UDC 512.5

M. Hashemi (Univ. Guilan, Iran)

ΟΝ ΤΗΕ AUTOMORPHISM OF SOME CLASSES OF GROUPS ΠΡΟ ΑΒΤΟΜΟΡΦΙ3Μ ДΕЯКИХ ΚЛАСІВ ΓΡУΠ

We study two classes of 2-generated nilpotent groups of nilpotency class 2 and compute the order of their automorphism groups.

Досліджено два класи 2-породжених нільпотентних груп класу нільпотентності 2 та обчислено порядок їх груп автоморфізмів.

1. Introduction. Many authors, have studied automorphism groups, of course most of these are devoted to *p*-groups. In [1] Jamali presents some non-abelian 2-groups with abelian automorphism groups. Bidwell and Curran [2] studied the automorphism group of a split metacyclic *p*-group. By a program in [3], one can calculate the order of small *p*-groups. Our purpose in the present paper is to calculate the order of the automorphism groups of two classes of groups. Let *G* be a group. Z(G) denotes the center of *G*; *G'* the commutator subgroup of *G*; Aut(*G*) the automorphism of *G* and $\varphi(m)$ the Euler function.

First, we state a lemma without proof that establishes some properties of groups of nilpotency class 2.

Lemma 1. If G is a group and $G' \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:

(i) [uv, w] = [u, w][v, w] and [u, vw] = [u, v][u, w];

(ii) $[u^k, v] = [u, v^k] = [u, v]^k;$

(iii) $(uv)^k = u^k v^k [v, u]^{k(k-1)/2}$

Theorem 1 ([4, p. 44], Proposition 3). Suppose that we are given a presentation $\langle X | R \rangle$ for a group G, and a map $\theta : X \to G$. Then θ extends to an endomorphism of G if and only if for all $x \in X$ and all $r \in R$ the result of substituting $(x)\theta$ for x in r yield the identity of G. Furthermore if, in addition $(X)\theta$ generates G then θ extends to an epimorphism of G.

We consider the finitely presented groups,

$$K(n, l) = \langle a, b | ab^n = b^l a, ba^n = a^l b \rangle, \quad \text{where} \quad (n, l) = 1,$$

and

$$G_n = \langle a, b | a^n = b^n = 1, [a, b]^a = [a, b], [a, b]^b = [a, b] \rangle, \quad n \ge 1.$$

In Section 2, we investigate the automorphism group of K(n, l) and compute the order of its automorphisms group. In Section 3 we solve a system and by using it, find an explicit formula for the $|\operatorname{Aut}(G_n)|$.

Most of theorems of this paper were suggested by data from a computer program written in the computational algebra system GAP [3].

2. The order of Aut (K(n, l)). In this section, we consider the metacyclic Fox groups K(n, l) defined by $K(n, l) = \langle a, b | ab^n = b^l a, ba^n = a^l b \rangle$, where (n, l) = 1.

We state some known results concerning K(n, l), the proofs of which can be found in [5, 6].

Theorem 2. The groups K(n, l) defined by the above presentation have the following properties:

© M. HASHEMI, 2009 1704

- (i) $|K(n, l)| = |l-n|^3$, if (l, n) = 1 and is infinite otherwise;
- (ii) if (l, n) = 1, then $|a| = |b| = (l n)^2$;
- (iii) if (l, n) = 1, then $a^{l-n} = b^{n-l}$.
- **Lemma 2.** (i) For every $l \ge 3$, $K(n, l) \cong K(1, 2 l)$.

(ii) For every $i \ge 2$ and (n, i) = 1, $K(n, n+i) \cong K(1, i+1)$.

Note. If (m, n) = 1, then $K(n, m) \cong K(1, m - n + 1)$ which we may write as K_{m-n+1} . Hence we only calculate Aut (K_l) .

Before we present the main result of this section we need to develop some results concerning K_l .

