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ASYMPTOTIC BEHAVIOR
OF POSITIVE SOLUTIONS OF FOURTH-ORDER
NONLINEAR DIFFERENCE EQUATIONS

ACUMIITOTUYHA NOBEAIHKA NTOJATHUX PO3B’A3KIB
HEJIIHIHHUX PI3BHULIEBUX PIBHSHb
YETBEPTOI'O ITIOPAKY

We consider a class of fourth-order nonlinear difference equations of the form
A2(pn(A2?/n)a) + Q’nyg_t,_;; =0, neN,

where «, (3 are the ratios of odd positive integers, and {pn }, {gn} are positive real sequences defined
for all n € N(ng). We establish necessary and sufficient conditions for the existence of nonoscillatory
solutions with specific asymptotic behavior under suitable combinations of the convergence or divergence
conditions of the sums

oo e 1/
> e ot > (2)7
n=nqo Pn n=ng Pn

Po3risHyTO Kiac HeNiHIHUX Pi3HUIEBHUX PIBHSHb YETBEPTOrO MOPSJIKY, IO MAOTh BUIVIS
2 2
A%(pn(A%yn)®) + qnyp 5 =0, n€eN,

Ie «, 3 € CIiBBiJHOICHHAMU HENapHUX AOAATHUX LIUINX Yucel, a {pn }, {¢n} — DOmaTHUMHU AiFICHUMEU
HOCIIiJOBHOCTSAMHY, BHU3HA4CHUMHU 1 BCix n € N(ng). BcraHoBneHo HeoOXinHi i ocTaTHi yMOBH iCHY-
BaHHs HEKOJHMBHUX PO3B’SA3KiB i3 CHENU(IYHOI0 aCUMITOTHYHOI MOBEIIHKOI y BHUITAIKY MPUAHATHHX
KoMOiHawiit yMOB 301KHOCTI 200 PO30IXHOCTI CyM

[eS) 0o 1/
Z n Z n
1o " (pn) ’
n=ng Pn n=ng

1. Introduction. In the last few years, there has been an increasing interest in the
study of oscillatory and asymptotic behavior of solutions of difference equations (see
monographs [1, 2] and the references therein). Compared to second-order difference
equations, the study of higher-order equations (see [3—8]) and, in particular, fourth-
order difference equations (see [9—14]) has received considerably less attention.

In this paper we are concerned with the fourth-order quasilinear difference equation

A% (pa(A%n)®) + @nys =0, n € N(no), (1.1)
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ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF FOURTH-ORDER ... 9

where N(ng) = {ng,no + 1,n0 + 2,...}, ng is a positive integer, A is the forward
difference operator defined by Ay, = yn+1 — Yn, @ and 3 are ratios of odd positive
integers and {p, } and {g,,} are positive real sequence defined for all n € N(ny).

By a solution of (1.1) we mean a real sequence {y,, } satisfying (1.1) for n € N(ny).
A nontrivial solution {y,} of equation (1.1) is called oscillatory if for every M € N
there exist m, n € N, M < m < n such that z,,x, < 0, otherwise, it is nonoscillatory.
Equation (1.1) is called oscillatory if all its solutions are oscillatory.

Oscillatory and nonoscillatory behavior of solutions of (1.1) under the condition

00 [} 1/
3 fja:oo and Z(”) - o0 (1.2)

n=ng N n=ng Dn

have been considered by Thandapani and Selvaraj in [13] and Agarwal and Manojlovi¢
in [15]. The aim of this paper is to proceed further in this direction and to obtain a more
detailed information on the asymptotic behavior of nonoscillatory solutions of (1.1),
under the assumptions which was not yet considered. Namely, we will investigate the
structure of the set of positive solutions of (1.1) under each of the following conditions:

[ 0 1/«
3 fja<oo and Y <”> _ (1.3)

— n — Dn
n=ng n=ng

oo n 0o n 1/«

Z /e = and Z <pn> < 00, (1.4)
n=ng pn n=ng

[eS) n oo n 1/

Z /e < and Z <p> < 0. (1.5)
n=ng t’'N n=ng n

We emphasize that if (1.3) holds, then o < 1 and if (1.4) holds, then « > 1.
Under assumptions (1.2)—(1.5), the following four sequences play a special role in
the set of positive solutions of (1.1):

1

o =1 %znfm—s—l)(s)“,

S=n. ps
o 1
1 @
Bn:na O = s—n+1 ()
Lls=n+b{y

Under the condition (1.2), Thandapani, Selvaraj in [13] established necessary and suffi-
cient conditions for the existence of positive solutions of the following two types:

Yo ~ Ccay as n—o00, 0<c<oo, (1.6)

Yo ~ CYn as m—00, 0<c<oo. (1.7)

Namely, they proved the following two theorems:
Theorem A. Suppose that (1.2) holds. A necessary and sufficient condition for
the equation (1.1) to have a positive solution {y, } which satisfies (1.6) is that

ISSN 1027-3190. Vkp. mam. ocypn., 2008, m. 60, Ne 1
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1

Z % (Z(sn) qs>( < oo0.

n=ng t’'N s=n

Theorem B. Suppose that (1.2) holds. A necessary and sufficient condition for
the equation (1.1) to have a positive solution {y, } which satisfies (1.7) is that

o0
3" iy < .

n=ng

Moreover, a solution {y,, } satisfying (1.6) is minimal in the set of eventually positive
solution of (1.1), while a solution {y,, } satisfying (1.7) is maximal in the set of eventually
positive solution of (1.1). Namely, there exists positive constants k;, ko such that

ki1 < yn < kg, forall large n.

