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AN INFINITE-DIMENSIONAL BORSUK – ULAM TYPE
GENERALIZATION OF THE LERAY – SCHAUDER FIXED
POINT THEOREM AND SOME APPLICATIONS

НЕСКIНЧЕННОВИМIРНЕ УЗАГАЛЬНЕННЯ ТИПУ
БОРСУКА – УЛАМА ДЛЯ ТЕОРЕМИ ЛЕРЕЯ – ШАУДЕРА
ПРО НЕРУХОМУ ТОЧКУ ТА ДЕЯКI ЗАСТОСУВАННЯ

A generalization of the classical Leray – Schauder fixed point theorem, based on the infinite-dimensional
Borsuk – Ulam type antipode construction, is proposed. A new nonstandard proof of the classical Leray –
Schauder fixed point theorem and a study of the solution manifold to a nonlinear Hamilton – Jacobi type
equation are presented.

Запропоновано узагальнення класичної теореми Лерея – Шаудера про нерухому точку, що ґрунту-
ється на нескiнченновимiрнiй конструкцiї антиподiв типу Борсука – Улама. Наведено нестандарт-
не доведення класичної теореми Лерея – Шаудера про нерухому точку та дослiджено многовид
розв’язкiв нелiнiйного рiвняння типу Гамiльтона – Якобi.

1. Introduction. The fixed point theorems are of very importance for many applications
[1 – 3] in modern theories of differential equations and mathematical physics. Especially,
the classical Leray – Schauder theorem and its diverse modifications [1, 4 – 9] in infinite-
dimensional both Banach and Frechet spaces, being nontrivial generalizations of the well
known finite-dimensional Brouwer fixed point theorem, are of special interest [4 – 7, 10,
11] in modern nonlinear mathematical analysis. In particular, there exist many problems
in theories of differential and operator equations [1, 4, 9 – 12], which can be uniformly
formulated as the following equation:

âx = f(x), (1)

where x ∈ E1, â : E1 → E2 is a closed surgective linear operator from Banach space E1

onto Banach space E2, defined on a domain D(â) ⊂ E1 (which can be not dense) and
f : E1 → E2 is a nonlinear continuous mapping, whose domain D(f) = D(a) ∩ Sr(0).
(Here Sr(0) ⊂ E1 is the sphere in E1 of radius r > 0, centered at zero.)

The following problem, important for many applications, is posed.
Problem. Under what conditions on the linear operator â : E1 → E2 and the non-

linear continuous mapping f : E1 → E2 does equation (1) possess a solution x ∈ D(f),
and what is the topological dimension dimN (â, f) of the solution set N (â, f) ⊂ D(f)?

Recall also that the topological dimension of a closed compact set A ⊂ X (X
is a topological space) is defined as the number dim A := inf

{
k ∈ Z+ : there holds

the condition
⋂

j=1,k+2

Uαj = ∅ for any subsets Uαj ∈ {Uαβ
} of all specially chosen

subcoverings {Uαβ
} of any covering {Uα} of the set A

}
.

a) In the case := id and E1 := E2 equation (1) reduces to the standard fixed point
problem f(x) = x, x ∈ Sr(0), studied before [1, 5, 8, 13, 14] by Banach, Leray,
Schauder, Browder and many other mathematicians.
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b) In the odd case when f(−x) = −f(x) for any x ∈ D(f) equation (1) reduces
to an infinite-dimensional generalization of the classical Borsuk – Ulam theorem on the
sphere Sr(0) ⊂ E1, which was recently stated by B. Gelman [11, 15].

Below we will prove a theorem, giving rise to a suitable solution to the Problem
above, and give some its application to studying the solution set to a nonlinear Hamilton –
Jacobi type equation.

2. Main theorem. We will assume further that the following natural conditions are
fulfilled:

i) domain D(f) = D(a) ∩ Sr(0);
ii) the mapping f : E1 → E2 is â-compact that is, it is continuous and for any

bounded set A2 ⊂ E2, any bounded A1 ⊂ D(f) the set f(A1 ∩ â−1(A2)) is relatively
compact in E2 (the empty set ∅ is considered, by definition, compact);

iii) there exists a bounded constant kf > 0, such that

sup
x∈Sr(0)

1
r
‖f(x)‖2 := k−1

f ;

iv) the inequality

k(â) < kf

holds, where, by definition,

k(â) := ‖ã−1‖ = sup
y∈E2

1
‖y‖2

inf
x∈D(â)

{
‖x‖1 : âx = y

}
, (2)

and ã := â|E1/ ker â is an invertible susjective and continuous linear operator from the
factor-space E1/ ker â onto E2.