Lemma 3. Every element of K_l may be uniquely presented by $x = a^{\beta} b^{\gamma} a^{(l-1)\delta}$, where $1 \le \beta, \gamma, \delta \le l-1$.

Proof. By parts (ii) and (iii) of Theorem 2, every element of K_l can be written in this form. Since $|K_l| = |l-1|^3$, that expression is unique.

The lemma is proved.

Lemma 4. In K_l , $[a, b] = b^{l-1} \in Z(K_l)$.

Proof. Since $a^{l-1} = b^{1-l}$ then $a^{l-1} \in Z(K_l)$. By the relations of K_l we have

$$[a, b] = a^{-1}b^{-1}ab = a^{-1}b^{-1}b^{l}a = a^{-1}b^{l-1}a = b^{l-1} \in Z(K_l),$$

as desired.

The lemma is proved.

Proposition 1. Let $l \ge 3$ be an integer and $f \in Aut(K_l)$. Then there exist $1 \le \le \beta_i$, γ_i , $\delta_i \le l - 1$ for $1 \le i \le 2$ such that $f(a) = a^{\beta_1} b^{\gamma_1} a^{(l-1)\delta_1}$, $f(b) = a^{\beta_2} b^{\gamma_2} a^{(l-1)\delta_2}$ when β_i and γ_i are solutions of the following system:

$$\begin{split} \gamma_{2}\beta_{1} - \beta_{2}\gamma_{1} &\equiv \beta_{1} - \gamma_{1} + \gamma_{1}\beta_{1}\frac{l(l-1)}{2} \pmod{l-1}, \\ \gamma_{1} + \gamma_{2} - \gamma_{2}\beta_{2}\frac{l(l-1)}{2} &\equiv \beta_{1} + \beta_{2} + \gamma_{1}\beta_{1}\frac{l(l-1)}{2} \pmod{l-1}, \\ \left(\beta_{1} - \gamma_{1} + \beta_{1}\gamma_{1}\frac{(l-1)(l^{2}-2l)}{2}, l-1\right) &= 1, \end{split}$$
(1)
$$\\ \left(\beta_{2} - \gamma_{2} + \beta_{2}\gamma_{2}\frac{(l-1)(l^{2}-2l)}{2}, l-1\right) &= 1. \end{split}$$

Proof. Let $f \in \operatorname{Aut}(K_l)$ and $f(a) = a^{\beta_1} b^{\gamma_1} a^{(l-1)\delta_1}$, $f(b) = a^{\beta_2} b^{\gamma_2} a^{(l-1)\delta_2}$, where $1 \le \beta_i, \gamma_i, \delta_i \le l-1$ and $1 \le i \le 2$. Since $ba = a^l b$, we have $f(b)f(a) = f(a)^l f(b)$. By setting the values f(a) and f(b) in the recent relation, we get

$$a^{\beta_2}b^{\gamma_2}a^{(l-1)\delta_2}a^{\beta_1}b^{\gamma_1}a^{(l-1)\delta_1} = (a^{\beta_1}b^{\gamma_1}a^{(l-1)\delta_1})^l(a^{\beta_2}b^{\gamma_2}a^{(l-1)\delta_2})$$

After some routine calculations and Lemma 3 we see,

$$\gamma_2 \beta_1 - \beta_2 \gamma_1 \equiv \beta_1 - \gamma_1 + \gamma_1 \beta_1 \frac{l(l-1)}{2} \pmod{l-1}.$$
⁽²⁾

Also $ab = b^l a$ then we have

$$\gamma_1 \beta_2 - \beta_1 \gamma_2 \equiv \beta_2 - \gamma_2 + \gamma_2 \beta_2 \frac{l(l-1)}{2} \pmod{l-1}.$$
 (3)

By the relations (2) and (3), we have

$$\gamma_1 + \gamma_2 - \gamma_2 \beta_2 \frac{l(l-1)}{2} \equiv \beta_1 + \beta_2 + \gamma_1 \beta_1 \frac{l(l-1)}{2} \pmod{l-1}.$$