In this paper, we are going to investigate asymptotic behavior of positive solutions
as n — oo under the other three conditions (1.3)—(1.5). If (1.3) is satisfied, we give
necessary and sufficient conditions for the existence of positive solutions satisfying (1.7)
and

Yo ~ €O, as n—oo, 0<c<oo. (1.8)

It is observed that a solution satisfying (1.8) is “minimal” in the set of all eventually
positive solution of (1.1) , while a solution satisfying (1.7) is “maximal” in the set of all
eventually positive solution of (1.1).

If (1.4) holds, in the set of all eventually positive solution of (1.1), a solution
satisfying (1.6) may be a “minimal” solution, while a solution satisfying

Yn ~ ¢cfnp a8 n—oo, 0<c<oo, (1.9)

may be a “maximal” solution. We will establish necessary and sufficient conditions for
the existence of this types of positive solutions.

If (1.5) holds, a solution {y,,} of (1.1) having the asymptotic property (1.9) may be
expected as a “minimal” solution in the set of all eventually positive solutions of (1.1).
Moreover, a solution {y, } of (1.1) having the asymptotic property (1.8) is a “maximal”
solution in the set of all eventually positive solutions of (1.1). Under the assumption
(1.5), necessary and sufficient conditions are established for the existence of “minimal”
and “maximal” positive solution.

2. Classification of positive solutions. We first have to classify the positive solutions
in term of the signs of their differences, i.e., of the signs of

Ayna AQyna A(pn (AQ%)O‘)-

For a positive solution {y, } the next eight cases can occur:

ISSN 1027-3190. Vkp. mam. sicypn., 2008, m. 60, Ne 1
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Case | A(pn (A%y,)*) | A%y, | Ay, | Case | A(p, (A%y,)) | A%, | Ay,
(a) + + + (e) - + +
(b) + oo - + | -
©) - -+ ® - I .
(d) + - - (h) - - _

The cases (d) and (h) never hold, because if Ay, < 0 and A2y, < 0 for all large n,
we would have that lim,, .., y, = —oo, which contradicts the positivity of solution
{yn}. Similarly, if A(p, (A%y,)*) < 0, taking into account that from the equation
A(p, (A%y,)%) is decreasing sequence, we would have that lim,, .. p, (A%y,)* =
= —00, that is A%y, < 0 for all large n, which eliminates cases (e) and (f).

Accordingly, for a positive solution {y,, }, the one of the following four cases holds:

O : A(pn (A%y,)%) >0, A%y, >0, Ay, >0 forall large
an : Apn (A%y,)*) >0, A2y, <0, Ay, >0 forall large
(II0) - Apn (A%y,)%) >0, A%y, >0, Ay, <0 forall large
av): A(pp (A%y,)%) <0, A%y, <0, Ay, >0 forall large

Moreover, we have the following two lemmas:

Lemma 2.1 (Lemma 2.1 [13]). Let {y,} be a positive solution of (1.1).

)

holds, then
A(pn (A%y,)*) >0 for all large n.

Lemma 2.2. Let {y,} be a positive solution of (1.1) such that

Alpn (A%y,)¥) >0, A%y, >0 forall large n.

If
> i =
n=ng Pn

holds, then Ay,, > 0 for all large n.
Proof. From (2.1) we have

Pn (AQyn)a > PN (A2yN)a =c>0, n>N,

or
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) c 1/
Pn

Multiplying by n previous inequality and summing from N to n — 1, we obtain

n—1
S
nAy’n_NAyN_yn+l+yN+1ch/az /o’ ’I’LZN,
s=N Ds
which implies that
n—1 s
nAy, > k+ /e Z a n > N.
s=N DPs

Then, it follows from (2.2) that nAy,, — oo as n — oo and consequently Ay,, > 0 for
all large n.

The lemma is proved.

Therefore, by all previous discussion we make the following conclusions:

Lemma 2.3. Let {y,} be a positive solution of (1.1).

(1) If (1.3) holds, then (1) or (I) or (III) holds;

@11) If (1.4) holds, then (1) or (II) or (IV) holds;

(ii1) If (1.5) holds, then (1) or (I1) or (II) or (IV) holds.

3. Auxiliary lemmas. In this section we collect some lemmas which will be used
in order to prove the main results. We will use the following fixed point theorem, which
was proved in [14] and which can be considered as a discrete analog of Schauder’s fixed
point theorem.

