UDC 512.5
M. Hashemi (Univ. Guilan, Iran)

ON THE AUTOMORPHISM OF SOME CLASSES OF GROUPS ПРО АВТОМОРФІЗМ ДЕЯКИХ КЛАСІВ ГРУП

We study two classes of 2-generated nilpotent groups of nilpotency class 2 and compute the order of their automorphism groups.

Досліджено два класи 2-породжених нільпотентних груп класу нільпотентності 2 та обчислено порядок іх груп автоморфізмів.

1. Introduction. Many authors, have studied automorphism groups, of course most of these are devoted to p-groups. In [1] Jamali presents some non-abelian 2 -groups with abelian automorphism groups. Bidwell and Curran [2] studied the automorphism group of a split metacyclic p-group. By a program in [3], one can calculate the order of small p-groups. Our purpose in the present paper is to calculate the order of the automorphism groups of two classes of groups. Let G be a group. $Z(G)$ denotes the center of $G ; G^{\prime}$ the commutator subgroup of G; $\operatorname{Aut}(G)$ the automorphism of G and $\varphi(m)$ the Euler function.

First, we state a lemma without proof that establishes some properties of groups of nilpotency class 2.

Lemma 1. If G is a group and $G^{\prime} \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:
(i) $[u v, w]=[u, w][v, w]$ and $[u, v w]=[u, v][u, w]$;
(ii) $\left[u^{k}, v\right]=\left[u, v^{k}\right]=[u, v]^{k}$;
(iii) $(u v)^{k}=u^{k} v^{k}[v, u]^{k(k-1) / 2}$.

Theorem 1 ([4, p. 44], Proposition 3). Suppose that we are given a presentation $\langle X \mid R\rangle$ for a group G, and a map $\theta: X \rightarrow G$. Then θ extends to an endomorphism of G if and only if for all $x \in X$ and all $r \in R$ the result of substituting $(x) \theta$ for x in r yield the identity of G. Furthermore if, in addition $(X) \theta$ generates G then θ extends to an epimorphism of G.

We consider the finitely presented groups,

$$
K(n, l)=\left\langle a, b \mid a b^{n}=b^{l} a, b a^{n}=a^{l} b\right\rangle, \quad \text { where } \quad(n, l)=1,
$$

and

$$
G_{n}=\left\langle a, b \mid a^{n}=b^{n}=1,[a, b]^{a}=[a, b],[a, b]^{b}=[a, b]\right\rangle, \quad n \geq 1 .
$$

In Section 2, we investigate the automorphism group of $K(n, l)$ and compute the order of its automorphisms group. In Section 3 we solve a system and by using it, find an explicit formula for the $\left|\operatorname{Aut}\left(G_{n}\right)\right|$.

Most of theorems of this paper were suggested by data from a computer program written in the computational algebra system GAP [3].
2. The order of $\operatorname{Aut}(K(\boldsymbol{n}, \boldsymbol{l}))$. In this section, we consider the metacyclic Fox groups $K(n, l)$ defined by $K(n, l)=\langle a, b| a b^{n}=b^{l} a$, $\left.b a^{n}=a^{l} b\right\rangle$, where $(n, l)=1$.

We state some known results concerning $K(n, l)$, the proofs of which can be found in $[5,6]$.

Theorem 2. The groups $K(n, l)$ defined by the above presentation have the following properties:
(i) $|K(n, l)|=|l-n|^{3}$, if $(l, n)=1$ and is infinite otherwise;
(ii) if $(l, n)=1$, then $|a|=|b|=(l-n)^{2}$;
(iii) if $(l, n)=1$, then $a^{l-n}=b^{n-l}$.

Lemma 2. (i) For every $l \geq 3, K(n, l) \cong K(1,2-l)$.
(ii) For every $i \geq 2$ and $(n, i)=1, K(n, n+i) \cong K(1, i+1)$.

Note. If $(m, n)=1$, then $K(n, m) \cong K(1, m-n+1)$ which we may write as K_{m-n+1}. Hence we only calculate $\operatorname{Aut}\left(K_{l}\right)$.

Before we present the main result of this section we need to develop some results concerning K_{l}.

Lemma 3. Every element of K_{l} may be uniquely presented by $x=a^{\beta} b^{\gamma} a^{(l-1) \delta}$, where $1 \leq \beta, \gamma, \delta \leq l-1$.

