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ON AN INVARIANT ON ISOMETRIC IMMERSIONS
INTO SPACES OF CONSTANT SECTIONAL CURVATURE"

ITPO THBAPIAHT HA IBOMETPUYHHNX 3AHYPEHHAX
Y IPOCTOPH CTAJIOI CEKIIIMHOI KPUBUHU

In the present paper we give an invariant on isometric immersions into spaces of constant sectional
curvature. This invariant is a direct consequence of the Gauss equation and the Codazzi equation of
isometric immersions. We will apply this invariant on some examples. Further we will apply it to
codimension 1 local isometric immersions of 2-step nilpotent Lie groups with arbitrary left invariant
Riemannian metric into spaces of constant non-positive sectional curvature. We will also consider the
more general class: Three dimensional Lie groups G with non-trivial center and with arbitrary left-
invariant metric. We show that when the metric of G is not symmetric, there are no local isometric

. . NS 4
immersions of G into Q.

HagezieHo iHBapiaHT Ha i30METPUYHUX 3aHYPEHHSX Y IPOCTOPU CTasIo1 ceKiinHoi KpuBuHU. Lleit iHBa-
piaHT € HacstiikoM piBHsHH: ["aycca Ta piBHAHHA Kopanui 115 i3omeTpuyHoro 3anypenss. lleii inBa-
piaHT BUKOPHCTAHO y JeKiJIbKOX MPHKJIANax. Moro 3acTocoBaHO [0 JIOKA/IbHUX i30METPUUHHX 3aHY-
PeHb KOBUMIpHOCTI 1 2-KpOKOBHX HiJIbMOTEHTHUX Ipym JIi 3 4OBIJILHOIO iHBapiaHTHOIO 3J1iBa piMaHO-
BOIO METPHKOIO Y MPOCTIip CTaJI0l HeJOAATHOI CEKIiiIHOI KpUBUHH. PO3rJIsIHyTO TaK0XK OiJIbII 3araJib-
HUii KJ1ac, a came TpuBuMipHi rpymu JIi G i3 HeTpHUBiaJIbLHUM LEHTPOM Ta JIOBIJIbHOIO iHBapiaHTHOIO
371iBa MeTpuKolo. [lokaszaHo, 1110 y BUNA/IKY, KOJIM MeTpUKa G HECMMETPUYHA, HE ICHYE JIOKAJIbHUX

. 4
i3omeTpu4HuX 3aHypenb Gy Q.

1. Introduction. A special case of a result, due to Otsuki [1] is as follows. If the
sectional curvature of a Riemannian manifold is strictly negative, then any local
isometric immersion of the Riemannian manifold into a Euclidean space is of
codimension greater or equal to one less than the dimension of the manifold. The
sectional curvature of a 2-step nilpotent group is not strictly negative. By studying the
Gauss equation for the curvature tensor of 2-step nilpotent groups with arbitrary left
invariant metric, it has been shown [2] that there exists no isometric immersions of
open subsets of the 2-step nilpotent groups into Euclidean space.

Recently Masal’tsev [3] proved that there are no isometric immersions of any
region of the three dimensional Heisenberg group into any space form of constant
sectional curvature. In the present article we shall prove that no left invariant
nonsymmetric metrics of the three dimensional Lie groups of Bianchi type II and III
are not immersable into a four dimensional space-forms of constant sectional curvature.

2. A new invariant. Let « denote the Hodge star operator, and let R: A TM —
— A*TM denote the curvature operator of a Riemannian manifold M. Thatis (R(X A

ANY),ZAW)={R(X, Y)W, Z).
Theorem 1. Let M be a three dimensional Riemannian manifold and let p be
an arbitrary chosen point in M. Let Z is an endomorphism of m which

permuting two of three vectors and fixes the third vector in some chosen basis { ey, e,,
es} of TpM. Let Cz: TpM - AZTPM be the map defined by Cz: X,
- (VE(X,,)R)(E(X;)) A Xp). Define the number  fy, , by

3
fM,p = z(*O(R—C]/\I)éfOCE(el‘)vei>’
i=1
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where (R—cl N I)Zf : A2(TPM) - A 2(TPM) denotes the transposed cofactor

operator of R—cl N1 with respect to the basis {e; N €5, e N\ e3, e, A\ e3}. If a
4

neighborhood of p in M is isometric immersable into Q. ,

we have Iu,p =0.
Remark 1. The invariant f;, » in Theorem 1 was found by a method given in my

thesis [4]. The method used in [4] generalized a method by Agaoka [5] which uses
G L(n)-equivariance of the Gauss equation. A paper that extends the method from my
thesis is in preparation [6].