Then the following main theorem [16 – 18] holds.
Theorem 1. Let the dimension dim Ker â ≥ 1 and conditions i) – iv) hold. Then

equation (1) possesses in D(f) ⊂ E1 the nonempty solution setN (â, f), whose topologi-
cal dimension dimN (â, f) ≥dim ker â− 1.

A proof of the theorem is based on the following lemmas.
Lemma 1. For any constant ks > k(â) there exists a continuous odd selection

s : E2 → E1 for the mapping ã−1 : E2 → E1, satisfying the conditions:
1) âs(y) = y for any y ∈ E2;
2) ‖s(y)‖1 ≤ ks‖y‖2, y ∈ E2.

Proof. The lemma can be proved making use of the well known E. Michael theorem
[19] on the selection for a linear surjective and continuous mapping, applied to the
induced mapping ã : E1/ ker â → E2. As the latter is invertible and continuous, there
exists the bounded constant k(â) := ‖ã−1‖ < ∞. The set-valued mapping ã−1 : E2 →
→ E1 is lower semi-continuous with closed convex values. It is clear that ã−1(−y) =
= −ã−1(y) for any y ∈ E2. Consider now, following [11, 15], another set-valaued
mapping ϕ : E2 → E1, such that ϕ(y) = Br(y)(0) for any y ∈ E2, where Br(y)(0) is
the closed ball of radius r(y) = k(â)‖y‖2 +1 in E2. If to define a mapping ϕ : E2 → E1

as ϕ̃(y) := ã−1(y)∩ϕ(y), one can see that ϕ̃(−y) = −ϕ̃(y) for any y ∈ E2. There exists
a theorem proved by E. Michael [19], which says that any below semicontinuous set-
valued mapping ϕ : E2 → E1 of a paracompact space E2 (in particular, of any metrized
or Banach space E2) into a Banach space E1 with closed and convex values possesses
a continuous selection. Moreover, by the theorem on equivariant selections [20] there
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exists an odd selection s : E2 → E1, such that s(y) ∈ ϕ̃(y) for each y ∈ E2, whence
âs(y) = y. This mapping, in general, is nonlinear, if there does not exist the linear
continuous projector from E1 onto ker â ⊂ E1. The selection s : E2 → E1 allows also
a more analytical construction. Really, since the set-valued mapping â−1 : E2 → E1 is
defined on the whole Banach space E2, one can write down that

â−1y = x̄y ⊕Ker â (3)

for any y ∈ E2 and some specified elements x̄y ∈ E1\ ker â, labelled by elements y ∈
∈ E2. If the composition (3) is already specified, we can define a selection s : E2 → E1

as follows:

s(y) :=
1
2
(x̄y − x̄−y)⊕ 1

2
(c̄y − c̄−y), (4)

where the elements c̄y ∈ ker â, y ∈ E2, are chosen arbitrary, but fixed. It is now easy
to check that

s(−y) = −s(y)

and

â s(y) = â

(
1
2
(x̄y − x̄−y)⊕ 1

2
(c̄y − c̄−y)

)
=

=
1
2
âx̄y −

1
2
âx̄−y =

1
2
y − 1

2
(−y) = y

for all y ∈ E2, thereby the mapping (4) satisfies the main conditions i) and ii) above.
To state the continuity of the mapping (4), we will consider below expression (2) for the
norm ‖ã−1‖ = k(â) of the inverse mapping ã−1 : E2 → E1. We can easily write down
the following inequality:∥∥s(y)

∥∥
1

=
∥∥∥∥1

2
(x̄y − x̄−y)⊕ 1

2
(c̄y − c̄−y)