Lemma 3.1. Suppose X is a Banach space and K is closed, bounded and convex
subset of X. If F: K — X is a continuous mapping such that F(K) C K and F(K)
is uniformly Cauchy, then F has a fixed point in K.

Lemma 3.2. (i) If {yn} is eventually negative sequence such that Ap,, > 0 and
A2, < 0 for all large n, then 711220 Ap, =0.

(i) If {pn} is eventually positive sequence such that Ap,, < 0 and A%p,, > 0 for
all large n, then lim Ay, = 0.

n—oo

Proof. (i) Since { Ay, } is positive and decreasing sequence, there exists lim Ay, =

n—oo

=, 0 < ¢ < oco. If we suppose that ¢ > 0, from Ay, > ¢, we get
on 2 oN+@(n—N), n=N,

which obviously implies that lim ¢,, = co, contradiction negativity of the sequence
n—oo

{¢n}. Consequently, ¢ = 0.
(ii) Since {A¢,} is negative and increasing sequence, there exists lim Agp, = ¢,

—00 < @ < 0. If we suppose that ¢ < 0, from Ay, < @, we get
on<on+¢(n—N), n>N,

which obviously implies that lim ¢,, = —oo, contradiction positivity of the sequence
n—oo
{¢n}. Therefore, ¢ = 0.
The lemma is proved.
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As a direct consequence of the previous lemma we have the following results for
the (1.1).

Lemma 3.3. Let {y,} be a positive solution of (1.1).

() If a solution {y,} is of type (I1), then lim A(p, (A%y,)*) = 0.

(i) If a solution {yn} is of type (1), then lim Ay, = 0.

Next lemma gives some useful properties of positive solution of (1.1).

Lemma 3.4. Let {y,} be a positive solution of (1.1).

() 2/ {yn} is of type (1, then lim 2> 0.

(i) Let (1.3) or (1.5) holds and {y,} is a positive solution of (1.1) which satisfi-
es (1.8). Then {y,} must be of type (III).

(iii) Let (1.4) holds and {y.,} is a positive solution of (1.1) which satisfies (1.6).
Then {y,} must be of type (1).

Proof. (i) Since {y,} is of type (I), there exists some N > ng such that (I) holds

for all n > N. Then {Ay,} is the increasing sequence, so that Ay,, > Ay,, > 0 for
all n > N. Therefore, y,, > ynv + Ayn(n — N), n > N, or

N
y"zyJV+AyN<1—), n> N.
n n n

Accordingly, lim 2% > Ayy > 0.
n—oo N
(ii) Let {y,} be a positive solution of (1.1) which satisfies (1.8). If (1.5) holds, by

Lemma 2.3, positive solution {y, } could be of type (1), (II), (III) or (IV). If we suppose
that {y,} is of type (), () or (IV), then lim y, = wy € (0,00]. Moreover, (1.5)

implies that lim §, = 0. But, then we would have that lim In 0o, contradicting

n—oo n—oo n

the assumption that {y,} satisfies (1.8). Therefore, the solution {y,} must be of
type (I1D).

On the other hand, if (1.3) holds, by Lemma 2.3 positive solution {y, } is of type (I),
(II) or (III) and therefore, using that (1.3) also implies that lim J,, = 0, by the same
arguments as in the previous case, we prove that {y, } is nei?h_e;;o of type (I) nor (II), so
it must be of type (III).

(iii) Let {y,} be a positive solution of (1.1) which satisfies (1.6). Then,

lim % —o. 3.1)

n—oo N

If (1.4) holds, by Lemma 2.3, positive solution {y, } is of type (I), (I), or (IV).

(a) If we suppose that {y,} is of type (I), then by (i) we have that lim L)
n—oo M,

contradicting (3.1).

(b) If we suppose that {y,} is of type (IV), then {p, (A?y,)*} is decreasing, so
that

Pu(A%y,)* < pn(A%yy)* = —-K <0, n>N.

Then,
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n
n A%y, < *Kém7 n >N,
DPn

and by summing obtained inequality from N to n — 1 we get

n—1 n—1
2 1 k
D kA <Ko Y <o n>N,
k=N k=N Pk
or
n—1 n—1 k
1

ZkAzyk:”Ayn—NAyN—ynﬂ-i-yNHS—KZ ZW’ n > N.
k=N k=N Pg

Accordingly, taking into account that Ay, > 0, n > N, we have

n—1
k
yn+121\4+Ké Z Ta> n >N,
k=N Py

where M = yn4+1 — NAyy. Therefore, (1.4) implies that nlggo Yn = 00, contradicting
that {y, } satisfies (1.6).

Finally, the solution {y,, } must be of type (II).

The lemma is proved.

We will also need the following lemma.