Since $|a| = |f(a)| = (l-1)^2$, consequently $(a^{\beta_1}b^{\gamma_1}a^{(l-1)\delta_1})^{(l-1)^2} = 1$. Thus $a^{(l-1)^2 \left(\beta_1 - \gamma_1 + \gamma_1\beta_1 \frac{(l^2 - 2l)(l-1)}{2}\right)} = 1$. This further implies

$$\left(\beta_1 - \gamma_1 + \beta_1 \gamma_1 \frac{(l-1)(l^2 - 2l)}{2}, l-1\right) = 1.$$

For $|b| = |f(b)| = (l-1)^2$, by a similar argument we see that

$$\left(\beta_2 - \gamma_2 + \beta_2 \gamma_2 \frac{(l-1)(l^2 - 2l)}{2}, l-1\right) = 1.$$

Thus the assertions hold.

The proposition is proved.

The following proposition is the main result of this section. **Proposition 2.** *Let* $l \ge 3$ *be an integer. Then*

$$|\operatorname{Aut}(K_l)| = \begin{cases} (l-1)^3 \varphi(l-1), & \text{if } l \text{ or } \frac{l-1}{2} \text{ is even} \\ 3(l-1)^3 \varphi(l-1), & \text{if } \frac{l-1}{2} \text{ is odd.} \end{cases}$$

Proof. First, let l be even. Then the system (1) reduces to the following equivalent system:

$$\begin{split} \gamma_{2}\beta_{1} - \beta_{2}\gamma_{1} &\equiv \beta_{1} - \gamma_{1} (\text{mod } l - 1), \\ \gamma_{1} + \gamma_{2} &\equiv \beta_{1} + \beta_{2} (\text{mod } l - 1), \\ (\beta_{1} - \gamma_{1}, l - 1) &= 1, \\ (\beta_{2} - \gamma_{2}, l - 1) &= 1. \end{split}$$
(4)

By the second congruence in (4), we get $\gamma_2 \equiv \beta_1 + \beta_2 - \gamma_1 \pmod{l-1}$. Substituting γ_2 in the first congruence gives $\beta_1^2 + \beta_1\beta_2 - \beta_1\gamma_1 - \beta_2\gamma_1 \equiv \beta_1 - \gamma_1 \pmod{l-1}$, or

$$\beta_1(\beta_1-\gamma_1)+\beta_2(\beta_1-\gamma_1)\equiv\beta_1-\gamma_1(\mathrm{mod}\,l-1)\,.$$

Now $(\beta_1 - \gamma_1, l - 1) = 1$ implies that $\beta_1 + \beta_2 \equiv 1 \pmod{l - 1}$. A consequence of the last congruence and $1 \le \beta_1 + \beta_2 - 1 \le 2l - 3$ is that $\beta_2 = l - \beta_1$. This and the second congruence in (4) follows that $\gamma_2 = l - \gamma_1$. Now let (t, l - 1) = 1. Then for every

ISSN 1027-3190. Укр. мат. журн., 2009, т. 61, № 12

1706

 $\beta_1 \in \{1, 2, ..., l-1\}$ there exist unique integer $\gamma_1 \in \{1, 2, ..., l-1\}$ such that $\beta_1 - \gamma_1 = t$ (for selection $\gamma_1 = t + \beta_1$). Combining all these facts, we see that for every $f \in \epsilon$ Aut (K_l) there are $\beta_1, \gamma_1, \delta_1, \delta_2$ such that

$$f(a) = a^{\beta_1} b^{t+\beta_1} a^{(l-1)\delta_1},$$

$$f(b) = a^{l-\beta_1} b^{l-(t+\beta_1)} a^{(l-1)\delta_2}$$

where $1 \le \beta_1, \delta_1, \delta_2 \le l-1$, (t, l-1) = 1. Now if we denote f by $f_{\beta_1, t, \delta_1, \delta_2}$, then the assertion yields.

