l(t) — Cth—l(o) — /d(T)d’r =

0
¢
= /Sg(x, T)dT — S1(z,t) + S1(=,0).
0

Since (u1)pn-1 € H3"0(e 1t Kyo), up € Hy" 0t K), s0 S, Sy €
€ H%) ,(e7"!, K..). Therefore I(t) € H 4 (K), ie., I() = 0. Hence cpn = d €
€ Lo 10c[0,00) and (uy)pn = uz € H ™0 (e7mt Ko).

This completes the proof.

Proposition 3.1. Let u(x,t) be a generalized solution of the problem (1.1)—(1.3)
in the spaces H™ (e~ Q) such that u = 0 whenever |x| > R = const, and let
fir € L°(0,00; La(K)) for k < h+ 2, fu(x,0) = 0 for k < h + 1. Assume that the
straight lines

Im)\:m—g and ImAsz—g

do not contain points of spectrum of the problem (2.2), (2.3) for every t € [0,00), and
in the strip
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n n
——<ImA<2m— =
m 2<m<m 5

there exists only one simple eigenvalue \(t) of the problem (2.2), (2.3). Then the following
representation holds:

Z rmAOFs P (Inr) 4wy (1), (3.11)
s=0

where P,,_1 s is a polynomial having order less than m and its coefficients are infinitely
differentiable functions of (w,t), (cs)k € Laoc[0,00), (ur)w € HY™ (e M1t K)
fork <h

Proof. First we will prove that if

m—g<Im/\(t)<m—l—m0—g7 1<mg<m,

then
mo —1

u(a,t) = 3 eo((r OB, () + g (a,8), (3.12)
s=0

where P, _1 ¢ is a polynomial having order less than m and its coefficients are infinitely
differentiable functions of (w,t), (¢s)i € Laoc[0,00) and (u1) € H2™O, o (g7t
K) for k < h.

We introduce the notation: L; = (—1)""'[Ly(0,¢, D) — L(z,t,D)]. From the
system (1.1) we get

(—=1)""*Lo(0,t,D)u = F, (3.13)

where F' = —i(us + f) + Liu.

From Theorem 2.1 and Lemma 2.1 it follows that u, € H2™0(e e+t K.),
k < h. On the other hand, w1 € H™O(e "+t K), fix € L*(0,00; La(K)),
k < h. Therefore Fye € HY® (e "+t K ), k < h.

m—1

Let m — % <ImA(t) <m+1— g From Lemma 3.2 it follows that

u(z,t) = c(t)r *De(w, t) + ui (2, 1), (3.14)

where ¢ is an infinitely differentiable function of (w,t) what does not depend on the
solution, ¢ € L 100]0,00), (u1) € H-" (e~ V1t K ) for k < h. Hence (3.12) is
proved for mg = 1.
Assume that (3.12) holds for my < m — 1. We distinguish the following cases.
Case 1: m— g <ImA(t) < m+mo— % Using the induction hypothesis we obtain
(3.12). Putting

mofl
Smo = (=1)™ > co(tyr= TP, (Inr). (3.15)
s=0
Then
i 1 L~
LSp, = Fi(z,t)+ Y, > ety MO2mtstp, 1 (nr),  (3.16)

j+s<mg s=0
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where (Fy) e € HO mo—1(€77", Koo) for k < h, and Py 155 is a polynomial having
order less than mg and its coefficients are infinitely differentiable functions of (w, t)
From (3.12), (3.13), and (3.16) we obtain

(—l)m_lLU(O, t, D)’LL1 = FQ({L‘7 t)-‘r

mo—l
+ 3> ety Emistip (), (3.17)
Jj+s<mo s=0
(et Koo).

i(ut+f)+L1u1+F1 GHgLOmO 1

where Fp = —
(e7e+1t K ) for k < h, we have

. 2m,0
Since (u1)x € Hy, o

(FQ)tk € Hmz mofl(e_’YkJrlthoo)v

for k < h.
By Lemma 3.1 there exists a function
mo— 1
= 2 Xl PO RL () (3.18)
jt+s<mo s=0
such that
mo—1 N
(D)™ Lo(0,t, Dywr = Y ety AO2mEstp, (), (3.19)

jt+s<mo s=0
where P, ;s ; is a polynomial having order less than mgy + 1 and its coefficients are
infinitely differentiable functions of (w, t).
Putting v1 = w1 — w;. From (3.17) and (3.19) it follows that

(71)m71L0(0, t, D)Ul = Fg(x, t)

By Lemma 3.2 we obtain

1(z,t) = c(t)r_i’\(t)ga(w7 t) + us(z, t), (3.20)

where ¢ is an infinitely differentiable function of (w,t) which does not depend on the
solution, ¢;x € Lg 1c[0,00), (u2)e € Hzmgm ((em et (K ) for k < h.