Lemma 3.5. Let {y,} be the positive solution of (1.1) such that A(p,, (A%y,,)®) >
> 0 for all large n, then

n—1 oo
1
; B
nh_)rrolog E E 4 Yjps = 0. 3.2)
k=N j=Fk

Proof: Summing (1.1) from N ton — 1, we get

n—1

& — Alpn (A%)*) = D Gkyrs n=N+1, (33)
k=N

where &3 = A(py (A%yn)®). Since {A(p, (A%y,)*)} is positive and decreasing
sequence, it tends to a finite limit w3 > 0 as n — oco. Now, letting n — oo in (3.3) we
have that

o0
Z qky,f+3 < 0.
k=N

Therefore, by Stolz’s theorem we get

n—1 oo o]

1
; B 1 B
dm S D 4t = S Y 0y =0,
k=N j=k j=n

The lemma is proved.
4. “Maximal” and “minimal” positive solutions of (1.1). Next three result gives a

growth and decaying estimate of all positive solutions of (1.1) under the condition (1.3),
(1.4) or (1.5).

ISSN 1027-3190. Vkp. mam. sicypn., 2008, m. 60, Ne 1
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Theorem 4.1. Let (1.3) holds. If {y,} is an eventually positive solution of (1.1),
then there are positive constants c1 and co such that

16y < yn < coyn forall large n. 4.1)

Proof. In order to prove the first inequality, notice that if {y,} is a solution of
type (I) or (II), it is an eventually increasing solution. Then, clearly y,, > cd,, for some
¢ > 0 and for all large n. Therefore, taking into account Lemma 2.3, let us prove this
inequality for a solution of type (III). Since {p, (A2%y,)*} is positive and increasing
sequence, we get

1/«
A%y, > (C) , n>N, (42)
Pn
where ¢ = py (A%yn)®. Also, by Lemma 3.3 (ii), lim Ay, = w; = 0. Then,
summing (4.2) from n to m and letting m — oo, we obtain
—Ay,, >/ i ! >N
Yn > C e =N

s=n VS

Summing once again obtained inequality from n to m, letting m — oo and using that
lim y, = wy > 0, we get

n—oo

oo o0 1
ynZWO*FCl/aZZmZCl/a(;n, n > N.
Dy,

s=n k=s

Next, let us prove the second inequality. We consider two cases, either {y,} is a
solution of type (II) i.e., A%y, < 0 for all large n or it is a solution of type (I), or (III),
i.e., A%y, > 0 for all large n. In the first case, we have Ay, < Ayy = A;, for all
n > N > ng and summing from N ton — 1, we get y, < yny + Ayn(n — N), n > N,
from where we conclude that {y, /n} is bounded sequence. Then, y,, < co, for some
co > 0, since we have by (1.3) that

~ 1 n—1 s—1 k 1/a n—1 s 1/a

. n _ . - v — . - —

LS. S PD (p) Jim, 2 <p) >
s=ng k=ng s5=no

In the second case, when A2y, > 0 for all large n, by Lemma 2.1 we have that
{A(pn(A2y,)™)} is positive and decreasing sequence, so that

Alpn(A%y,)) < A(pn(A%yn)*) = X3, 1> N > ng. 4.3)
Summing this inequality repeatedly from N to n — 1, we obtain

n—1 s—1
1 a
Yn <yn +M(n—N)+ E E 1/a()\2+)\3(k_N))1/ , n>N, (4.4
s=N k=N Pk

where \; = Ayn, Ao = py(A%yxn)®. Now, it is easy to verify that (4.4) implies that
Yn < Co2Vn, With co > )\;,/a > 0.
The theorem is proved.
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Therefore, under the condition (1.3), in the set of all eventually positive solutions
of (1.1), a solution {y,} of type (1.8) may be regard as a “minimal” solution, while a
solution {y, } of type (1.7) may be regard as a “maximal” solution.

Moreover, under the condition (1.4), in the set of all eventually positive solutions
of (1.1), a solution {y,} of type (1.6) may be regard as a “minimal” solution, while a
solution {y,} of type (1.9) may be regard as a “maximal” solution. Namely, we have
the following theorem:

Theorem 4.2. Let (1.4) holds. If {y,} is an eventually positive solution of (1.1),
then there are positive constants ci and ce such that

c10n < yp < co B, forall large n. 4.5)

Proof. Let {y,} be an eventually positive solution of (1.1). By Lemma 2.3 we have
Ay, > 0 for all large n, so clearly there is ¢; > 0 such that y,, > ¢; for all large n.

Next, we will prove that {y,,/n} is bounded sequence, so that there is ¢ > 0 such
that y,, < con for all large n. We consider two cases, either A%y, < 0or A%y, >0,
for all large n. In the first case, as in the proof of Theorem 4.1 we may prove that
{yn/n} is bounded sequence. In the second case, when A%y, > 0 for all large n, i.e.,
a solution {y,,} is of type (I) and accordingly p,, (A%y,)* > 0 for all large n, as in the
proof of Theorem 4.1 we get (4.3). Summing (4.3) from N to n — 1, we obtain

Pn(A%)* <X+ As(n—N), n>N,
or

1/
A2y, <\ <n> , n>N,
Pn
where A = (A\z 4+ A3)'/® > 0. Summing previous inequality from N to n — 1 and using
the condition (1.4), we conclude that {Ay,, } is bounded sequence. Accordingly, there is
some ¢p > 0 such that Ay,, < co forn > Ny > N, or we get that y,, < yn, +ca2(n—Ny)
for n > Nj. Therefore, we have that {y,,/n} is bounded sequence.