Corollary 1. Let M be a Riemannian space of dimension 3 with metric {,)
and let p be an arbitrary chosen point in M. Let X,, X, and X5 be arbitrary
vectors in T[,M.

Define the function fy, » by

_ p2
fM,p(Xl’ XZ’ X3) - R1213C21223 - R1313R1212C21223 - Rl223R1213C11223 +
+ R1323R]212C] 1223 — R12]3R1223C21213 + R1323R1212C212]3 +

2
+ R1223C11213 - R2323R1212C11213 + R1313R1223C21212 -

- Rl323R1213C21212 - R1323R1223CI 1212 R2323R1213Cll212 ’

where
Ciam = ((Vx R(X ;. X)X, X,,,)
and
Ry = (RX;. X )X X)) — (X XXX 1 X0 )+ (X, X XX X))

for i,j,k,l,m=1,2, 3. If an open neighborhood of p in M is isometric
immersable into a 4-dimensional space Qf of arbitrary constant sectional
curvature c, we have fM’p(X],XZ,X3) =0 forall X;, X,, and X5€ TPM.

Remark 2. In the corollary, we have used a = which interchanges X; and X,.
Theorem 2. Let G be an 3-dimensional 2-step nilpotent group G equipped
with an arbitrary left invariant metric. If there is a set X, Y, Z of O.N. left
invariant vector fields such that [X, Y] = Z and with |ad (X)*Z| # |ad (Y)*Z| or
ad(X)*Z
#* (—)2, then there exists no isometric immersions of an open set of G into a
4|Z|

4 .
space Q. of sectional curvature c.

We will prove this theorem in Subsection 4.2.
3. On local isometric immersions. Let M denote a Riemannian manifold and let

p be afixed pointin M. Given a local isometric immersion of M into Qj. Let o
be its second fundamental form and let [3 be the covariant derivative of o. Recall
that by the Codazzi equation, B is symmetric. Define L and B by (L(X),Y) =
=(a(X,Y),&) and (B(X,Y),Z) =(B(X, Y. Z),&), where X,Y,Ze T,G are

tangent vectors at e and e N,G is a normal vector of the immersion at p.
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1662 H.J. RIVERTZ

Proof of Theorem 1. The Gauss equation for isometric immersions into spaces of
constant sectional curvature ¢ is RXAY)=-L(X)AL(Y)+cXAY (see, e.g.,[7])

The cofactor version of the Gauss equation is (R—cI Al); = =Ly, ALy. The

prolonged Gauss — Codazzi equationis (V;R)=—L AB(T,)—B(T,®) AL (see [8]
for the case of Euclidean ambient space and Corollary 2 in the present article for the
case when the ambient space has constant sectional curvature). Hence, Cz(X) =

=—L(E(X)) A B(E(X), X) - B(E(X), E(X)) A L(X). Therefore,
(R—cl N)jy o Cg(X) = det(L)E(X) A Ly o B(E(X), X) +
+ det (L)L, o B(E(X),E(X)) A X .
Now, since (+ (X AY),Z)=det(X|Y|Z), we have
(#o(R=cl N)y o Cx(X), X) = det(L)det (E(X)| Lz o B(E(X), X)| X) +
+ det (L) det (L, o B(E(X),E(X))|X|X) =
= det (L) det (Liy) det (L(E(X))| B(E(X), X)| L(X)) -0 =
= —det (L)’ det (L(E(X)| L(X)| B(E(X). X))) =
= det(L)*(—#o L AL(E(X) A X), B(E(X), X)) =
= det(L)* (o R(E(X) A X) — cE(X) A X), B(E(X), X)).
We can assume that = permutes ¢, and e,. Therefore,
fup = det (L)*(+(R(ey Ney)—ces Ney), Bley,e))) +

+ det (L)*(x (R(e; Aey)—cey Ney), Ble,ey)) = 0.

The theorem is proved.
4. On 2-step nilpotent groups. 4.1. On the Levi-Civita connection of 2-step
nilpotent groups. We recall some facts about 2-step nilpotent groups. Let g be a Lie

algebra. Define g;, i =20, recursively by go=¢g and g,=1[q,_;,g] for ne N.
Definition. A Lie algebra is called nilpotent if q, = {0} for some integer n. If
a, =10} and q,_;# {0} then @ is called k-step nilpotent. A Lie group G is
called k-step nilpotent if its Lie algebra is k-step nilpotent.
Let G be a Lie group equipped with an arbitrary left invariant inner product {,). If
X and Y are left invariant vector fields on G then (X, Y) is constant. Therefore,