From (3.18) and (3.20) it follows that

mo—1

Y O p, )+

Jj+s<mo s=0

+ c()r PO p(w, t) + ug(x, ).

Hence and from (3.12) we get

mo

Z Cs (t)r*“‘(t)“ﬁmo,s(ln r) + ug(z,t),

s=0

u(z,t) = (3.21)
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where f’mo,s is a polynomial having order less than mg + 1 and its coefficients are infini-
tely differentiable functions of (w, t), (Gs)sx € La,10c[0,00), (uz)p € Ho o (e~ M1t
Ky) for 0 <k < h.

Case 2: m+m0—g <ImA() <m+mo+1-— g Since the stripm—g <
<ImA<m+mg— % does not contain points of spectrum of the problem (2.2), (2.3)

SO Uy € H%Tf’,?lo(e*W“t, K), k < h. Therefore, from Lemma 3.2 it follows that

u(z,t) = c(t)rii)‘(t)gp(w, t) + up (z,t),

where ¢ is an infinitely differentiable function of (w,t) which does not depend on the
solution , ¢;x € Lo 16c[0,00), (u1)er € H>™0 (e~ e+1t K ) for k < h.

m—mgo—1
Case 3: There exists to such that Im A(tg) = m + mg — g Dividing the interval
[0,00) by points Tp = 0 < T} < ... < Ty < ... such that one of following cases
happens in each interval [T_1,Ts],s =1,2,...

(i) m—g<lm)\(t)<m+mo—g,

(i) m+mofg<lm)\(t)<m+m0+1fg,

(iii) m—i—mo—u—% <Im\t) <m+mo—p+1-— g,0<u< 1.
If (i) (or (ii)) happens in the interval [Ts_1, T§], then by repeating the proof of Case 1
(resp. Case 2), we obtain

u(z,t) = O (Or P Op(w, t) + uf? (2,1), t € [Ty, T, (3.22)

where ¢ is an infinitely differentiable function of (w,t) what does not depend on the
solution, ¢y € Lo[Ty_1,T.], (w1)\y) € HZ™O (K x [Ts_1,Ty]) for k < h. If

(iii) happens then repeating the argument in the proof of Case 2, we obtain (3.22) for

(ugs))tk € Hﬁ;"_“glo_pm([( X [Ts—1,Ts)), k < h. Hence and from arguments analogous
to the proof of Case 1, after that set c(t) = ) (t), uy(x,t) = ugs)(x,t), whenever
t € [Ts—1,Ts], we obtain (3.21).
From above arguments follow (3.12). For mg = m, from (3.12) we obtain (3.11).
Proposition 3.1 is proved.

Proposition 3.2. Let u(x,t) be a generalized solution of the problem (1.1)—(1.3)

in the spaces H™(e=7* Q) such that u = 0 whenever |x| > R = const, and let
foe € L=(0,00; HY(K)) for k <2+ h+2, fu(2,0) =0 for k < 21+ h + 1. Assume
that the straight lines

Im)\:m—g and Im)\:2m+l—g

do not contain points of spectrum of the problem (2.2), (2.3) for every t € [0,00), and
in the strip

n n
——<ImA<?2 [— =
m 2<m <2m+ 5

there exists only one simple eigenvalue \(t) of the problem (2.2), (2.3). Then the following
representation holds:
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l+m—1

u(z,t) = Z cs(tyr= 2O Py (Inr) + ug (2, 1), (3.23)
5=0

where P3ii,,_1. is a polynomial having order less than 3l + m and its coeffici-
ents are infinitely differentiable functions of (w,t), (cs)x € Lajoc[0,00), (u1); €
€ HZ" O (et K ) for k < h+1.

