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ON THE AUTOMORPHISM OF SOME CLASSES OF GROUPS
ITPO ABTOMOP®I3M IEAKHNX KJIACIB I'PYII

We study two classes of 2-generated nilpotent groups of nilpotency class 2 and compute the order of
their automorphism groups.
[octiaKeHo 1Ba KJIacu 2-TIOPO/I2KEHHUX HiJIbIOTEHTHUX I'PYN KJ1aCy HIJILIIOTEHTHOCTI 2 Ta 0GYHUCJIEHO

MOPSIIOK iX IpyI aBTOMOp(i3MiB.

1. Introduction. Many authors, have studied automorphism groups, of course most of
these are devoted to p-groups. In [1] Jamali presents some non-abelian 2-groups with
abelian automorphism groups. Bidwell and Curran [2] studied the automorphism
group of a split metacyclic p-group. By a program in [3], one can calculate the order
of small p-groups. Our purpose in the present paper is to calculate the order of the

automorphism groups of two classes of groups. Let G be a group. Z(G) denotes the
center of G; G’ the commutator subgroup of G; Aut(G) the automorphism of G

and @(m) the Euler function.
First, we state a lemma without proof that establishes some properties of groups of
nilpotency class 2.

Lemma 1. If G is a group and G’ < Z(G), then the following hold for every
integer k and u,v,w € G:

G) [uv,w]=[u,w]llv,w] and [u,vw]=[u,v][u, wl;

(i) [ 0] =u, v"] = [, 015

(i) (uv)*=u*o*[v, u]**-D72,

Theorem 1 ([4, p. 44], Proposition 3). Suppose that we are given a presentation
(X|R) for a group G, and a map ©:X — G. Then O extends to an endo-
morphism of G if and only if for all x € X and all r € R the result of substituting
(x)0 for x in r yield the identity of G. Furthermore if, in addition (X)0

generates G then O extends to an epimorphism of G.
We consider the finitely presented groups,

K(n, 1) = {a,b|ab"=b'a, ba"=d'b), where (n,1) =1,
and

G, = (ab|d"=b"=1, [a,b]*=a,b], [a,b1°=[a,b]), n > 1.

In Section 2, we investigate the automorphism group of K(n, /) and compute the
order of its automorphisms group. In Section 3 we solve a system and by using it, find
an explicit formula for the | Aut(G,) |

Most of theorems of this paper were suggested by data from a computer program
written in the computational algebra system GAP [3].

2. The order of Aut(K(n,l)). In this section, we consider the metacyclic Fox
groups K(n, 1) defined by K(n,1)={a,b|ab"=b'a, ba"=d'b), where (n,1)= 1.

We state some known results concerning K(n, [), the proofs of which can be found
in [5, 6].

Theorem 2. The groups K(n,l) defined by the above presentation have the
following properties:
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@) |K(n, l)| = |l—n|3, if (I,n)=1 and is infinite otherwise;

(i) if (Ln)=1, then |a|=|b|=(I-n)%

Gii) if (I,n)=1, then a'™" =p"".

Lemma 2. (i) Forevery 123, K(n,l)=K(1,2-1).

(i) Forevery i=22 and (n,i)=1, K(n,n+i)=K(1,i+1).

Note. If (m,n) =1, then K(n,m)= K(1,m —n + 1) which we may write as
K, _,.1- Hence we only calculate Aut (K)).

Before we present the main result of this section we need to develop some results
concerning Kj.

Lemma 3. Every element of K; may be uniquely presented by x = aPp¥at-1? ,

where 1<B,v7,0<1-1.
Proof. By parts (ii) and (iii) of Theorem 2, every element of K; can be written in

this form. Since |K;| =]/~ 1| thatexpression is unique.
The lemma is proved.

Lemmad. In K;, [a,b]= b"" € Z(K)).

Proof. Since a™'=p" then o' e Z(K;). By the relations of K; we have

[a.b] = a'b7lab = a”'p7'bla = a”'b'a = b € Z(K)),

as desired.
The lemma is proved.