Lastly, let *l* be odd. Since $\frac{l(l-1)}{2} \equiv \frac{l-1}{2} \pmod{l-1}$, the system (1) simplifies to the following system:

$$\begin{split} \gamma_{2}\beta_{1} - \beta_{2}\gamma_{1} &\equiv \beta_{1} - \gamma_{1} + \gamma_{1}\beta_{1}\frac{l-1}{2} \pmod{l-1}, \\ \gamma_{1} + \gamma_{2} - \gamma_{2}\beta_{2}\frac{l-1}{2} &\equiv \beta_{1} + \beta_{2} + \gamma_{1}\beta_{1}\frac{l-1}{2} \pmod{l-1}, \\ \left(\beta_{1} - \gamma_{1} + \beta_{1}\gamma_{1}\frac{l-1}{2}, l-1\right) &= 1, \\ \left(\beta_{2} - \gamma_{2} + \beta_{2}\gamma_{2}\frac{l-1}{2}, l-1\right) &= 1. \end{split}$$
(5)

Now suppose that $\frac{l-1}{2}$ is even. By the third condition in (5), one of β_1 and γ_1 is even and the other is odd. Also, it is true about β_2 and γ_2 . Combining of all these and (5), we have

$$\begin{split} \gamma_2\beta_1 - \beta_2\gamma_1 &\equiv \beta_1 - \gamma_1 (\mathrm{mod}\, l-1) \\ \gamma_1 + \gamma_2 &\equiv \beta_1 + \beta_2 (\mathrm{mod}\, l-1) , \\ (\beta_1 - \gamma_1, l-1) &= 1, \\ (\beta_2 - \gamma_2, l-1) &= 1. \end{split}$$

The result follows in a similar way as for the first case.

To complete the proof, let $\frac{l-1}{2}$ be odd. Then by (5) we get $\gamma_2\beta_1 - \beta_2\gamma_1 \equiv \beta_1 - \gamma_1 \left(\mod \frac{l-1}{2} \right),$ $\gamma_1 + \gamma_2 \equiv \beta_1 + \beta_2 \left(\mod \frac{l-1}{2} \right),$ $\left(\beta_1 - \gamma_1, \frac{l-1}{2} \right) = 1,$ $\left(\beta_2 - \gamma_2, \frac{l-1}{2} \right) = 1.$

In a similar way as for the first case, we get $\beta_1 + \beta_2 \equiv 1 \left(\mod \frac{l-1}{2} \right)$. Since $1 \le \le \beta_1 + \beta_2 - 1 \le 2l - 3$, we have $\beta_2 = \left(\frac{l-1}{2} \right)t + 1 - \beta_1$, where $t \in \{1, 2, 3\}$. Similarly, $\gamma_2 = \left(\frac{l-1}{2} \right)s + 1 - \gamma_1$, where $s \in \{1, 2, 3\}$. By setting the values β_2 and γ_2 in the first and second congruences of (5), we have

$$s\beta_{1} - t\gamma_{1} \equiv \beta_{1}\gamma_{1} \pmod{2},$$

$$s - t - \left(\frac{l-1}{2}\right)^{2} st - \left(\left(\frac{l-1}{2}\right)s + 1\right)\beta_{1} + \left(\frac{l-1}{2}\right)(s+t) - \left(\left(\frac{l-1}{2}\right)t + 1\right)\gamma_{1} + 1 \equiv 0 \pmod{2}.$$

Moreover, since one of β_1 and γ_1 is even and the other is odd then

$$s\beta_1 - t\gamma_1 \equiv 0 \pmod{2}, \tag{6}$$

$$s-t - \left(\frac{l-1}{2}\right)^2 st - \left(\left(\frac{l-1}{2}\right)s+1\right)\beta_1 + \left(\frac{l-1}{2}\right)(s+t) - \left(\left(\frac{l-1}{2}\right)t+1\right)\gamma_1 + 1 \equiv 0 \pmod{2}.$$

We now count the solutions of (6). To do this, we must consider three cases as the following:

1. Let *s* and *t* be odd. Utilizing the first congruence of (6), we have $\beta_1 - \gamma_1 \equiv 0 \pmod{2}$ and which is a contradiction (for, one of β_1 and γ_1 is even and the other is odd).