Proof. By parts (ii) and (iii) of Theorem 2, every element of K_{l} can be written in this form. Since $\left|K_{l}\right|=|l-1|^{3}$, that expression is unique.

The lemma is proved.
Lemma 4. In $K_{l},[a, b]=b^{l-1} \in Z\left(K_{l}\right)$.
Proof. Since $a^{l-1}=b^{1-l}$ then $a^{l-1} \in Z\left(K_{l}\right)$. By the relations of K_{l} we have

$$
[a, b]=a^{-1} b^{-1} a b=a^{-1} b^{-1} b^{l} a=a^{-1} b^{l-1} a=b^{l-1} \in Z\left(K_{l}\right),
$$

as desired.
The lemma is proved.
Proposition 1. Let $l \geq 3$ be an integer and $f \in \operatorname{Aut}\left(K_{l}\right)$. Then there exist $1 \leq$ $\leq \beta_{i}, \gamma_{i}, \delta_{i} \leq l-1$ for $1 \leq i \leq 2$ such that $f(a)=a^{\beta_{1}} b^{\gamma_{1}} a^{(l-1) \delta_{1}}, \quad f(b)=$ $=a^{\beta_{2}} b^{\gamma_{2}} a^{(l-1) \delta_{2}}$ when β_{i} and γ_{i} are solutions of the following system:

$$
\begin{align*}
& \gamma_{2} \beta_{1}-\beta_{2} \gamma_{1} \equiv \beta_{1}-\gamma_{1}+\gamma_{1} \beta_{1} \frac{l(l-1)}{2}(\bmod l-1) \\
& \gamma_{1}+\gamma_{2}-\gamma_{2} \beta_{2} \frac{l(l-1)}{2} \equiv \beta_{1}+\beta_{2}+\gamma_{1} \beta_{1} \frac{l(l-1)}{2}(\bmod l-1) \tag{1}\\
& \left(\beta_{1}-\gamma_{1}+\beta_{1} \gamma_{1} \frac{(l-1)\left(l^{2}-2 l\right)}{2}, l-1\right)=1 \\
& \left(\beta_{2}-\gamma_{2}+\beta_{2} \gamma_{2} \frac{(l-1)\left(l^{2}-2 l\right)}{2}, l-1\right)=1
\end{align*}
$$

Proof. Let $f \in \operatorname{Aut}\left(K_{l}\right)$ and $f(a)=a^{\beta_{1}} b^{\gamma_{1}} a^{(l-1) \delta_{1}}, \quad f(b)=a^{\beta_{2}} b^{\gamma_{2}} a^{(l-1) \delta_{2}}$, where $1 \leq \beta_{i}, \gamma_{i}, \delta_{i} \leq l-1$ and $1 \leq i \leq 2$. Since $b a=a^{l} b$, we have $f(b) f(a)=$ $=f(a)^{l} f(b)$. By setting the values $f(a)$ and $f(b)$ in the recent relation, we get

$$
a^{\beta_{2}} b^{\gamma_{2}} a^{(l-1) \delta_{2}} a^{\beta_{1}} b^{\gamma_{1}} a^{(l-1) \delta_{1}}=\left(a^{\beta_{1}} b^{\gamma_{1}} a^{(l-1) \delta_{1}}\right)^{l}\left(a^{\beta_{2}} b^{\gamma_{2}} a^{(l-1) \delta_{2}}\right) .
$$

After some routine calculations and Lemma 3 we see,

$$
\begin{equation*}
\gamma_{2} \beta_{1}-\beta_{2} \gamma_{1} \equiv \beta_{1}-\gamma_{1}+\gamma_{1} \beta_{1} \frac{l(l-1)}{2}(\bmod l-1) \tag{2}
\end{equation*}
$$

Also $a b=b^{l} a$ then we have

$$
\begin{equation*}
\gamma_{1} \beta_{2}-\beta_{1} \gamma_{2} \equiv \beta_{2}-\gamma_{2}+\gamma_{2} \beta_{2} \frac{l(l-1)}{2}(\bmod l-1) . \tag{3}
\end{equation*}
$$

By the relations (2) and (3), we have

$$
\gamma_{1}+\gamma_{2}-\gamma_{2} \beta_{2} \frac{l(l-1)}{2} \equiv \beta_{1}+\beta_{2}+\gamma_{1} \beta_{1} \frac{l(l-1)}{2}(\bmod l-1)
$$