Proof. We will use the induction on [. If [ = 0 the statement follows from Proposi-
tion 3.1. Let the statement be true for [ — 1. We distinguish the following cases:

Case 1: m — g <ImA(t) <2m+1—1— g From inductive hypothesis we obtain

I+m—2

u(z,t) = Z cs()yr=OFs Py (Inr) + ug (2, 1), (3.24)
s=0

where P3;ym—4 1 a polynomial having order less than 3/ + m — 3 and its coeffi-
cients are infinitely differentiable functions of (w,t), (¢s)i € L2,10c[0,00), (u1): €
e HZ" P10t ) fork < h+1—1.

From (3.13) and (3.24) we find

(—1)™'Lo(0,t, D)uy = F3 + (=1)"LS — iy, (3.25)

where F3 = —i[(u1): + f] + Lyu, and

l+m—2

S = Z es()r MO Py ().
s=0

Since fur € L*(0,00; HY(K)) for k < 21+ h + 2 and fu(z,0) = 0 for k <
<2+ h+1,50 fir € L=(0,00; HYK)), k < 2(1—1) + (h+2) + 2, and
fir(2x,0) = 0, & < 2(I — 1) + (h + 2) + 1. Therefore, (cs)x € L2 10c[0,00) and
(uy)pe € HZ™ =10 (e=mnt K ) for k < h 4 1 + 1. Hence it follows that (F3),. €
e H(em 1t K ) for k < h+ . On the other hand

I—14+m
(—D)™MLS —iSy = Fy+ Y Sty 072 py o (),
s=0

where 1531+m,2,s is a polynomial having order less than 3]/+m—1 and its coefficients are
infinitely differentiable functions of (w,t), (Fy) € Hé’o(e*%“t, K), and (¢5)4 €
€ L 10c[0,00) for k < h + [. Therefore from (3.25) we obtain

I+m—1
(=)™ ' Lo(0,t, Dyuy = Fs + Y E(t)yr 72t Py o (Inr),  (3.26)
s=0

where Fy = Fs 4+ Fy € H%(e " Ko) € H M0 (e 7t KL).
By Lemma 3.2 and by arguments used in the proof of Proposition 3.1 we can find

I+m—1

uy(z,t) = Z C(t)rAOFs Py (Inr) 4 ug(a, B), (3.27)
5=0
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where ]33l+m,1}s is a polynomial having order less than 3/ + m and its coefficients
are infinitely differentiable functions of (w,t), (ug) € H>7T 10 (e=m+1t K ) for
k < h+ 1. By Lemma 2.2 we have (ug)y € HZ" T 0(em it K ) for k < h+ 1.
Hence and from (3.24) it follows that

I+m—1
u(z,t) = Z cs(t)yr=POFspy 0 (Ing) + ug(, t), (3.28)

s=0
where P31, 1S a polynomial having order less than 3] 4+ m and its coefficients
are infinitely differentiable functions of (w,t), (¢s)ie € L210c[0,00), and (ug) €
e HZ" O (et K ) for k < h+1.

Case2: 2m—+1—1— g <ImA(t) <2m+1— % It follows from Theorem 2.1 and
Lemma 2.1 that u,e € H2™0(e e+t K ) for k < h+ 2. On the other hand, the strip
m— = <ImA < 2m — ™" does not contain points of spectrum of the problem (2.2),
(2.3) for every t € [0, 00). Hence and from theorems on the smoothness of solutions of
elliptic problems in domains with conical points (see, e.g., [4, 5, 8, 22]) it follows that
upe € HE™O(e= w1t K ) for k < h + 2L.

We will prove that if f,x € L>(0, o0; H] (K)) for k < 2j +h+2 and fyx(2,0) = 0
for k < 2j+h+1, then u € Hgmﬂ’o(e*”*lt, K), k < h+2l—j. This assertion
was proved for j = 0. Assume that it is true for j — 1. Since fux € L>(0, oo; Hgfl(K))
fork <2(j—1)+(h+2)+2and fux(x,0) =0fork < 2(j—1)+(h+2)+1, then from
inductive hypothesis it follows that uy € Ho ™t~ 0 (e w1t K ), k < h+20—j+3.
Therefore w1 € H' 10 (e~ +2t K.) for k < h + 2] — j. Hence and from the fact
that the strip

2m+j—1—g<1m>\<2m+j—g

does not contain points of spectrum of the problem (2.2), (2.3) for every ¢ € [0, c0), we
obtain u,e € H>7H =10 (et K k < h+ 2l — j. It follows from Lemma 2.2
that uge € Hy" 0 (e~ 1t K ) for k < h+ 20 — j.