2. Let s and t be even, then

$$\begin{split} 0 &\equiv 0 \pmod{2}, \\ \beta_1 + \gamma_1 &\equiv 1 \pmod{2}. \end{split}$$

So that $\beta_2 = l - \beta_1$ and $\gamma_2 = l - \gamma_1$ are solutions of (1), where $1 \le \beta_1, \gamma_1 \le l - 1$ and $\left(\beta_1 - \gamma_1, \frac{l-1}{2}\right) = 1$. Hence the number solutions of (6) (in this case) is $(l - 1)\varphi(l-1)$.

3. Suppose one of s and t is even and other is odd. First let s be even, then

$$\gamma_1 \equiv 0 \pmod{2},$$

$$\beta_1 \equiv 1 \pmod{2}.$$

Now let s be odd, then

$$\beta_1 \equiv 0 \pmod{2},$$

$$\gamma_1 \equiv 1 \pmod{2}.$$

So that the number solutions of (6) (in this case) is $2(l-1)\varphi(l-1)$. Therefore, by the above considerations, the assertion is established.

The proposition is proved.

3. The order of Aut (G_n) . The goal of this section is to calculate the $|\operatorname{Aut}(G_n)|$, where

$$G_n = \langle a, b | a^n = b^n = 1, [a, b]^a = [a, b], [a, b]^b = [a, b] \rangle, \quad n \ge 1.$$

First, we recall the following lemma from [7].

Lemma 5. Let $G = G_n$, then $|G_n| = n^3$, |Z(G)| = n and $Z(G) = G' = \langle x | x^n = 1 \rangle$.

We now show that every element in the G_n , where $n \in N$, has standard form:

Lemma 6. Every element of the group $G = G_n$ can be written uniquely in the form $a^i b^j [b, a]^k$, where $0 \le i, s, k \le n - 1$.

Proof. Since $[a, b]^a = [a, b], [a, b]^b = [a, b]$, then $[a, b] \in Z(G)$ and

$$[a, b^{-1}] = ([a, b]^{b^{-1}})^{-1} \in Z(G),$$
$$[a^{-1}, b] = ([a, b]^{a^{-1}})^{-1} = [a, b]^{-1} \in Z(G).$$

Moreover, for every $x = x_1^{s_1} x_2^{s_2} \dots x_k^{s_k}$ in G_n , where $x_i \in \{a, b\}$ and s_1, s_2, \dots, s_k are integers, using the relations $b^j a^i = a^i b^j [b^j, a^i]$, we may easily prove that every element of G is in the form $a^i b^j g$, where $0 \le i < m - 1$, $0 \le j \le n - 1$ and $g \in G'$ (by induction method on the length of the word x). Suppose $x = a^i b^j g = e$ then $a^i b^j \in Z(G)$ and $[a, b^j] = [a, b]^j = 1$, thus n | j. Similarly n | i, that is i = j = 0and g = e. The result is now immediate.

The lemma is proved.

The following proposition is the main result of this section.

Proposition 3. Let $n \ge 2$ be an integer. Then $f \in \operatorname{Aut}(G_n)$ if and only if there exist $0 \le s_i, t_i, k_i \le n-1$ for $1 \le i \le 2$ such that $f(a) = a^{t_1} b^{s_1} [a, b]^{k_1}, f(b) = a^{t_2} b^{s_2} [a, b]^{k_2}$ and s_1, s_2, t_1, t_2 are solutions of the following system:

$$s_{1}t_{1} \frac{n(n-1)}{2} \equiv 0 \pmod{n},$$

$$s_{2}t_{2} \frac{n(n-1)}{2} \equiv 0 \pmod{n},$$

$$(s_{1}t_{2} - s_{2}t_{1}, n) = 1.$$
(7)