Since $|a|=|f(a)|=(l-1)^{2}$, consequently $\left(a^{\beta_{1}} b^{\gamma_{1}} a^{(l-1) \delta_{1}}\right)^{(l-1)^{2}}=1$. Thus $a^{(l-1)^{2}\left(\beta_{1}-\gamma_{1}+\gamma_{1} \beta_{1} \frac{\left(l^{2}-2 l\right)(l-1)}{2}\right)}=1$. This further implies

$$
\left(\beta_{1}-\gamma_{1}+\beta_{1} \gamma_{1} \frac{(l-1)\left(l^{2}-2 l\right)}{2}, l-1\right)=1
$$

For $|b|=|f(b)|=(l-1)^{2}$, by a similar argument we see that

$$
\left(\beta_{2}-\gamma_{2}+\beta_{2} \gamma_{2} \frac{(l-1)\left(l^{2}-2 l\right)}{2}, l-1\right)=1 .
$$

Thus the assertions hold.
The proposition is proved.
The following proposition is the main result of this section.
Proposition 2. Let $l \geq 3$ be an integer. Then

$$
\left|\operatorname{Aut}\left(K_{l}\right)\right|= \begin{cases}(l-1)^{3} \varphi(l-1), & \text { if } l \text { or } \frac{l-1}{2} \text { is even } \\ 3(l-1)^{3} \varphi(l-1), & \text { if } \frac{l-1}{2} \text { is odd }\end{cases}
$$

Proof. First, let l be even. Then the system (1) reduces to the following equivalent system:

$$
\begin{align*}
& \gamma_{2} \beta_{1}-\beta_{2} \gamma_{1} \equiv \beta_{1}-\gamma_{1}(\bmod l-1), \\
& \gamma_{1}+\gamma_{2} \equiv \beta_{1}+\beta_{2}(\bmod l-1), \\
& \left(\beta_{1}-\gamma_{1}, l-1\right)=1, \tag{4}\\
& \left(\beta_{2}-\gamma_{2}, l-1\right)=1 .
\end{align*}
$$

By the second congruence in (4), we get $\gamma_{2} \equiv \beta_{1}+\beta_{2}-\gamma_{1}(\bmod l-1)$. Substituting γ_{2} in the first congruence gives $\beta_{1}^{2}+\beta_{1} \beta_{2}-\beta_{1} \gamma_{1}-\beta_{2} \gamma_{1} \equiv \beta_{1}-$ $-\gamma_{1}(\bmod l-1)$, or

$$
\beta_{1}\left(\beta_{1}-\gamma_{1}\right)+\beta_{2}\left(\beta_{1}-\gamma_{1}\right) \equiv \beta_{1}-\gamma_{1}(\bmod l-1)
$$

Now $\left(\beta_{1}-\gamma_{1}, l-1\right)=1$ implies that $\beta_{1}+\beta_{2} \equiv 1(\bmod l-1)$. A consequence of the last congruence and $1 \leq \beta_{1}+\beta_{2}-1 \leq 2 l-3$ is that $\beta_{2}=l-\beta_{1}$. This and the second congruence in (4) follows that $\gamma_{2}=l-\gamma_{1}$. Now let $(t, l-1)=1$. Then for every
$\beta_{1} \in\{1,2, \ldots, l-1\}$ there exist unique integer $\gamma_{1} \in\{1,2, \ldots, l-1\}$ such that $\beta_{1}-$ $-\gamma_{1}=t$ (for selection $\gamma_{1}=t+\beta_{1}$). Combining all these facts, we see that for every $f \in$ $\in \operatorname{Aut}\left(K_{l}\right)$ there are $\beta_{1}, \gamma_{1}, \delta_{1}, \delta_{2}$ such that

$$
\begin{aligned}
& f(a)=a^{\beta_{1}} b^{t+\beta_{1}} a^{(l-1) \delta_{1}}, \\
& f(b)=a^{l-\beta_{1}} b^{l-\left(t+\beta_{1}\right)} a^{(l-1) \delta_{2}},
\end{aligned}
$$

where $1 \leq \beta_{1}, \delta_{1}, \delta_{2} \leq l-1,(t, l-1)=1$. Now if we denote f by $f_{\beta_{1}, t, \delta_{1}, \delta_{2}}$, then the assertion yields.