The theorem is proved.

Under the condition (1.5), a solution {y,} of type (1.8) is a “minimal” solution in
the set of all eventually positive solutions of (1.1), and a solution {y, } of type (1.9) is
a “maximal” solution in the set of all eventually positive solutions of (1.1).

Theorem 4.3. Let (1.5) holds. If {y,} is an eventually positive solution of (1.1),
then there are positive constants ci and co such that

€16, <yn < c2fBn forall large n. (4.6)

Proof. The first inequality may be proved as in the proof of Theorem 4.1. In order
to prove the second inequality, we will again prove that {y,,/n} is bounded sequence.
If {y,} is a solution of type (II) or (IV), then A%y, < 0 for all large n, so that as in
the proof of Theorem 4.1 we may prove that {y, /n} is bounded sequence. If {y,} is
a solution of type (1), i.e., A(p, (A%y,)*) > 0 and A%y, > 0 for all large n, as in
the proof of Theorem 4.2 we may prove that {y,/n} is bounded sequence. Finally, if
{yn} is a solution of type (III), it is obviously bounded sequence and accordingly, we
conclude that {y,,/n} is bounded sequence.

The theorem is proved.

ISSN 1027-3190. Vkp. mam. sicypn., 2008, m. 60, Ne 1
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5. Existence of positive solutions. In this section we give necessary and sufficient
conditions for the existence of specific kinds of positive solutions.

5.1. Existence of positive solutions under the condition (1.3). Necessary and
sufficient conditions for the existence of positive solutions of (1.1) satisfying (1.7) or
(1.8) are given in the following two theorems.

Theorem 5.1. Suppose that (1.3) holds. Equation (1.1) has a positive solution of

type (1.7) if and only if

Z qs’nyrg < oo. (5.1

S=no

Theorem 5.2. Suppose that (1.3) holds. Equation (1.1) has a positive solution of
type (1.8) if and only if

o0
Z Sqs 5f+3 < o0. (5.2)

S=ngo

The statement and the proof of Theorem 5.1 is the same as of Theorem B (Theorem 1
in [13]). Consequently, we here prove only Theorem 5.2.

Proof of Theorem 5.2. Necessity. Let {y,} be a positive solution of (1.1) of
type (1.8). Then there is N > ng

gangyngcan, n> N. (5.3)

Then, by Lemma 3.4 (ii) the solution {y,} is of the type (III), so that by Lemma 3.3 (ii)
lim Ay, = 0. Moreover, {p,(A2y,)%} is increasing, so we find that

e o0 pl/a A2y o 1
s .
o= YA = S PR s eany, S L e
s=n s=n S s=n s

Summing this inequality from 7 to m, letting m — oo and using that y,, — wg € [0, 00),
as n — 0o, we obtain

oo o0
1
un 2D 0 AN Y 2/ APy, > N
s=n k:spk

Accordingly,

pn(Agyn)a < ((ysn) , n>N,

which combined with (5.3) implies that {p,, (A%y,)*} is bounded.

Multiplying (1.1) by n and summing the resulting equation from N to n — 1, we
have

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 1
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n—1

nAPn (A%)) + > sqoyl iy = K+ pusi(A%yn1)®, n>N,  (54)
s=N

where K is a constant. Since A(p, (A%y,)%) > 0 and p, (A%y, )" is bounded, letting
n — oo in (5.4), we conclude that

oo
Z SQs yf +3 < 00.
s=N
This, together with (5.3) implies (5.2).
Sufficiency. We assume that (5.2) holds and let ¢ > 0 be an arbitrary number. Then,
there is N > ng such that

> (5= N)gsblyy < CQ_C(# (5.5)

s=N

Consider the Banach space Ay of all real sequences y = {y,, } with norm

Yn
Iyl = sup el
n>N Un
and define the set
c
le{yeAN 25n<yn<65n}a

which is clearly bounded, closed and convex subset of Ay. We will define the operator
g1 . Yl — AN by

1

[e%e] N 1 [e’e] o
(Giy), = % (ca —> (k- s+ D y,f+3> , n>N. (5.6)

s=n s k=s

The operator G; has the following properties:
(1) G1 maps Y1 to Y1. For y € Y7, obviously

(gly)n S 067“ n Z N7

and using (5.5), we have

1
oo _ + 1 oo P
(Gry),, = E Shmh IT;a (c" —cf E (k—s+1)g 5,f+3> >
s=n S k=s

1l =
o pc—(c/2)*\" s—n+l ¢
><c c — 5 27%/a —25n, n > N.