By Lemma 3.2 and from above arguments we obtain

u(z,t) = c(t)riM(t)go(w, t) + uy (z,t), (3.29)

where ¢ is an infinitely differentiable function of (w,t) which does not depend on the
solution, ¢z € Ly 1[0, 00), and (uy) € HZ™ 00 (e 41t K ) for k < b+ 1.
Case 3: There exists ¢y such that ImA\(¢g) =2m +1—1— g - By arguments used

in Case 3 in the proof of Proposition 3.1, this case can be managed.
Proposition 3.2 is proved.
Proposition 3.3. Let u(x,t) be a generalized solution of the problem (1.1)—(1.3)

in the spaces H™ (e Q) such that u = 0 whenever |x| > R = const, and let
foe € L=(0,00; HY(K)) for k <2+ h+2, fu(2,0) =0 for k < 21+ h + 1. Assume
that the straight lines

Im)\:m—% and Im)\:2m—|—l—g

do not contain points of spectrum of the problem (2.2), (2.3) for every t € [0,00), and
in the strip
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n n
——<ImA<?2 [ — =
m 2<m <2m + 5

there exist only simple eigenvalues \1(t), A2(t), ..., An,(t) of the problem (2.2), (2.3)
such that

ImA; () <ImAa(t) < ... <ImAn, (), t€][0,00),

Im\;(t) #ImM\(t)+ N, j#k, Nc€Z, jk=1,...,No.

Then the following representation holds:

No l+m—1
u(x,t) = Z Z o j(Or~NWOrspy () 4w (x, t), (3.30)
j=1 s=0

where P3jim_1; is a polynomial having order less than 3l + m and its coeffici-
ents are infinitely differentiable functions of (w,t), (¢s ;)i € L210c[0,00), (u1)ee €
€ HY" O (et K ) for k < h+1.

Proof. Foreachty € (0, 00) there exists € > 0 such thatm+uj_1—% <Im\;(t) <
<m+4p; — 27 t € [to—e,to+¢], pj =const >0, j =1,..., Ny. Therefore, there

2
exist the numbers Ty = 0 < T} < T3 < ... such that m 4 p;_1 s — g <Im\;(t) <

n
< m+,ujysf§, te[To-1,Ts], ujs =const,j=1,...,Ng,s =1,2,.... By arguments
used in case 3 in the proof of Proposition 3.1 if necessary, we can assume that

m—g<lm)\1(t)<m+u1—g<Im)\2(t)<...

n n
. <M+ UNg—1 — 3 <ImApn,(t) <2m+1— 5 t € [0, 00).

In order to prove the statement we will use induction on Ny. If Ny = 1 the statement
follows from Proposition 3.2. Let the statement be true for Ny — 1. First, consider the
case [tn,—1 > m. For simplicity we assume that pn,—1 = m+Io, lop < [. From inductive
hypothesis we obtain

No—1lp+m—1
u(z,t) = Z Z co j()yr= N WOrspy () g (x,t), (3.31)
7j=1 =0

where Psj,4m—1,s,; 1S a polynomial having order less than 3ly + m and its coeffici-
ents are infinitely differentiable functions of (w,t), (¢s ;)i € L210c[0,00), (u1) €
€ HgmHO’O(e_W“t, K ) for k < h+ ly. Repeating arguments analogous to the proof
of (3.26) we have

No—1lp+m

(*1)m71L0(0,t,D)U1 = ﬁ + Z Z Es,j(t)rii)\j(t)72m+5153l0+m+1,s,j(lnr)a

j=1 s=0

(3.32)

where F € Hé““’o(e*"“t, K), ]5310+m+1751j is a polynomial having order less than
3lo+m+2 and its coefficients are infinitely differentiable functions of (w,t), (Cs ;)i €
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€ La0c[0,00), k < h. Hence it follows that if 2m + I; — g <ImAn, (t) < 2m+1 +

T1- g for I, > o, then

0

No li+m
uy(z,t) = Z Z Cag (OO Py o (In7) 4 ug(z, 1), (3.33)
s=0

Jj=1

where ﬁ311+m+27s is a polynomial having order less than 3[; +m + 3 and its coefficient
are infinitely differentiable functions of (w,t), (ug)s € Hg ™t T10(e= 11t K ), for
k< h+1.