1 1 1
VyY = —[X,Y]-—ad(X)*Y ——ad (Y)*X, 1
x¥ = X Y]=Zad(X)'Y - Zad(¥) (0

where ad (X)* denotes the adjoint map of ad (X).
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Let G be a 2-step nilpotent Lie group. Let X and Y be orthonormal left invariant
vector fields perpendicular to @; such that [X, Y] # 0. Let Z=[X, Y]. We easily

compute VXY:—VYX:%Z, VyZ=V,X :—%ad(X)*YJ_gl , VyZ =

1
=V,Y= —Ead(Y)*Z Lgy, and VyX=V,Y=V,Z =0. Since Z is independent

of rotations of X and Y we may replace X and Y with the orthonormal eigen vectors
of the symmetric bilinear form

(U,V) = {ad(U)*Z,ad (V)*Z)

on span {X, Y}. From [2] we have that
~ 3,2
(R(X,Y)X - R(X,Y)X,Y) = Z|z| +c,

(RX, V)X -R(X,V)X,Z) = 0,

(R(X,Y)Y —R(X,Y)Y,Z) =0,
2)

(R(X,2)X - R(X,2)X,Z) = —i|ad(X)*Z|2 re|zf,
(R(X,2)Y -R(X,2)Y,Z) =0,
(R(Y,2)Y -R(Y,Z)Y,Z) = —i|ad(Y)*Z|2 +e|zf,

where R denotes the curvature tensor of a space form of constant sectional curvature
c. We easily compute the covariant derivatives of the curvature tensor by using the
formulas in (2) and the formula (1): The nonzero components are
1 2
(VxRYX.1)X.Z) = —[ad (X",
3)
1 2
{(V,RYX.,Y)Y,Z) = E|ad wyz| .

We have only considered formulas involving X, Y, and Z.
4.2. Proof of Theorem 2. Let X, Y be orthonormal left invariant vector fields

perpendicular to g, andlet Z=[X, Y]. The invariant f, , forarbitrary pe G =M
in Corollary 1 together with the formulas in (1) and (2) gives

fG,p(X’ Z,Y) = = Ryzx7Ryzv,Cxxyxz = 0

fG,p(X’Y’ Z) == RXZXZRXYXYCYXYYZ - RYZYZRXYXYCXXYXZ = 0.

| d(X)*Z|2

a

The last pair of equations yields |ad (X)*Z| = |ad (Y)*Z| and c = T
4|7

The theorem is proved.
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1664 H.J. RIVERTZ

5. An application of the main theorem on Lie groups of nontrivial center. Let
G Dbe a three dimensional Lie group with an arbitrary left invariant metric (,) and with
a nontrivial center of its Lie algebra. Let e; € g be a left invariant unit vector field on
G contained in the center Z(q) of g. From (1) one has Vele1 = 0. One can extend

{e;} toan orthogonal basis {e;, e,, 3} of left invariant vector fields on G. Let l"f;-

be the k-th coefficientof V, e ;- From the compatibility conditions of V, we have

Ff.j. =(Veiej,ek)=—(Veiek,ej)=—l"{}(. The identities l"fj = 1“’/‘.1 and

F]fl = 1";2 = 1"§3 = 0 follows from the equation (1) and e;e Z(g). An easy
calculation gives

(R(el,ez)e1 —f?(el,ez)el,e2> = c—(l“123)2,
(R(e,,e;)e, — R(e|,e3)e ,es) = ¢ — ()7, 4)

~ 2
(R(e,.e5)e, — R(ey, e5)e,5,e5) = c—(T'hy)” +|[e,, e5]]

and

<(Ve2R)(e1’e2)e2’e3> == r123 |[ez’e3]|27
(5)
<(Ve3R)(el,e3)e2,e3> = —I‘123|[e2,e3]|2,

where we only have displayed the nonzero formulas up to the symmetries of R, R,
and VR. We now calculate the invariant f; » in Corollary 1:

2
fo.p(€.€y.e3) = Thi(c—(Th3)%) ey, €3]

Proposition 1. Let G be a three dimensional Lie group with a nontrivial center
of its Lie algebra ¢ and with a left invariant metric {,) such that the center is not
perpendicular to the derived algebra §;=1g,a]. If

¢ # ([h)?,

then there exists no isometric immersions of any region of G into Qf. In
particular F123 # 0, so there exists no isometric immersions of any region of G
into R”.