Therefore, Gy € Y for all y € Y7, ie., G1 (Y1) C V7.
(ii) Gi is continuous on Yy. Let e > 0 and let {y(m) = (yim),yém), e )} be a

sequence in Y7, such that lim,, ||y(m) —yl|| = 0. Since Y; is closed, y € Y7. We
can choose M > N so large that
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ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF FOURTH-ORDER ... 19

oo

Z (s — M)qséf+3 < e. (5.7)
s=M

For all m € N, n > N we have that

(Gu™), = @ua| < D (s —n+1) o x
o Y . 4
X (ca —> (k= 9)a (y£+§> ) - (co‘ — > (k= 9)a yf+3> =
k=s k=s
-n —|— 1 (m)
- Z sznwl ‘F ~ R, (5.8)
where
i i
(m) o - (m) a Q S &l :
FfW = (¢ = (k=) (yk+3) ’ Fo= (e =) (k= 9)auys ) -
k=s k=s
Since, using (5.7), we have for all large m € N and all s > N that
(k—s)ar (y) =Y (k=) ar vy
Ak \ Yr43 Ak Ypy3| =
k=s k=s
M s M
< Z(k —5) (y,(fﬁ) - Z(k —8) Qe Y 5| +
k=s k=s
+ Z(k_M)Qk (%ﬁ;) + Z k— M) qkyk+3 =
k=M k=
M s M
<D (k= s) (y,(ﬁé) = (k=) aryl 5|+
k=s k=s

oo
+2¢% > (k= M), 5 < 3e.
k=M

Therefore, lim,,, _, ’Fs(m) — Fs| = 0, for each s > N. Now, from (5.8) we get that for
all large m € N

0
s—n+1
ZW:E&“, TL>N,

‘(Qw(m))n —(Giy)n| <€
s=n Ps

which shows that [|Giy™ — Gyy|| — 0 as m — oo, i.e., that G; is continuous on Y;.
(iii) G1(Y7) is uniformly Cauchy. To see this, we have to show that for any given
€ > 0, there exists an integer M; such that for m > n > M;
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’(gly)m _ (gly)n < e,

Om on

for any y € Y;. Indeed, by (5.6), for some y € Y7 and m > n > N, we have

‘ (G1)m  (G1Y)n

S On
1 & S i
= 6—2(8*7R+ 1/0& Z 7quyk+3 -
mos—m Ps k=s
1
1 & 1 = :
B
= Y (s—n+ 1) oo (c“—Z(k—S)Qkyk+3> s
N — Ps k=s
1| & = :
D e R ST
| s=n Ds k=s
=Y (s—m+1) 5 (c“—Z(k )q;cst) t
s=m s k=s
I . - :
4 afa Z(s m+ 1) i/ c 7;(]{ )Qkyk+3 =

IN

2 > "
“!‘575 ( Z k N Qk yk+3>
m k=N
§3<0a+ Z(k_N)QkyngrS) §3<Ca+cﬂz<k_N>qk5£+3> :

k=N k=N
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Using the condition (5.2), it is clear that G; (Y1) is uniformly Cauchy.

Accordingly, by Lemma 3.1, we conclude that there exists an § € Y; such that
G1y = y. It is easy to check that § = {g,,} is a positive solution of (1.1). Moreover,
clearly

lim Yn <eg,

n—oo n

and using (5.6) we have that

o s—n+1y/, oo _
= > W(C —Zk:n(/ﬂ—n)qkyﬂg)

lim g—nz lim = 1 =
R S
s=n ps

Q=

Q=

= nh_)ngo (ca - Z(k —n)q 17,?+3> =c.

k=n
Therefore, we have

lim 2% = .
n—oo 5n
The theorem is proved.
5.2. Existence of positive solutions under the condition (1.4). Now, we present
necessary and sufficient condition for the existence of positive solutions satisfying (1.6).
Theorem 5.3. Suppose that (1.4) holds. Equation (1.1) has a positive solution
which satisfies (1.6) if and only if

1

Z % <Z(s —n) qs>u < 0. (5.9)

n=ngo Pn s=n

The statement of Theorem 5.3 is the same as of Theorem A (Theorem 2 in [13]),
except that instead of the assumption (1.2) it is assumed that (1.4) holds. If (1.4) holds
and {y,, } is a positive solution which satisfies (1.6), by Lemma 3.4 (iii) the solution {y, }
is of type (II). Therefore, the proof of necessity part of Theorem 5.3 and Theorem A is the
same. Moreover, as in the proof of Theorem A we may prove that the condition (5.9)
is sufficient for the existence of solution of type (1.6). Consequently, the proof of
Theorem 5.3 is essentially given in [13] (Theorem 2).

Now, we turn to the existence of positive solutions of type (1.9). We will consider
the Banach space By of all real sequences y = {y,,} with norm

o |yn|
lyll = sup =,
n>N T
and define sets
le{yEBN‘;(n—N)Syngc(n—N), nZN},

and
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ng{yEBN‘c(n—N)SynSZc(n—N), nZN},

which are both clearly bounded, closed and convex subsets of Bjy.
Theorem 5.4. Suppose that (1.4) holds. Equation (1.1) has a positive solution of
type (1) which satisfies (1.9) if and only if

oo

> (n+3)%g, < 0. (5.10)

n=ngqo

Proof. Necessity. Let {y,} be a positive solution of (1.1) of type (I) which satisfies
(1.9). Then there is N > ng such that (I) holds for all » > N and

cn <y, <2cn, n>N. (5.11)