Proof. Let $f \in \operatorname{Aut}(G_n)$ and $f(a) = a^{t_1} b^{s_1}[a, b]^{k_1}$, $f(b) = a^{t_2} b^{s_2}[a, b]^{k_2}$, where $1 \le s_i$, t_i , $k_i \le n$, $1 \le i \le 2$. Since |a| = |(a)f| = n and $(a)f^n =$ $= a^{nt_1} b^{ns_1}[a, b]^{nk_1 - s_1t_1} \frac{n(n-1)}{2} = [a, b]^{s_1t_1} \frac{n(n-1)}{2}$, we get $n |s_1t_1 \frac{n(n-1)}{2}$. Also |b| == |(b)f| = n so that $n |s_2t_2 \frac{n(n-1)}{2}$. Finally, |[a, b]| = n hence $[a, b]^{n(t_1s_2 - s_1t_2)} =$ = e. This yields that $(t_1s_2 - s_1t_2, n) = 1$.

1710

Now it is sufficient to prove that f, with the above conditions, is an isomorphism. Let $u = a^s b^t [a, b]^k$ and (u)f = e, then by the Lemma 6, we have

$$t_{1}t + t_{2}s \equiv 0 \pmod{n},$$

$$s_{1}t + s_{2}s \equiv 0 \pmod{n},$$

$$k_{1}t + k_{2}s + (t_{1}s_{2} - s_{1}t_{2})k - s_{1}t_{2}ts - \frac{s_{1}t_{1}t(t-1)}{2} - \frac{s_{2}t_{2}s(s-1)}{2} \equiv 0 \pmod{n}.$$
(8)

By adding s_1 times the first congruence of (8) to $(-t_1)$ times the second congruence, we get $s_1t_2s - t_1s_2s \equiv 0 \pmod{n}$ or $(s_1t_2 - t_1s_2)s \equiv 0 \pmod{n}$. Since $(t_1s_2 - s_1t_2, n) = 1$, we have $n \mid s$. An identical argument shows that $n \mid t$. Using these in the third congruence of (8), yield that $(t_1s_2 - s_1t_2)k \equiv 0 \pmod{n}$. Hence $n \mid k$. That is u = e and f is an isomorphism.

The proposition is proved.

In order to give an expression for the $|\operatorname{Aut}(G_n)|$, we need the following key lemma.

Lemma 7. Let $n = \prod_{i=1}^{k} p_i^{\alpha_i}$, where p_i is prime number and $\alpha_i \ge 1$. Then the number of solutions of the system

$$1 \le s_1, s_2, t_1, t_2 \le n - 1,$$

$$(s_1 t_2 - s_2 t_1, n) = 1,$$

is $n\varphi(n)^2 \prod_{i=1}^k p_i^{\alpha_i - 1}(p_i + 1)$.

Proof. Without loss of generality, we assume k = 2. We know that, the number of $\{m \mid 0 \le m \le n-1 \text{ and } p_1 \mid m\}$ is $p_1^{\alpha_1 - 1} p_2^{\alpha_2}$. Also, for p_2 and $p_1 p_2$, it is $p_1^{\alpha_1} p_2^{\alpha_2 - 1}$ and $p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1}$ respectively. Since (s_1, s_2) when s_1 and s_2 are multiple of p_1 or p_2 not being allowed, we may choose (s_1, s_2) in t ways, where

$$t = \begin{cases} p_1^{2\alpha_1} p_2^{2\alpha_2} - (p_1^{2\alpha_1 - 2} p_2^{2\alpha_2} - p_1^{2\alpha_1} p_2^{2\alpha_2 - 2} + p_1^{2\alpha_1 - 2} p_2^{2\alpha_2 - 2}) = \\ = p_1^{2\alpha_1 - 2} p_2^{2\alpha_2 - 2} (p_1^2 p_2^2 - p_1^2 - p_2^2 + 1), \\ p_1^{\alpha_1 - 1} (p_1 - 1) p_2^{\alpha_2 - 1} (p_2 - 1) p_1^{\alpha_1 - 1} (p_1 + 1) p_2^{\alpha_2 - 1} (p_2 + 1) = \\ = \varphi(n) p_1^{\alpha_1 - 1} (p_1 + 1) p_2^{\alpha_2 - 1} (p_2 + 1). \end{cases}$$