Lastly, let l be odd. Since $\frac{l(l-1)}{2} \equiv \frac{l-1}{2}(\bmod l-1)$, the system (1) simplifies to the following system:

$$
\begin{align*}
& \gamma_{2} \beta_{1}-\beta_{2} \gamma_{1} \equiv \beta_{1}-\gamma_{1}+\gamma_{1} \beta_{1} \frac{l-1}{2}(\bmod l-1) \\
& \gamma_{1}+\gamma_{2}-\gamma_{2} \beta_{2} \frac{l-1}{2} \equiv \beta_{1}+\beta_{2}+\gamma_{1} \beta_{1} \frac{l-1}{2}(\bmod l-1) \\
& \left(\beta_{1}-\gamma_{1}+\beta_{1} \gamma_{1} \frac{l-1}{2}, l-1\right)=1 \tag{5}\\
& \left(\beta_{2}-\gamma_{2}+\beta_{2} \gamma_{2} \frac{l-1}{2}, l-1\right)=1
\end{align*}
$$

Now suppose that $\frac{l-1}{2}$ is even. By the third condition in (5), one of β_{1} and γ_{1} is even and the other is odd. Also, it is true about β_{2} and γ_{2}. Combining of all these and (5), we have

$$
\begin{aligned}
& \gamma_{2} \beta_{1}-\beta_{2} \gamma_{1} \equiv \beta_{1}-\gamma_{1}(\bmod l-1) \\
& \gamma_{1}+\gamma_{2} \equiv \beta_{1}+\beta_{2}(\bmod l-1) \\
& \left(\beta_{1}-\gamma_{1}, l-1\right)=1 \\
& \left(\beta_{2}-\gamma_{2}, l-1\right)=1
\end{aligned}
$$

The result follows in a similar way as for the first case.
To complete the proof, let $\frac{l-1}{2}$ be odd. Then by (5) we get

$$
\begin{aligned}
& \gamma_{2} \beta_{1}-\beta_{2} \gamma_{1} \equiv \beta_{1}-\gamma_{1}\left(\bmod \frac{l-1}{2}\right), \\
& \gamma_{1}+\gamma_{2} \equiv \beta_{1}+\beta_{2}\left(\bmod \frac{l-1}{2}\right) \\
& \left(\beta_{1}-\gamma_{1}, \frac{l-1}{2}\right)=1 \\
& \left(\beta_{2}-\gamma_{2}, \frac{l-1}{2}\right)=1
\end{aligned}
$$

In a similar way as for the first case, we get $\beta_{1}+\beta_{2} \equiv 1\left(\bmod \frac{l-1}{2}\right)$. Since $1 \leq$ $\leq \beta_{1}+\beta_{2}-1 \leq 2 l-3$, we have $\beta_{2}=\left(\frac{l-1}{2}\right) t+1-\beta_{1}$, where $t \in\{1,2,3\}$. Similarly, $\gamma_{2}=\left(\frac{l-1}{2}\right) s+1-\gamma_{1}$, where $s \in\{1,2,3\}$. By setting the values β_{2} and γ_{2} in the first and second congruences of (5), we have

$$
\begin{aligned}
& s \beta_{1}-t \gamma_{1} \equiv \beta_{1} \gamma_{1}(\bmod 2) \\
& s-t-\left(\frac{l-1}{2}\right)^{2} s t-\left(\left(\frac{l-1}{2}\right) s+1\right) \beta_{1}+ \\
& +\left(\frac{l-1}{2}\right)(s+t)-\left(\left(\frac{l-1}{2}\right) t+1\right) \gamma_{1}+1 \equiv 0(\bmod 2)
\end{aligned}
$$

Moreover, since one of β_{1} and γ_{1} is even and the other is odd then

$$
\begin{align*}
& s \beta_{1}-t \gamma_{1} \equiv 0(\bmod 2) \tag{6}\\
& s-t-\left(\frac{l-1}{2}\right)^{2} s t-\left(\left(\frac{l-1}{2}\right) s+1\right) \beta_{1}+ \\
& +\left(\frac{l-1}{2}\right)(s+t)-\left(\left(\frac{l-1}{2}\right) t+1\right) \gamma_{1}+1 \equiv 0(\bmod 2)
\end{align*}
$$

We now count the solutions of (6). To do this, we must consider three cases as the following:

1. Let s and t be odd. Utilizing the first congruence of (6), we have $\beta_{1}-\gamma_{1} \equiv$ $\equiv 0(\bmod 2)$ and which is a contradiction (for, one of β_{1} and γ_{1} is even and the other is odd).
2. Let s and t be even, then

$$
\begin{aligned}
& 0 \equiv 0(\bmod 2) \\
& \beta_{1}+\gamma_{1} \equiv 1(\bmod 2)
\end{aligned}
$$

So that $\beta_{2}=l-\beta_{1}$ and $\gamma_{2}=l-\gamma_{1}$ are solutions of (1), where $1 \leq \beta_{1}, \gamma_{1} \leq l-1$ and $\left(\beta_{1}-\gamma_{1}, \frac{l-1}{2}\right)=1$. Hence the number solutions of (6) (in this case) is $(l-$ -1) $\varphi(l-1)$.
3. Suppose one of s and t is even and other is odd. First let s be even, then

$$
\begin{aligned}
& \gamma_{1} \equiv 0(\bmod 2) \\
& \beta_{1} \equiv 1(\bmod 2)
\end{aligned}
$$

Now let s be odd, then

$$
\begin{aligned}
\beta_{1} & \equiv 0(\bmod 2) \\
\gamma_{1} & \equiv 1(\bmod 2)
\end{aligned}
$$

So that the number solutions of (6) (in this case) is $2(l-1) \varphi(l-1)$. Therefore, by the above considerations, the assertion is established.

The proposition is proved.
3. The order of $\operatorname{Aut}\left(\boldsymbol{G}_{\boldsymbol{n}}\right)$. The goal of this section is to calculate the $\left|\operatorname{Aut}\left(G_{n}\right)\right|$, where

$$
G_{n}=\left\langle a, b \mid a^{n}=b^{n}=1,[a, b]^{a}=[a, b],[a, b]^{b}=[a, b]\right\rangle, \quad n \geq 1
$$

First, we recall the following lemma from [7].
Lemma 5. Let $G=G_{n}$, then $\left|G_{n}\right|=n^{3},|Z(G)|=n$ and $Z(G)=G^{\prime}=$ $=\left\langle x \mid x^{n}=1\right\rangle$.

We now show that every element in the G_{n}, where $n \in N$, has standard form:
Lemma 6. Every element of the group $G=G_{n}$ can be written uniquely in the form $a^{i} b^{j}[b, a]^{k}$, where $0 \leq i, s, k \leq n-1$.

Proof. Since $[a, b]^{a}=[a, b],[a, b]^{b}=[a, b]$, then $[a, b] \in Z(G)$ and

$$
\begin{gathered}
{\left[a, b^{-1}\right]=\left([a, b]^{b^{-1}}\right)^{-1} \in Z(G),} \\
{\left[a^{-1}, b\right]=\left([a, b]^{a^{-1}}\right)^{-1}=[a, b]^{-1} \in Z(G) .}
\end{gathered}
$$

Moreover, for every $x=x_{1}^{s_{1}} x_{2}^{s_{2}} \ldots x_{k}^{s_{k}}$ in G_{n}, where $x_{i} \in\{a, b\}$ and $s_{1}, s_{2}, \ldots, s_{k}$ are integers, using the relations $b^{j} a^{i}=a^{i} b^{j}\left[b^{j}, a^{i}\right]$, we may easily prove that every element of G is in the form $a^{i} b^{j} g$, where $0 \leq i<m-1,0 \leq j \leq n-1$ and $g \in G^{\prime}$ (by induction method on the length of the word x). Suppose $x=a^{i} b^{j} g=e$ then $a^{i} b^{j} \in Z(G)$ and $\left[a, b^{j}\right]=[a, b]^{j}=1$, thus $n \mid j$. Similarly $n \mid i$, that is $i=j=0$ and $g=e$. The result is now immediate.