Proposition 1. Let [ >3 be an integer and fe Aut(K)). Then there exist 1 <
<P 7.8, <1 -1 for 1<i<2such that f(a)=aPp"a"™ 1  fb) =
= aP2p72a"D% yphen B, and vy; are solutions of the following system:

I(1-1)
YaBy = Byyy = B =7 +viBy T(mod -1,
I(-1) I(1-1)
Y1 +Y2‘YszT = B, +B, + 7,6 T(modl—l),
ey

2
(=112 =20 1—1] .
2

[BI_YI+BIYI—’

(-1)1% =20
[Bz‘YerBzYzf’l_l =L
Proof. Let fe Aut(K;) and f(a)=aPp"1a"™ % () = aPep2q""1%2
where 1<B;,v,,6,<l-1 and 1<i<2. Since ba =a'b, we have f(b)f(a) =
=f (a)l f(b). By setting the values f(a) and f(b) in the recent relation, we get
aﬁz sza(1—1)52a51bYla(l—1)51 — (aﬁlb“/1a(1—1)51 )l(aﬁzb“{za(l—l)ﬁz ).
After some routine calculations and Lemma 3 we see,

I(l-1
Y81 =B,y = |31‘Y1+“{1B1%(m0d1—1)~ ()
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Also ab=b'a then we have

(-1
YiBy =Biv2 = Bo =72 + 728, %(modl— D). (3)
By the relations (2) and (3), we have
(-1 I(l1-1
Y1+ Y2 = YaBo ( > ) = Bl+[32+Y1[31—( 5 )(modl—l).

2
Since |a| = |f(a)] = (I - 1)% consequently @P1pV1a" 3D~ 1 Thus
(12—21)(1—1))
2 = 1. This further implies

2
w,,_q = 1.
2

<l—1>2(Bl—vl+vlﬁl
a

[Bl -7 +Bv

For |b|=|f(b)|=(I- 1)% by a similar argument we see that

I-D(* =21
(Bz‘Yz‘“BzYz%’l_l] = L

Thus the assertions hold.
The proposition is proved.
The following proposition is the main result of this section.
Proposition 2. Let [ =3 be an integer. Then

(l—1)3(p(l—1), if 1 or % is even,
| Aut(K))| = -
3-DpU-1), if — is odd.

Proof. First, let [ be even. Then the system (1) reduces to the following
equivalent system:

Y81 = Boyy = By — v (mod-1),
Y, +7Y, = By +By(modl—1),
4)
By—vpl-D =1,
Br—7v,,01-1) =1
By the second congruence in (4), we get 7y, =[;+B,—7v,(mod/-1).
Substituting 7y, in the first congruence gives [312+[31[32_|3ﬂl _Bﬂl = Bl
— Yy(mod[~-1), or
BBy —v)+BBy—7vy) =By — v (mod—1).

Now (B,—-7v;.[—1) =1 implies that B, +f, =1(mod/—1). A consequence of the
last congruence and 1 <P+ B,-1<2/-3 isthat B, =/—f,. This and the second
congruence in (4) follows that y, =/—7v,. Now let (¢,/—1)=1. Then for every
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Bie {1,2,...,1-1} there exist unique integer y; € {1,2,...,[—1} such that B, -
—v, =1 (for selection y; =7+ ;). Combining all these facts, we see that for every fe
€ Aut(K;) there are By, y;, 8;, 0, such that

f(a) = aBleBla(l_l)al ,
Fb) = alPrpl=+B0 018

where 1<B,8,,0,<1-1, (t,1-1)=1. Now if we denote f by fﬁpfﬁlﬁz’ then the

assertion yields.

1(-1)

-1
Lastly, let I be odd. Since = ZT(mod [ —1), the system (1) simplifies to

the following system:

-1
YaB1 = Bov = Bi- 1 +Y11317(m0dl—1),

[-1 -1
Yl"'YZ‘YszTE Bl+ﬁz+vlﬁlT(modl—l),
(5
-1
(BI_Y1+BIYI_2 ,l—lj =1,

-1
(Bz‘Yz"‘BzYzT’l_l] =1

-1
Now suppose that ZT is even. By the third condition in (5), one of B, and 7,

is even and the other is odd. Also, it is true about B, and 7y,. Combining of all these
and (5), we have

Y2By —Byyy = By — v (modi-1),
Y1+ 72 = By +By(modl-1),
Br=vi.l-D =1,
By—7v2:1-1D = L

The result follows in a similar way as for the first case.

-1
To complete the proof, let IT be odd. Then by (5) we get

-1
YaB1 = Bovy = By _Yl(mOdT],

1
Vit = [31+[32(m0d—),

l—
2
-1
- s~ =17
(B] Y1 2)

(Bz‘Yz’%J =L
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In a similar way as for the first case, we get B, +B, = 1( mod 1;21 ) Since 1<

-1
<B;+Py,-1<21-3, we have B, = (IT)I+1—B1, where re {1, 2,3}.

Similarly, v, = (T)s +1—7,, where s € {1,2,3}. By setting the values 3, and
Y, in the first and second congruences of (5), we have

sB; —ty; = Byy,(mod2),
2
s—t—(l_Tl) st—((l_Tl)s+l)Bl +
+ (%)(s+t)—((%)t+l)yl +1 = O0(mod 2).