Now, we select (t_1, t_2) such that $(s_1t_2 - s_2t_1, n) = 1$. To do this, we find the number of (x, y) such that $(s_1y - s_2x, n) \neq 1$. In other words, we find the number of (x, y) such that

$$s_1y - s_2x \equiv 0 \pmod{p_1}$$
 or $s_1y - s_2x \equiv 0 \pmod{p_2}$

Let $s_1y - s_2x \equiv 0 \pmod{p_1}$, then for every $0 \le x \le n - 1$ there is a unique $0 \le y_0 \le x \le p_1 - 1$ such that $s_1y_0 \equiv s_2x \pmod{p_1}$ (for $y_0 \equiv 0$ or $s_1^*s_2x \pmod{p_1}$), where s_1^* is the arithmetic inverse of s_1 respect to p_1). Hence for every $0 \le x \le n - 1$ the number solutions of $s_1y - s_2x \equiv 0 \pmod{p_1}$ in Z_n is $p_1^{\alpha_1 - 1}p_2^{\alpha_2}$ (for $y_i = y_0 + p_1k$, $0 \le k \le 1$).

 $\leq p_1^{\alpha_1-1}p_2^{\alpha_2}$ are solutions). By a similar argument, for every $0 \leq x \leq n-1$ the number solutions of $s_1y - s_2x \equiv 0 \pmod{p_2}$ in Z_n is $p_1^{\alpha_1}p_2^{\alpha_2-1}$. Also, we know that $p_1^{\alpha_1-1}p_2^{\alpha_2-1}$ solutions are common in two sets of solutions. Consequently, when (s_1, s_2) select, we may choose (t_1, t_2) in l ways where

$$l = \begin{cases} p_1^{2\alpha_1} p_2^{2\alpha_2} - p_1^{\alpha_1} p_2^{\alpha_2} (p_1^{\alpha_1 - 1} p_2^{\alpha_2} + p_1^{\alpha_1} p_2^{\alpha_2 - 1} - p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1}) = \\ = p_1^{2\alpha_1 - 1} p_2^{2\alpha_2 - 1} (p_1 p_2 - p_1 - p_2 + 1), \\ n p_1^{\alpha_1 - 1} (p_1 - 1) p_2^{\alpha_2 - 1} (p_2 - 1) = n \varphi(n). \end{cases}$$

Multiplying the number t and l together we obtain the assertion.

The lemma is proved.

With the previous notations, we prove that the important result of this section.

Proposition 4. Let $n = \prod_{i=1}^{k} p_i^{\alpha_i}$ be an integer. Then

$$\left|\operatorname{Aut}(G_{n})\right| = \begin{cases} n^{3} \varphi(n)^{2} \prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}(p_{i}+1), & \text{if } n \text{ is odd,} \\ \\ \frac{n^{3}}{3} \varphi(n)^{2} \prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}(p_{i}+1), & \text{if } n \text{ is even.} \end{cases}$$

Proof. First, let n be odd. Then the system (7) reduces to the equivalent system

$$0 \le s_1, s_2, t_1, t_2 \le n - 1,$$

$$(s_1 t_2 - s_2 t_1, n) = 1.$$

Since the number of solutions of this system is $n\varphi(n)^2 \prod_{i=1}^k p_i^{\alpha_i - 1}(p_i + 1)$ and k_1 , $k_2 \le n - 1$, the assertion follows from the Proposition 3.