Summing (1.1) from n to k — 1 we get

k—1
Alpn (A%yn)*) = Alpr (A%e)*) + Y aiylys, k>n<N. (5.12)

1=n

Since {A(pr (A%yx)*)} is positive and decreasing sequence, it tends to a finite limit
ws > 0 as k — oo. Then, letting £k — oo in (5.12) we have

Alpn (A%yn)®) = w3 + Zqz Yo, > qu vs n>N. (5.13)
Then, using (5.11) from (5.13) we get
A(pn (A? N (k+3) g,
k=N

which proves that (5.10) holds.
Sufficiency. Let ¢ > 0 be an arbitrary number. We assume that (1.4) and (5.10) hold.
Then, there is N > ng such that

1
= L= (k=N\=
Q= E k—|—3 Qs QQEE ( ) gcl_g. (5.14)
k=N =

We will define the operator Hy: H; — By by

n—1 oo j—1 oo
(Hiy), = ZZ 1/a <Zquy§,’+3> , n>N. (515

i=N s=1

For y € Hy, using (5.14), we have

¢(n—N)> (Huy), > c(n—N) —ca Zzp Ta <ZZ(5+3)BqS> >
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1

5)

1
> (c—zcgcl_g) (n—N)zg(n—N), n> N.

> (n— N) - 5 QF Zi(

k=N j=k

Therefore, H1y € Hy for all y € Hy, i.e., H1 maps H; to H;. Moreover, in the similar
way as in the proof of Theorem 5.2, we may show that the operator H; is continuous on
Hy and H;(H;) is uniformly Cauchy. In view of Lemma 3.1, we see that there exists
an y € Hy such that H1y = 4. It is easy to see that § = {7, } is a positive solution of
(1.1) of type (I). Furthermore, from (5.15), using the condition (1.4), we have that

1

n) -

c> limg—": limu>c Plegi/« hmfnzli
- n—oo N

n—oo N n— oo n —n .
Jj=

— HaQle Jim Z (J - N)‘* — e

which shows that the solution % is of type (1.9).

The theorem is proved.

Theorem 5.5. Suppose that (1.4) holds. Equation (1.1) has a positive solution of
type (II) which satisfies (1.9) if and only if

oo

> n(n+3)g, <. (5.16)

n=no

Proof. Necessity. Let {y,} be a positive solution of (1.1) of type (IT) which sati-
sfies (1.9), so that there is N > ng such that (II) and (5.11) hold for all n > N.
Then, since {A(p, (A%y,)%)} is again positive and decreasing sequence, as in the
proof of Theorem 5.4 we get (5.13) for all n > N. Moreover, by Lemma 3.3 (i),
lim A(py, (A%y,)*) = w3 = 0 and (5.13) becomes

A(pn ( A Yn)® Z% Ypyz, n=N.

Summing this inequality from N to n — 1 and using (5.11) we get

n—1 oo n—1 oo
Po(A%)" =&+ ) ) aiyls >+ ) D (1+3)°q, n=N, (5.17)
k=N i=k k=N i=k

where & = py (A%yn)® < 0. Since {p,, (A%y,,)*} is negative and increasing sequence,
there exist lim p, (A%y,)® = wy < 0. Accordingly, letting n — oo in (5.17) we have
n—oo

[e.e]

D (k= N+1)(k+3)7 g < oo,
k=N

which proves that (5.16) is satisfied.
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Sufficiency. We assume that (5.16) holds. Moreover, the condition (1.4) implies that

1
D 7w <o
n

n=ngo

Therefore, for an arbitrary positive constant c there is N > ng such that

(o] 1 oo B
Yoa <l 2 (k-N)(k+3)q <P (5.18)
k=N Py k=N

A solution of (1.1) satisfying (II) and (1.9) may be obtained as a fixed point of the
operator Ho: Hy — By defined by

n—1 oo j—1 oo
(Hay), =cn—N)+ > > w( quys+3> . n>N. (519

kNJk] i=N s=i

The operator H, satisfies the assumptions of Lemma 3.1. Indeed, for all y € Hs, using
(5.18), we have

n—1 oo j—1 o é
(sz) >c(n—N +ZZ 1/a (co‘—(2c)BZZ(s+3)qu> >

k=N j=k P J i=N s=1i
n—1 oo oo 00 o
IEDIDS 1/a< 20" Y Y (s+3)7¢ ) >
k=N j=k Pj i=N s=i
n—1 oo 0o é
>e(n—N)+ > > T (ca (QC)QZ(Z'—N)(H—@B%) >
k=N j=k Pj i=N
n—1 oo .
>c(n*N)+ZZ T (c* =P e F)* =¢(n—N), n>N,
k=N j=k Dj
and
n—1
(H2y)n§ Z c+cz 1/a <2¢(n—-N), n>N.
k=N j=k Pj