Remark 3. For G = Nil> one has a; = Z(g), so the theorem applies for all left

L . .3
invariant geometries on Nil .
Proof of Proposition 1. Since g, = span{[e,, e;]} and Z(g) £ g;, we have

1"123 #0 and |[e,, e3]| #0. Thus, fc.p(€.€;,€3) #0, and by Theorem 1 there are
no isometric immersion of any region of G into Qf .
This is how long we come by using our invariant fG,p. Let ¢ = (1"£3)2. By the

same methods as in [3], we show that the following lemma.
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Lemma. Let G be as in Proposition 1. The second fundamental form of the

. .. . . 4 .
isometric immersion of G into Q. is on the form

0 0 0
L = |[e2,e3]| 0 cosO sin® |,

0O sin® —cosO

where O is a smooth function on G.
Proof. The Gauss equations yield L;; =L, =L;; = 0. The Codazzi equation,

0=V, L(e;,¢,)—V, L(ey,e)), reduces to —Tsly, =Thslsy. Therefore, Ly, =

= — L35 . The third equation in (4) now gives the result.

The lemma is proved.
The covariant derivative of L is

0 0 0
VoL =(e(0)-2T1)|0  —Ly Ly,
0 Ly Ly
0 Ty ~ThLy
VoL =|Thly  —Ly(ey(0)+20%)  Ly(ey(0)+2T3,),
—Thly  Ly(ey®)+213,)  Ly(ey(8)+2I3,)
0 ~THLy ~Thly
Vel =|-ThLy —Ly(e3(0)-2I35;)  Ly(es(0)-2T3)|.
—ThLy  Ly(es(0)- 2F§3) Lys(e5(0) - 2T'55)
The nontrivial Codazzi equations are:

0= (Ve L)y = (Ve L), = —(e,(®)~Ti3)Ly,

0= (Ve L)z =(Ve, L)1z = (e,(6)- l"123)]422’

0= (Ve]L)32_(Ve3L)12 = (61(9)_F123)L22’

0 (Vell‘)33 _(Ve3L)l3 = (el(e)_rle)LB’

0= (Ve, L)y = (Ve L)yy = Lyp(€,(8) + 2T, + Lys(e5(6) - 2T'3;),
0= (Vg L)y —(V = 0)+203,)— 0)-2rI3
= (Ve,L)33= (Ve L)y3 = Lp3(e;(0) +2I5)) — Lyy(e5(8) - 2T'53).
Therefore, the Codazzi equations are equivalent with
de(e,) = Th,
dé(e,) = —2T3,, (6)
dé(e;) = 2T'%,.
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Let ®;, ®, ;5 be the dual forms of the vectors e;, e,, e;. Hence, the equations in
(6) can be written on the compact form

2 3 2
dO = T'[;0, — 25,0, +2I'5;004.
The integrability condition for is
0 = Thdw, —2T3,do, + 2T 5dw,. @)

We calculate dw; =— 21"123e2 Nes, dw, = ngez Nes, and dw, =— F§3e2 A es.

By substituting these for dw,, k=1, 2,3, in (7) we get

0 = —2(Ih3)* = 2T3,)* —2T%)>. )

So, condition (8) is necessary for the solutions of the Codazzi equation. This condition
is impossible since we have assumed that F123 # 0. Therefore:

Theorem 3. Let G be a three dimensional Lie group with a nontrivial center of
its Lie algebra §. Let G haves a left invariant metric {,). If the center of q s

s

not perpendicular to the derived algebra q, = [q, g1, then there are no isometric

immersions of any region of G into Qf .

Remark 4. If g; 1 Z(g), then 1"123 = 0 and hence, from (5), G is local
symmetric. This case is not considered in this article.
6. The Gauss — Codazzi equation. Let M be an n-dimensional manifold, and let

N be an m-dimensional manifold. In this appendix we will state first prolongation of
the Gauss and Codazzi equations. The special case for isometric immersions into
Euclidean space is proved by Kaneda [8].

Let (e, ), and (e, ) be Riemannian metrics on the manifolds M and N
respectively. Let f be an isometric immersion between the Riemannian manifolds M
and N with Levi-Civita connections V and V respectively.

Proposition 2 (First prolonged Gauss — Codazzi equation). Let f be an isometric
immersion of M into N . The following equation is satisfied:

(VyR(X.V)ZW) = (V,RYX.Y)Z,W) -
— {(Vyo)(X, W), oY, 2)) = {(Vye)(Y. 2), (X, W) +
+ {(Vyo)(X, Z), (Y, W)Y+ (Vi) (Y, W), 0 X, Z)) —
— (RX,Z, (W, V) +{R(X,Y)W,0(Z,V)) +

+ (R(Z,W)Y, (X, V)y—{R(Z,W)X,0(Y,V)),

where o is the second fundamental form of the immersion.
Proof. The proof is a result of a straight forward calculation.
Let A be the shape operator (see, e.g., [9]).
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Corollary 2. Let {§,....€,_,} be a local orthonormal frame of unit normal

vectors, and assume that N is of constant sectional curvature. We then have

0 = (VyRIX.Y)+ 2 (Ag X)A(VyA)e Y = X (A V) A(VyA) X
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