Moreover, since one of §; and 7, is even and the other is odd then

sB,—ty, = O(mod2),

2
s—t—(l_Tl) st—((l_Tl)s+l)Bl +
+ (%)(s+t)—((%)t+l)yl+l = O(mod 2).

We now count the solutions of (6). To do this, we must consider three cases as the
following:

1. Let s and ¢ be odd. Utilizing the first congruence of (6), we have B, -7y, =

(6)

= O(mod 2) and which is a contradiction (for, one of B; and Y, is even and the other
is odd).
2. Let s and ¢ be even, then

0 = 0(mod 2),
B, +7v, = l(mod?2).
So that B,=1-B; and y,=1-1, are solutions of (1), where 1 <P, vy, <I-1

-1
and ([31 —YI,T] = 1. Hence the number solutions of (6) (in this case) is (I —

-Doe({-1).

3. Suppose one of s and ¢ is even and other is odd. Firstlet s be even, then

Y; = O(mod 2),

B, = l(mod2).
Now let s be odd, then

B, = O(mod?2),

Y, = I(mod 2).
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So that the number solutions of (6) (in this case) is 2(/— 1)¢@(I—1). Therefore, by
the above considerations, the assertion is established.
The proposition is proved.

3. The order of Aut(G,). The goal of this section is to calculate the |Aut (G,) |,
where

G, = (a,bld"=b"=1, [a,b)*=[a,b], [a,b]’=[a,b]), n = 1.
First, we recall the following lemma from [7].
Lemma 5. Let G = G,, then |Gn| = n3, |Z(G)| =n and Z(G)=G =
=(x|x"=1).
We now show that every element in the G,, where n € N, has standard form:
Lemma 6. Every element of the group G = G, can be written uniquely in the

form aibj[b, a]k , where 0<1i,s,k<n-1.
Proof. Since [a,b]%=[a, b], [a,b]bz[a,b], then [a,b]e Z(G) and
la,b7] = (la,6]" )™ € Z(G),
la™',b] = (la,b) )" = [a,b] € Z(G).

Moreover, for every x = xf‘xgz ...x,i" in G,, where x;€ {a,b} and s, s,,..., 5
are integers, using the relations bla' =a'b/[b,a'], we may easily prove that every
element of G is in the form aibjg, where 0<i<m—-1, 0<j<n-1 and ge G’
(by induction method on the length of the word x). Suppose x = a'b’g = e then

a'b’ € Z(G) and [a,V/] = [a,b) =1, thus n|j. Similarly n|i, thatis i=;=0
and g =e. The result is now immediate.

The lemma is proved.

The following proposition is the main result of this section.

Proposition 3. Let n =2 be an integer. Then fe Aut(G,) if and only if there
exist 0<s;,t;,k;<n—-1 for 1<i<2 such that f(a)= a'b [a, b]k1 , f(b) =
= alzbsz[a,b]k2 and sy, $,, 1, 1, are solutions of the following system:

n(n-1)

51 = O(modn),

Syt ”(”2_ D~ o(modn), )

(82, — 85t,n) = L.

Proof. Let fe Aut(G,) and f(a)=a"b"[a,b]"", f(b) = a2b™[a,b]",

ki<n, 1<i<2 Since |a|=|(a)f| =n and (a)f"
n(n—1) s n(n—-1)
2 = [a,b] 2, we get n|s1t1

n(n—1)
2

where 1 <s;, ¢;,

i

nk,—sit

n(n-1)

Also |b|

— antlbnsl [a’ b]

=|(b)f|=n sothat ns,t, . Finally, |[a,b]|=n hence [a,b]""275"2) =

= e. This yields that (;s, —s,t,,n) = 1.
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Now it is sufficient to prove that f, with the above conditions, is an isomorphism.
Let u= a*b'[a, b]k and (u)f=e, then by the Lemma 6, we have
fit +tys = O(modn),
sit + 5,5 = O(mod n), ()

st —1)  sytps(s —1)
2 2

kit +kys + (15, — 8115)k — s1t5ts — = O(mod n).

By adding s, times the first congruence of (8) to (—#;) times the second
congruence, we get §,f,s — ;5,5 =0(modn) or (st, —#5,)s =0(modn). Since
(t;5, — t5,n) =1, we have n|s. Anidentical argument shows that n|z. Using these

in the third congruence of (8), yield that (#;s, — s,¢,)k = 0(modn). Hence n | k. That
is u=e and f is an isomorphism.
The proposition is proved.

In order to give an expression for the |Aut(Gn)|, we need the following key
lemma.
Lemma 7. Let n = Hk pq’ , Where p; is prime number and o; 2 1. Then
i=1 ri i i
the number of solutions of the system

1< SI’SZ’tl’ t2 < n—l,

(812, = 85t;,m) = 1,

. k —1
is n(p(n)zl_L:l p;x’ (p;+1).