Therefore, Ho maps Hs to Ho. We may verify that the operator H, is continuous on
H, as well as that Hy(Hz) is uniformly Cauchy. Therefore, by Lemma 3.1 we conclude
that there exists an § € Hy such that Hoy = 7. It is easy to see that § = {y,} is a
positive solution of (1.1) of type (II). Furthermore, by application of Stolz’s theorem,
we have that

cglimy—nzlimmgc—kclim E — =c
n—oo N n— oo n n—00 4 p1/a
j=ntj

which shows that the solution ¥ is of type (1.9).
The theorem is proved.
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Theorem 5.6. Equation (1.1) has a positive solution of type (IV) satisfying (1.9)
if and only if

1
o n—1 o
1
Y ( > (n—k- 1)(k+3)ﬁqk> < . (5.20)
n=ng Pn k=no

Proof. Necessity. Let {y,} be a positive solution of (1.1) of type (IV) which
satisfies (1.9). Then there is N > ng such that (IV) and (5.11) hold for all n > N.
Summing (1.1) twice from N to n — 1 we have

n—1 k—1

Po (A% =&+ &0 —N) = > Y qyls, n>N, (5.21)
k=N i=N

where & = py (A%yn)® < 0and & = A(pn (A?%yn)®) < 0. Accordingly,

n—1

pn(AQyn)ag_Z(n_k_l)(ﬂcyg.trgu n >N,
k=N

implying that

1 n—1 e
n k=N

For the solution {y,,} of type (IV), {Ay,, } is positive and decreasing sequence, so there
exits lim Ay, = wi, 0 < w; < oo. Therefore, summing the previous inequality from

n—oo

N to r — 1, letting » — oo and using (5.11) we get

00 k—1 1/a
1 . .
Ayy >’ E 1/a<g (k—z—l)(z—&-?))ﬁqi) )

k=N Pk i=N

Accordingly, we conclude that (5.20) is satisfied.
Sufficiency. We assume that (5.20) holds and let ¢ > 0 be an arbitrary number. Then,
there is N > ng such that

(k—i—1)(i+ 3)%) < c-s. (5.22)

We will define the operator Hz: Ho — By by

n—1 oo 1—1

1 .
(Hgy)n =c¢n—N)+ ZW Z(zf] —l)qjyir?) , n>N. (523)
k=N i=k Pi j=N

Il
2

By Lemma 3.1, we may conclude that there exists an ij € Hs such that Hzy = 3. The
operator H3 satisfies the assumptions of Lemma 3.1, since H3 is the continuous operator
on Hs, H3(H>2) is uniformly Cauchy and for all y € Hs, using (5.22), we have
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-
|
—
el

n—1 oo
B 1
Seln—=N)+ @) Y > o | Di-i-1DG+3)7¢ | <
k=N i=k Pi j=N

§c(n—N)—|—c§cl_ (n—N)=2c¢(n—N), n>N,
so that H3 maps Hs to Ho.

It is easy to see that ¥ = {¥,} is a positive solution of (1.1) of type (IV) and by
Stolz’s theorem, taking into account the assumption (5.20), we have that

lim In _ lim Ly)":c

n—oo N n—00 n

which shows that the solution % is of type (1.9).
The theorem is proved.
Nothing that under the condition (1.4), we have that

(5.16) = (5.10) = (5.20)

we have the following result on the existence of the positive solution of type (1.9), under
the assumptio (1.4).

Theorem 5.7. Suppose that (1.4) holds. Equation (1.1) has a positive solution
which satisfies (1.9) if and only if (5.20) holds.

5.3. Existence of positive solutions under the condition (1.5). If we suppose that
(1.5) holds and {y,} is a positive solution which satisfies (1.8), by Lemma 3.4 (ii) the
solution {y,} is of type (IIT). Therefore, under the condition (1.5), as in the proof of
Theorem 5.2 we may prove that the condition (5.2) is necessary for the existence of
positive solution of type (1.8). On the other hand, in the sufficiently part of the proof
of Theorems 5.2, only the first part of the condition (1.3) has been used. Therefore, the
statement of Theorem 5.2 remains to hold if the condition (1.5) is assumed to hold and
we have the following result on the existence of solution of type (1.8):

Theorem 5.8. Suppose that (1.5) holds. The condition (5.2) is a necessary and
sufficient condition for the equation (1.1) to have a positive solution {yy } which satisfi-
es (1.8).

Notice that in the sufficiently part of the proof of Theorems 5.4-5.6, we used only
the second part of the condition (1.4), i.e., that

oo n 1/«
> () <=

n=ngo

Moreover, if (1.5) holds, by Lemma 2.3, (I) or (I) or (IIT) or (IV) holds. If {y,}
is a positive solution which satisfies (1.9), it can not be of type (III), because if we
suppose on the contrary that {y,} is a positive and decreasing sequence, we would
have that nlLH;o yn/n = 0. Accordingly, if (1.5) holds we can prove in the same way

Theorems 5.4-5.6, so that we have the following results:
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Theorem 5.9. Suppose that (1.5) holds. The condition (5.20) is a necessary

and sufficient condition for the equation (1.1) to have a positive solution {y,} which
satisfies (1.9).
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