Since the strip

2m+ll+1—g<1m)\<2m+l—g

does not contain points of spectrum of the problem (2.2), (2.3) so from (3.31), (3.32)
and (3.33) we obtain (3.30).

If there exists ¢o such that Im Ay, (o) = 2m + 11 — g then by Lemma 3.2 and from
arguments used in case 3 in the proof of Proposition 3.1 we obtain (3.30).

Finally, if pn,—1 < m, for simplicity we assume that pin,—1 = m0,0 < mp < m,
then repeating the proofs of Proposition 3.1, Proposition 3.2, using above arguments and
Lemma 3.2 we obtain the conclusion.

Proposition 3.3 is proved.

We can now state the main theorem on the asymptotic expansion of the generalized
solution of problem (1.1)-(1.3) in a neighbourhood of the conical point.

Theorem 3.2. Let u(x,t) be a generalized solution of the problem (1.1)—(1.3)
in the spaces fofmvo(e*w,Qoo), and let fu. € L>=(0,00; H}(Q)) for k < 21 + h + 2,
Jee(x,0) =0 for k < 21+ h + 1. Assume that the straight lines

Im)\:mfg and Im)\:2m+lfg

do not contain points of spectrum of the problem (2.2), (2.3) for every t € [0,00), and
in the strip

n n
——<ImA<?2 l——
m 2<m <2m+ 5

there exist only simple eigenvalues \i(t), ..., An,(t) of the problem (2.2), (2.3) such
that

ImA; () <ImAa(t) < ... <ImApn, (%), t€0,00),
Im\;(t) #ImA(t)+ N, j#k, Ne€Z, jk=1,...,No.
Then the following representation holds in a neighbourhood of the conical point
U(J,‘, t) = Z Z Cs,j (t)riw\j (t)+sP3l+m—1,s,j (ln T) + up (.13, t)7 (334)
j=1 s=0

where Pajym_1s; is a polynomial having order less than 3l 4+ m and its coefficients
are infinitely differentiable functions of (w,t), (¢s ;)i € L210c[0,00) and (u1)y €
€ HI" MO0 (e=miat Q) for k < h+1.
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Proof. Surrounding the point 0 by a neighbourhood U, with so small diameter that
the intersection of €2 and Uy coincides with K. Consider a function ug = pgu, where

wo € C*°(Up) and g = 1 in some neighbourhood of 0. The function u, satisfies the
system
(=)™ Y L(x,t,D)ug — (uo): = wof + L'(x,t, D)u,

where L'(z,t, D) is a linear differential operator having order less than 2m. Coefficients
of this operator depend on the choice of the function ¢ and equal to 0 outside Uj.
Hence and from arguments analogous to the proof of Proposition 3.3, we obtain

Ny I+m—1
c10011‘(5177 t) = Z Z Cs,j (t)ril)\j(t)+sp3l+m—1,s,j (ln r) + UQ(xa t)v (3.35)

j=1 s=0

where P34 -1, is a polynomial having order less than 3/ + m and its coeffici-
ents are infinitely differentiable functions of (w,t), (¢s ;)i € L210c[0,00), (u2) €
€ H2" 0 (et K ) for k < h+1.

The function pu = (1 — ¢p)u equals to 0 in some neighbourhood of the conical
point. We can apply the known theorem on the smoothness of solutions of elliptic
problems in a smooth domain to this function and obtain ¢ u € Hgm“(Q) for a.e.
t € [0,00). Hence we have (¢1u) € HE™ 0 (em 41t Q) for k < b+ L.

Since u = pou + p1u so from (3.35) we obtain (3.34).

Theorem 3.2 is proved.