Finally, let *n* be even. Now s_1 , s_2 , t_1 , t_2 are solutions of the system (7) if and only if for every $1 \le i \le k - 1$ they are solutions of the following system:

$$s_{1}t_{1} \frac{n(n-1)}{2} \equiv 0 \pmod{p_{i}^{\alpha_{i}}},$$

$$s_{2}t_{2} \frac{n(n-1)}{2} \equiv 0 \pmod{p_{i}^{\alpha_{i}}},$$

$$(s_{1}t_{2} - s_{2}t_{1}, p_{i}^{\alpha_{i}}) = 1.$$

When p_i is odd number, then this system reduces to

$$0 \le s_1, s_2, t_1, t_2 \le p_i^{\alpha_i} - 1,$$

$$(s_1 t_2 - s_2 t_1, p_i^{\alpha_i}) = 1,$$

which was investigated in the Lemma 7.

Now it is sufficient to compute the solutions of the system

$$s_{1}t_{1} \frac{n(n-1)}{2} \equiv 0 \pmod{2^{\alpha}},$$

$$s_{2}t_{2} \frac{n(n-1)}{2} \equiv 0 \pmod{2^{\alpha}},$$

$$(s_{1}t_{2} - s_{2}t_{1}, 2^{\alpha}) = 1.$$

This is equivalent to:

$$s_1 t_1 \equiv 0 \pmod{2},$$

 $s_2 t_2 \equiv 0 \pmod{2},$
 $(s_1 t_2 - s_2 t_1, 2) = 1.$
(9)

From first and third conditions of (9), we note that exactly one of s_1 an t_1 should be odd. Then we may choose (s_1, t_1) in $2^{2\alpha-1}$ ways. Now, we select (s_2, t_2) such that $(s_1t_2 - s_2t_1, 2) = 1$. If t_1 is even then t_2 and s_1 are odd. This together with $2 | s_2t_2$ yields that s_2 is even. Therefore, the number of solutions of system (9) for this case is $2^{4\alpha-4}$. Similarly, it is true if t_1 is odd. By the above argument, the number solutions of (9) is $2^{4\alpha-3} = \frac{2^{\alpha}}{3} (\varphi(2^{\alpha}))^2 2^{\alpha-1} (2+1)$. This completes the proof.

Corollary. Let G be a non-abelian group of order p^3 , where p is odd prime. Then $|\operatorname{Aut}(G)| = p^3(p-1)$ or $p^3(p-1)^2(p+1)$.

Proof. By [8], G is isomorphic to one of K_{p+1} or G_p . Then the result now follows from Propositions 2 and 4.

- Jamali. Some new non-abelian 2-groups with abelian automorphism groups // J. Group Theory. 2002. – 5, № 1. – P. 53 – 57.
- Bidwell J. N. S., Curran M. J. The automorphism group of a split metacyclic p-group // Arch. Math. – 2006. – 87, Nº 6. – S. 488 – 497.
- 3. *The GAP Group*, GAP Groups, Algorithms, and programming version 4.4 packages AutPGroup and Small Groups http. A. R.
- Johnson D. L. Presentations of groups. 2nd ed. // London Math. Soc. Stud. Texts 15. Cambridge: Cambridge Univ. Press, 1977.
- Campbell C. M., Campel P. P., Doostie H., Robertson E. F. Fibonacci length for metacyclic groups // Algebra Colloq. – 2004. – P. 215 – 222.
- Campbell C. M., Robertson E. F. On a group presentation due to Fox // Can. Math. Bull. 1976. 19. – P. 247 – 248.
- Doostie H., Hashemi M. Fibonacci lenghts involving the Wall number k(n) // J. Appl. Math. Comput. – 2006. – 20, № 1 – 2. – P. 171 – 180.
- 8. Robinson D. J. S. A course in the theory of groups. New York: Springer-Verlag, 1982.

Received 05.06.09

1712