The lemma is proved.
The following proposition is the main result of this section.
Proposition 3. Let $n \geq 2$ be an integer. Then $f \in \operatorname{Aut}\left(G_{n}\right)$ if and only if there exist $0 \leq s_{i}, t_{i}, k_{i} \leq n-1$ for $1 \leq i \leq 2$ such that $f(a)=a^{t_{1}} b^{s_{1}}[a, b]^{k_{1}}, f(b)=$ $=a^{t_{2}} b^{s_{2}}[a, b]^{k_{2}}$ and $s_{1}, s_{2}, t_{1}, t_{2}$ are solutions of the following system:

$$
\begin{align*}
& s_{1} t_{1} \frac{n(n-1)}{2} \equiv 0(\bmod n) \\
& s_{2} t_{2} \frac{n(n-1)}{2} \equiv 0(\bmod n) \tag{7}\\
& \left(s_{1} t_{2}-s_{2} t_{1}, n\right)=1
\end{align*}
$$

Proof. Let $f \in \operatorname{Aut}\left(G_{n}\right)$ and $f(a)=a^{t_{1}} b^{s_{1}}[a, b]^{k_{1}}, \quad f(b)=a^{t_{2}} b^{s_{2}}[a, b]^{k_{2}}$, where $1 \leq s_{i}, t_{i}, k_{i} \leq n, \quad 1 \leq i \leq 2$. Since $|a|=|(a) f|=n \quad$ and $\quad(a) f^{n}=$ $=a^{n t_{1}} b^{n s_{1}}[a, b]^{n k_{1}-s_{1} t_{1} \frac{n(n-1)}{2}}=[a, b]^{s_{1} t_{1} \frac{n(n-1)}{2}}$, we get $n \left\lvert\, s_{1} t_{1} \frac{n(n-1)}{2}\right.$. Also $|b|=$ $=|(b) f|=n$ so that $n \left\lvert\, s_{2} t_{2} \frac{n(n-1)}{2}\right.$. Finally, $|[a, b]|=n$ hence $[a, b]^{n\left(t_{1} s_{2}-s_{1} t_{2}\right)}=$ $=e$. This yields that $\left(t_{1} s_{2}-s_{1} t_{2}, n\right)=1$.

Now it is sufficient to prove that f, with the above conditions, is an isomorphism. Let $u=a^{s} b^{t}[a, b]^{k}$ and (u)f=e, then by the Lemma 6, we have

$$
\begin{align*}
& t_{1} t+t_{2} s \equiv 0(\bmod n) \\
& s_{1} t+s_{2} s \equiv 0(\bmod n) \tag{8}\\
& k_{1} t+k_{2} s+\left(t_{1} s_{2}-s_{1} t_{2}\right) k-s_{1} t_{2} t s-\frac{s_{1} t_{1} t(t-1)}{2}-\frac{s_{2} t_{2} s(s-1)}{2} \equiv 0(\bmod n)
\end{align*}
$$

By adding s_{1} times the first congruence of (8) to $\left(-t_{1}\right)$ times the second congruence, we get $s_{1} t_{2} s-t_{1} s_{2} s \equiv 0(\bmod n) \quad$ or $\quad\left(s_{1} t_{2}-t_{1} s_{2}\right) s \equiv 0(\bmod n)$. Since $\left(t_{1} s_{2}-s_{1} t_{2}, n\right)=1$, we have $n \mid s$. An identical argument shows that $n \mid t$. Using these in the third congruence of (8), yield that $\left(t_{1} s_{2}-s_{1} t_{2}\right) k \equiv 0(\bmod n)$. Hence $n \mid k$. That is $u=e$ and f is an isomorphism.

The proposition is proved.
In order to give an expression for the $\left|\operatorname{Aut}\left(G_{n}\right)\right|$, we need the following key lemma.

Lemma 7. Let $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, where p_{i} is prime number and $\alpha_{i} \geq 1$. Then the number of solutions of the system

$$
\begin{aligned}
& 1 \leq s_{1}, s_{2}, t_{1}, t_{2} \leq n-1, \\
& \left(s_{1} t_{2}-s_{2} t_{1}, n\right)=1,
\end{aligned}
$$

is $n \varphi(n)^{2} \prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}+1\right)$.
Proof. Without loss of generality, we assume $k=2$. We know that, the number of $\left\{m \mid 0 \leq m \leq n-1\right.$ and $\left.p_{1} \mid m\right\}$ is $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}$. Also, for p_{2} and $p_{1} p_{2}$, it is $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1}$ and $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1}$ respectively. Since $\left(s_{1}, s_{2}\right)$ when s_{1} and s_{2} are multiple of p_{1} or p_{2} not being allowed, we may choose $\left(s_{1}, s_{2}\right)$ in t ways, where