4. An example. The Schrodinger equation is the fundamental equation of nonrelati-
vistic quantum mechanics. In the simplest case for a particle without spin in an external
field it has the form

0 h

zha = f%Aw + V(x),
where z € R3, 1 = 1)(z,t) is the wave function of a quantum particle, giving the
complex amplitude characterizing the presence of the particle at each point x (in parti-
cular |¢)(x,t)|? is interpreted as the probability density for the particle to be at the point
x at the instant t), m is the mass of the particle, / is Planck’s constant, and V' (z) is the
external field potential (a real-value function).

We consider in {), the mathematical model of Schrodinger equation

1A —ug = f, 4.1)
with an initial condition
ult=0 = 0, (4.2)
and a boundary condition
uls,, = 0. (4.3)

Let the cone K = {z: z/|x| € G}, where G is a smooth domain on the unit sphere
S~ The Laplacian in polar coordinate (r,w) in R™ is given by

L0 .
(Au)(r,w) = o (7‘ 87‘) u(r,w) + = Ayu(r, w),
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where A\, is the Laplace—Beltrami operator on the unit sphere S™~!. Therefore the
corresponding spectral problem has the form

Ao+ (I +i(2—-n)A\v =0, weQG, (4.4)
v]og = 0. (4.5)

4.1. Casen = 2. Assume in a neighbourhood of the coordinate origin, €2 coincides
with a rectilinear angle having measure is 5. Then the spectral problem (4.4), (4.5) has
the form

Vow — A0 =0,0 < w < 3, (4.6)
v(0) = v(B) =0. 4.7
ik
Eigenvalues of the problem (4.6), (4.7) are A\, = :l:%, k € N*. From Theorems 2.2

and 3.1 we obtain the following proposition.
Proposition 4.1. Let u(x,t) be a generalized solution of the problem (4.1)—(4.3)

in the space 1011,0(67%’900)7 and let f, fi, fur, free € L°°(0,00; La(2)), f(x,0) =
= fi(x,0) = fu(x,0) = 0. Then

() if B<m, thenu € HZ(e 2!, Qu),

(ii) if B > m, then

u(z,t) = c(z, t)r™? 4+ uy (x,t),

where c(z,t) € Vf/ﬁ(e’wt, Qoo), w1 € H3(e7 21 Q).

4.2. Casen =3.Letk;, j =1,2,..., are eigenvalues of the Dirichlet problem for
the equation

Ayv+kv=0, weQG, (4.8)

with 0 < k1 < ko < k3 < .... Then

; 1 1 .
)\j:z<—2i 4+I<:j>, ji=12... (4.9)
are eigenvalues of the spectral problem (4.4), (4.5).

Let v; be the eigenfunction corresponding to the eigenvalue ;.

We will prove that \; is simple. Indeed, let o1, @2,...,¢,, r > 1, are connecting
functions of the eigenfunction v;. From (4.4) and definition of the connecting function,
we have

N5+ [(iX)? —iN]o; = 0, (4.10)
Dpipr + [(10)? = iN]er — (2); +4)v; = 0. (4.11)
Then
/Aw@lﬁjdw = /golAwTdew. (4.12)
G G

From (4.10), (4.11) and (4.12) it follows that
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(2); +i)/|vj|2dw =0. (4.13)
G

Since Im (2X; +4) # 0, so v; = 0. It is a contradiction. Thus, \; is simple.

Let f, fi, fee, frer € L°(0,00; La(2), f(2,0) = fe(x,0) = fu(x,0) = 0, and
u(x, t) be a generalized solution of the problem (4.1) — (4.3) in the space ﬁl*o(e’”, Qo).
We distinguish the following cases.

Case 1: ImM\ > % Since the strip —% < Im) < % does not contain eigen-

values of the spectral problem (4.4), (4.5), from Theorem 2.2 we obtain that u(x,t) €
€ HZ(e 2t Q).