Proof. Without loss of generality, we assume k =2. We know that, the number
of {m|0<m<n-1 and p||m} is p?l_]pgz. Also, for p, and p,p,, itis

oy O,—1 o;—1_o,-1 . .
PPyt and pit o p,? respectively. Since (s;,s,) when s; and s, are

multiple of p; or p, not being allowed, we may choose (s;, s,) in ¢ ways, where
[ 20, 2 2042 2 204 20,-2 | 204-2 20,-2
PP = (T =y g T ) =
200-2 20,-2, 2 2 2 2
= pla] Pz% (pip; —pi —p5,+1),
-1 -1 -1 -1
P (e = Dpy? (py =Py (P + Py (py D) =

= omp! " (p + 1)pY(py + 1),

Now, we select (#(, ;) such that (s, —s,t;,n) = 1. To do this, we find the
number of (x,y) such that (s;y—s,x,n) #1. In other words, we find the number of
(x,y) such that

51y —s8,x = 0(mod p;) or s;y—s,x = 0(mod p,).
Let s;y—s,x=0(mod p,;), then forevery 0< x <n -1 there is a unique 0 < y,<

<p;-1 suchthat sy, =s,x(mod p;) (for yo=0 or s;s,x(mod p,), where s, is
the arithmetic inverse of s; respectto p;). Hence forevery 0 <x<n -1 the number

solutions of s,y —s,x=0(mod p,) in Z, is p"'pS? (for y; = yo+ pik, 0<k<

ISSN 1027-3190. Ykp. mam. xypH., 2009, m. 61, N° 12



ON THE AUTOMORPHISM OF SOME CLASSES OF GROUPS 1711

o -1 o,

< p/' p,?* aresolutions). By a similar argument, for every 0 < x <n — 1 the

number solutions of s,y —s,x = O(mod p,) in Z, is p;"py 2~ Also, we know that

o=l o,-1 . . .
pi' py*  solutions are common in two sets of solutions. Consequently, when (s,

s,) select, we may choose (1, ) in [ ways where

206, 200 o, o o, -1 o o Ol,—1 o,—1 o,-1
12BN 2N 20 S 0 S A Sl P S I
20,—1 20,1
l= =p " Py (ppy—pi—pyt 1),

npt (o = Dps2 T (py = 1) = no(n).

Multiplying the number ¢ and [ together we obtain the assertion.
The lemma is proved.
With the previous notations, we prove that the important result of this section.

age k . .
Proposition 4. Let n = l_L=1 p?C i be an integer. Then

o T, pl o+, if n s odd,
|Aut(G)| = { 4

n k i—1 . .
?(P(")ZHi:lp,q’ (p;+1), if n is even.

Proof. First, let n be odd. Then the system (7) reduces to the equivalent system

0<s,8,.0, < n-1,

(81t, — 85t,n) = 1.

Since the number of solutions of this system is n(p(n)zl_[f=1 plq i _l( p;+1) and ky,
ky< n—1, the assertion follows from the Proposition 3.

Finally, let n be even. Now sy, s,, t;, t, are solutions of the system (7) if and
only if for every 1 <i<k—1 they are solutions of the following system:

nn—1 .
sihy =l 5 ) - 0(mod p;"),
Sﬂz@ = O(mod p;"'),

Oy
(812, = sot;, p") = 1.

When p; is odd number, then this system reduces to

o
0 < Sl’s2’t1’t2 < pl'l —1,

o
(it = ot ;') = 1,

which was investigated in the Lemma 7.
Now it is sufficient to compute the solutions of the system
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sty @ = O(mod 2%),
Syty ”(”T_D = 0(mod 2%),

(815 — 8514, 2% = 1.
This is equivalent to:
sit; = 0(mod 2),
Syt, = 0(mod 2), )
(812, —851,2) = 1.
From first and third conditions of (9), we note that exactly one of s; an #; should

be odd. Then we may choose (s, #;) in 201

that (s;t, —s,t,2) = 1. If ¢t iseventhen t, and s; are odd. This together with

ways. Now, we select (s,, ;) such

2 | Syt yields that s, is even. Therefore, the number of solutions of system (9) for this

caseis 2**7*. Similarly, it is true if t; is odd. By the above argument, the number
3 2¢ - .
solutions of (9) is 2473 = ?(@(2“))220‘ '(2+1). This completes the proof.

Corollary. Let G be a non-abelian group of order p3, where p is odd
prime. Then |Aut(G)|= p3(p—1) or p3(p—1)2(p+1).
Proof. By [8], G is isomorphic to one of K., or G,. Then the result now

follows from Propositions 2 and 4.
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