$$
t=\left\{\begin{array}{c}
p_{1}^{2 \alpha_{1}} p_{2}^{2 \alpha_{2}}-\left(p_{1}^{2 \alpha_{1}-2} p_{2}^{2 \alpha_{2}}-p_{1}^{2 \alpha_{1}} p_{2}^{2 \alpha_{2}-2}+p_{1}^{2 \alpha_{1}-2} p_{2}^{2 \alpha_{2}-2}\right)= \\
=p_{1}^{2 \alpha_{1}-2} p_{2}^{2 \alpha_{2}-2}\left(p_{1}^{2} p_{2}^{2}-p_{1}^{2}-p_{2}^{2}+1\right) \\
p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right) p_{2}^{\alpha_{2}-1}\left(p_{2}-1\right) p_{1}^{\alpha_{1}-1}\left(p_{1}+1\right) p_{2}^{\alpha_{2}-1}\left(p_{2}+1\right)= \\
=\varphi(n) p_{1}^{\alpha_{1}-1}\left(p_{1}+1\right) p_{2}^{\alpha_{2}-1}\left(p_{2}+1\right)
\end{array}\right.
$$

Now, we select $\left(t_{1}, t_{2}\right)$ such that $\left(s_{1} t_{2}-s_{2} t_{1}, n\right)=1$. To do this, we find the number of (x, y) such that $\left(s_{1} y-s_{2} x, n\right) \neq 1$. In other words, we find the number of (x, y) such that

$$
s_{1} y-s_{2} x \equiv 0\left(\bmod p_{1}\right) \quad \text { or } \quad s_{1} y-s_{2} x \equiv 0\left(\bmod p_{2}\right)
$$

Let $s_{1} y-s_{2} x \equiv 0\left(\bmod p_{1}\right)$, then for every $0 \leq x \leq n-1$ there is a unique $0 \leq y_{0} \leq$ $\leq p_{1}-1$ such that $s_{1} y_{0} \equiv s_{2} x\left(\bmod p_{1}\right)\left(\right.$ for $y_{0} \equiv 0$ or $s_{1}^{*} s_{2} x\left(\bmod p_{1}\right)$, where s_{1}^{*} is the arithmetic inverse of s_{1} respect to p_{1}). Hence for every $0 \leq x \leq n-1$ the number solutions of $s_{1} y-s_{2} x \equiv 0\left(\bmod p_{1}\right)$ in Z_{n} is $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \quad\left(\right.$ for $y_{i}=y_{0}+p_{1} k, 0 \leq k \leq$
$\leq p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}$ are solutions). By a similar argument, for every $0 \leq x \leq n-1$ the number solutions of $s_{1} y-s_{2} x \equiv 0\left(\bmod p_{2}\right)$ in Z_{n} is $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1}$. Also, we know that $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1}$ solutions are common in two sets of solutions. Consequently, when $\left(s_{1}\right.$, s_{2}) select, we may choose $\left(t_{1}, t_{2}\right)$ in l ways where

$$
l=\left\{\begin{array}{l}
p_{1}^{2 \alpha_{1}} p_{2}^{2 \alpha_{2}}-p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}}+p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1}-p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1}\right)= \\
\quad=p_{1}^{2 \alpha_{1}-1} p_{2}^{2 \alpha_{2}-1}\left(p_{1} p_{2}-p_{1}-p_{2}+1\right) \\
n p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right) p_{2}^{\alpha_{2}-1}\left(p_{2}-1\right)=n \varphi(n)
\end{array}\right.
$$

Multiplying the number t and l together we obtain the assertion.
The lemma is proved.
With the previous notations, we prove that the important result of this section.
Proposition 4. Let $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ be an integer. Then

$$
\left|\operatorname{Aut}\left(G_{n}\right)\right|= \begin{cases}n^{3} \varphi(n)^{2} \prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}+1\right), & \text { if } n \text { is odd, } \\ \frac{n^{3}}{3} \varphi(n)^{2} \prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}+1\right), & \text { if } n \text { is even. }\end{cases}
$$

Proof. First, let n be odd. Then the system (7) reduces to the equivalent system

$$
\begin{aligned}
& 0 \leq s_{1}, s_{2}, t_{1}, t_{2} \leq n-1, \\
& \left(s_{1} t_{2}-s_{2} t_{1}, n\right)=1 .
\end{aligned}
$$

Since the number of solutions of this system is $n \varphi(n)^{2} \prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}+1\right)$ and k_{1}, $k_{2} \leq n-1$, the assertion follows from the Proposition 3.