1
Case 2: Im)\; < 3 Let Ay, ..., An,, are eigenvalues of the spectral problem (4.4),
(4.5) satisfying
1 1
—3 <ImM <...<ImApy, < 5
1
(1) If the straight line ImnA = — does not contain eigenvalues of the spectral
problem (4.4), (4.5), then from Theorem 3.2 we obtain
No
u(z,t) = Z c; ()™ g (w) + ug(,t), (4.14)
j=1
where ¢; are infinitely differetiable functions of w, and ¢; € L9 16c[0,00),j =1,..., No,

and ug € Hg’o(e*““t7 Qoo)-
Consider the domain

1
OF = {xeﬂ: §p< || <2p}, p = const > 0.

Let p be small enough such that the boundary of €2” coincides with the cone K.
Putting v(z’,t) = ug(pa’,t). Since ug € Hy (e, Qs ), from embedding theorems

1
for the domain K’ = {x’ e K: 3 < |2'| < 2}, we obtain

lo(z’,1)]* < Cl/ v? + |grad v|? + Z |D%|? | dz’, C) = const.
K’ |a]=2

Substituting x = pz’ in this inequality, we obtain

lug(z,)|* < Cl/ p~ud + p~gradugl® + p > [DYug|? | da.

Qe la|=2

Hence

p~Huo(z, 1)]* < Cy / p~Hud + p~2lgradug* + > [Dugl? | da <
Qr |a=2

< Cg/ r~ud + 2| grad ug)? + Z |D%up|? | da <

Qr la|=2
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< Cslluo(z, )72 ) < Call £ (2, )| 50
where C; = const, ¢ = 1,2, 3,4. For |z| = p we obtain
luo(z, )] < Cr'/2,  C = const. (4.15)
From (4.12) and (4.13) we have

lu(x,t)] < Cr™* ', C = const.

1 1
(i) If Im Ay, = ok we choose € > 0 such that the straight line Im Ay, = 3 + €

. 1
does not contain eigenvalues of the spectral problem (4.4), (4.5) and —5 <ImM <...

1
o<ImAy, < 3 + €. Repeating arguments analogous to the proof of Proposition 3.3,

we obtain
No
u(z,t) = Z ¢; ()™ ¢ (w) + up(x, 1),
j=1
where ¢; are infinitely differetiable functions of w, and ¢; € La 10c[0,0), 5 =1, ..., No,

and ug € Hy'(e7 1%, Q).

By using arguments analogous to the proof of case (i), we obtain
lu(x,t)] < Cr'™*,  C = const.

If © is convex in a neighbourhood of the the coordinate origin, then the strip
1
—3 < Im A < 1 does not contain eigenvalues of the spectral problem (4.4), (4.5) (see
[3, p. 290]). It follows from Theorem 2.2 that u(z,t) € HZ(e™ 2!, Q).

From above arguments we have the following proposition.

Proposition 4.2. Let u(x,t) be a generalized solution of the problem (4.1)—(4.3)
in the space HLO(B_’YtaQOOL and let fa ft7ftt7fttt S LOO(OaOO7L2(Q))7 f(x70) =
= fi(x,0) = fu(x,0) = 0. Then

Im)\l _
’ ) - *
lu(z,t)| < Clz] C = const

Moreover, if Q is convex in a neighbourhood of the the coordinate origin then u(x,t) €
€ HZ(e 72t Q).
4.3. Case n > 3. In this case, the strip

1- 2 <ImA<2— 2
2 2
does not contain eigenvalues of the spectral problem (4.4), (4.5) (see [3, p. 289]).
From Theorem 2.2, we obtain the following proposition.
Proposition 4.3. Let u(x,t) be a generalized solution of the problem (4.1)—(4.3)
in the space H'O(e= 7t Q..), and let f, fi, fit, frrr € L™=(0,00; La(Q)), f(x,0) =
= fi(x,0) = fy(2,0) = 0. Then u € HZ (e 72, Q).

ISSN 1027-3190. Vip. mam. xcypn., 2009, m. 61, Ne 12



ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE FIRST INITIAL BOUNDARY-VALUE ... 1659

10.

11.

12.

13.

14.

16.

17.

19.
20.

21.

22.

Ladyzhenskaya O. A. Boundary value problems of mathematical physics. — Moscow: Nauka, 1973
(in Russian).

Lions J. L., Magenes E. Problemes auxlimites non homogenes et application. — Paris: Dunod, 1968. —
Vols 1, 2.

Kondratiev V. A. Boundary value problems for elliptic equations in domain with conic or coner points
// Tr. Moskov. Mat. Obshch. — 1967. — 16. — S. 209292 (in Russian).