Finally, let n be even. Now $s_{1}, s_{2}, t_{1}, t_{2}$ are solutions of the system (7) if and only if for every $1 \leq i \leq k-1$ they are solutions of the following system:

$$
\begin{aligned}
& s_{1} t_{1} \frac{n(n-1)}{2} \equiv 0\left(\bmod p_{i}^{\alpha_{i}}\right), \\
& s_{2} t_{2} \frac{n(n-1)}{2} \equiv 0\left(\bmod p_{i}^{\alpha_{i}}\right), \\
& \left(s_{1} t_{2}-s_{2} t_{1}, p_{i}^{\alpha_{i}}\right)=1
\end{aligned}
$$

When p_{i} is odd number, then this system reduces to

$$
\begin{aligned}
& 0 \leq s_{1}, s_{2}, t_{1}, t_{2} \leq p_{i}^{\alpha_{i}}-1 \\
& \left(s_{1} t_{2}-s_{2} t_{1}, p_{i}^{\alpha_{i}}\right)=1
\end{aligned}
$$

which was investigated in the Lemma 7.
Now it is sufficient to compute the solutions of the system

$$
\begin{aligned}
& s_{1} t_{1} \frac{n(n-1)}{2} \equiv 0\left(\bmod 2^{\alpha}\right) \\
& s_{2} t_{2} \frac{n(n-1)}{2} \equiv 0\left(\bmod 2^{\alpha}\right) \\
& \left(s_{1} t_{2}-s_{2} t_{1}, 2^{\alpha}\right)=1
\end{aligned}
$$

This is equivalent to:

$$
\begin{align*}
& s_{1} t_{1} \equiv 0(\bmod 2) \\
& s_{2} t_{2} \equiv 0(\bmod 2) \tag{9}\\
& \left(s_{1} t_{2}-s_{2} t_{1}, 2\right)=1
\end{align*}
$$

From first and third conditions of (9), we note that exactly one of s_{1} an t_{1} should be odd. Then we may choose $\left(s_{1}, t_{1}\right)$ in $2^{2 \alpha-1}$ ways. Now, we select $\left(s_{2}, t_{2}\right)$ such that $\left(s_{1} t_{2}-s_{2} t_{1}, 2\right)=1$. If t_{1} is even then t_{2} and s_{1} are odd. This together with $2 \mid s_{2} t_{2}$ yields that s_{2} is even. Therefore, the number of solutions of system (9) for this case is $2^{4 \alpha-4}$. Similarly, it is true if t_{1} is odd. By the above argument, the number solutions of (9) is $2^{4 \alpha-3}=\frac{2^{\alpha}}{3}\left(\varphi\left(2^{\alpha}\right)\right)^{2} 2^{\alpha-1}(2+1)$. This completes the proof.

Corollary. Let G be a non-abelian group of order p^{3}, where p is odd prime. Then $|\operatorname{Aut}(G)|=p^{3}(p-1)$ or $p^{3}(p-1)^{2}(p+1)$.

Proof. By [8], G is isomorphic to one of K_{p+1} or G_{p}. Then the result now follows from Propositions 2 and 4.

1. Jamali. Some new non-abelian 2-groups with abelian automorphism groups // J. Group Theory. 2002. - 5, № 1. - P. 53 - 57.
2. Bidwell J. N. S., Curran M. J. The automorphism group of a split metacyclic p-group // Arch. Math. - 2006. - 87, № 6. - S. 488 - 497.
3. The GAP Group, GAP Groups, Algorithms, and programming version 4.4 packages AutPGroup and Small Groups http. A. R.
4. Johnson D. L. Presentations of groups. - 2nd ed. // London Math. Soc. Stud. Texts 15. Cambridge: Cambridge Univ. Press, 1977.
5. Campbell C. M., Campel P. P., Doostie H., Robertson E. F. Fibonacci length for metacyclic groups // Algebra Colloq. - 2004. - P. 215 - 222.
6. Campbell C. M., Robertson E. F. On a group presentation due to Fox // Can. Math. Bull. - 1976. 19. - P. 247-248.
7. Doostie H., Hashemi M. Fibonacci lenghts involving the Wall number k(n) // J. Appl. Math. Comput. - 2006. - 20, № 1 - 2. - P. 171-180.
8. Robinson D. J. S. A course in the theory of groups. - New York: Springer-Verlag, 1982.

Received 05.06.09