Kondratiev V. A., Oleinik O. A. Boundary value problems for partial differential equations in non-smooth
domains // Uspekhi Mat. Nauk. — 1983. — 38, Ne 2. — S. 3—-76 (in Russian).

Kozlov V. A., Mazya V. G., Rossmann J. Elliptic boundary value problems in domains with points
singularities / Math. Surv. Monogr. — Amer. Math. Soc., 1997. — 52.

Nazarov S. A., Plamenevskii B. A. Elliptic problems in domains with piecewise smooth boundaries. —
Berlin; NewYork: Gruyter Exposit. Math., 1994. — 13.

Melnikov I. I. Singularities of the solution of a mixed problem for second order hyperbolic equations in
domains with a piecewise smoooth boundary // Uspekhi Mat. Nauk. — 1982. — 37, Ne 1. — S. 149-150
(in Russian).

Ngok D. V. The asymptotics of the solution of a mixed problem for a second-order parabolic equation in
a neighbourhood of a coner point of the boundary // Vestn. Moskov. Univ. Ser. I. Math., Mekh. — 1984.
—S. 34-36 (in Russian).

Eskin G. The wave equation in a wedge with general boundary conditions / Communs Part. Different.
Equat. — 1992. — 17, Ne 1-2. = P. 99-160.

Kokotov A. Yu., Plamenevskii B. A. On the Cauchy — Dirichlet problem for hyperbolic systems in a wedge
// Algebra i Analiz. — 1999. — 11, Ne 3. — S. 140- 195 (English transl.: St.Petersburg Math. J. — 2000. —
11 Ne 3. - P. 497-534).

Kokotov A. Yu., Plamenevskii B. A. On the asymptotics of solutions to the Neumann problem for
hyperbolic systems in domains with conical points // Algebra i Analiz. — 2004. — 16, Ne 3. — S. 56-98
(English transl.: St.Petersburg Math. J. — 2005. — 16, Ne 3. — P. 477 -5006).

Matyukevich S. 1., Plamenevskii B. A. Elastodynamics in domains with edges // Algebra i Analiz. — 2006.
— 18 (English transl.: St.Petersburg Math. J. — 2007. — 18, Ne 3. — P. 459-510).

Ladyzhenskaya O. A. On the non-stationary operator equations and its application to linear problems of
mathematical physics // Mat. Sbornik. — 1958. — 45, Ne 87. — S. 123 -158 (in Russian).

Hung N. M. The first initial boundary value problem for Schrédinger systems in non-smooth domains //
Differents. Uravneniya. — 1998. — 34. — S. 15461556 (in Russian).

Hung N. M., Anh C. T. On the solvability of the first initial boundary-value problem for Schrodinger
systems in infinite cylinders // Vietnam J. Math. — 2004. — 32, Ne 1. — P. 41 -48.

Hung N. M., Anh C. T. On the smoothness of solutions of the first initial boundary-value problem for
Schrodinger systems in domains with conical points // Ibid. — 2005. — 33, Ne 2. — P. 135-147.

Hung N. M., Anh C. T. Asymptotic expansions of solutions of the first initial boundary-value problem
for Schrédinger systems in domains with conical points. I // Acta Math. Vietnam. — 2005. — 30, Ne 3. —
P. 141 -160.

Hung N. M., Anh C. T. On the smoothness of solutions of the first initial boundary-value problem for
Schrodinger systems in infinite cylinders // South. Asian Bull. Math. — 2006. — 30, Ne 3. — P. 461 —471.
Fichera G. Existence theorems in elasticity theory. — M.: Mir, 1974 (in Russian).

Mazya V. G., Plamenevskii B. A. On the asymptotic coefficients of solutions of elliptic problems in
domains with conical points / Math Nachr. — 1977. — 76. — P. 29—-60 (in Russian).

Eni V. M. On the stability of number of solutions of an analytic operator-function and pertubation of
eigenvalues and eigenvectors // Dokl. AN SSSR. — 1967. — 173, Ne 6. — S. 1251 —1254 (in Russian).
Mazya V. G., Plamenevskii B. A. Elliptic boundary-value problems on manifolds with singularities //
Problems Math. Anal. — 1977. — P. 85-292 (in Russian).

Received 07.07.08

ISSN 1027-3190. Vip. mam. xcypn., 2009, m. 61, Ne 12