∥∥∥∥
1

=

=
1
2
‖(x̄y ⊕ c̄y)− (x̄−y ⊕ c̄−y)‖1 ≤

≤ 1
2
(‖(x̄y ⊕ c̄y)‖1 + ‖(x̄−y ⊕ c̄−y)‖1) ≤

≤ 1
2
ks ‖y‖2 +

1
2
ks ‖y‖2 = ks ‖y‖2 ,

giving rise to the continuity of mapping (4), where we have assumed that there exists
such a constant ks > 0, that ∥∥(x̄y ⊕ c̄y)

∥∥
1
≤ ks ‖y‖2 ,

for all y ∈ E2. This constant ks > k(â) strongly depends on the choice of elements
c̄y ∈ ker â, y ∈ E2, what one can observe from definition (2). Really, owing to the

definition of infimum, for any ε > 0 and all y ∈ E2 there exist elements x̄
(ε)
y ⊕ c̄

(ε)
y ∈ E1,

such that

k(â) ≤

∥∥∥x̄
(ε)
y ⊕ c̄

(ε)
y

∥∥∥
1

‖y‖2
< k(â) + ε := ks. (5)
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Now making now use of formula (4), we can construct a selection sε : E2 → E1 as
follows:

sε(y) :=
1
2
(
x̄(ε)

y − x̄
(ε)
−y

)
⊕ 1

2
(
c̄(ε)
y − c̄

(ε)
−y

)
,

satisfying, owing to inequalities (5), the searched for conditions i) and ii):

âsε(y) = y, ‖sε(y)‖1 ≤ ks ‖y‖2

for all y ∈ E2 and ks := k(â) + ε, ε > 0. Moreover, the mapping sε : E2 → E1 is, by
construction, continuous [15, 19, 20] and odd that finishes the proof.

Lemma 2. Let a mapping fr : E1 → E2 be defined as

fr(x) :=


‖x‖1

r
f

(
rx

‖x‖1

)
, if x 6= 0;

0, if x = 0.

Then the equation

t(t2 + ε2)−1fr(ts(y) + t2c̄) = y, (6)

where c̄ ∈ ker â, is solvable for any ε 6= 0 with respect to (t, y) ∈ [−1, 1]× S1(0), such
that ‖y‖2 + t2 = 1. Moreover, the corresponding solution (tε, yε) satisfies the limiting
condition: lim infε→0 |tε| = α0 ∈ (0, 1).

Proof. Proof is based on a Borsuk – Ulam type theorem of [11, 15] and some standard
functional-analytic resasonings.

As a consequence of Lemmas 1 and 2 one deduces the proof of the main Theorem 1.
In particular, the solution setN (â, f) depends on the kernel ker â, and whose topological
dimension dimN (â, f) ≥dim ker â− 1, following from the form of equation (6).

3. Applications. 3.1. The classical Leray – Schauder fixed point theorem. The
following classical Leray – Schauder fixed point theorem holds.

Theorem 2. Let a compact mapping f̄ : B → B in a Banach space B be such
that there exists a cloesed convex and bounded set M ⊂ M, for which f̄(M) ⊆ M.

Then there exists a fixed point x̄ ∈ M, such that f̄(x̄) = x̄.

Proof. A proof of the theorem can be obtained from the main Theorem 1. Really,
put, by definition, E1 := B ⊕ R and E2 := B. For any point x ∈ B one can define the
set-valued projection mapping (metric projection)

B 3 x → Pf̄ (x) ⊂ Mf̄ ⊂ B, (7)

where Mf̄ := conv f̄(M) ⊆ M and

inf
y∈Mf̄

‖x− y‖ :=
∥∥x− Pf̄ (x)

∥∥. (8)

The constructed mapping (7) is well-defined [1, 21, 22] and below semi-continuous,
owing to the compactness, closedness and convexity of the set Mf̄ ⊂ B. Take now

the unite sphere S1(0) ⊂ E1, a compact surjective linear operator b̂ : B → B, whose
dim ker b̂ ≥ 1, a continuous selection P̄f̄ : B → Mf̄ for the set-valued mapping (7),
existing owing to the aboave mentioned E. Michael theorem [19], and construct a
mapping f : S1(0) → E2, where, by definition, for any (x, τ) ∈ S1(0) and λ ∈ R

f(x, τ) := f̄(P̄f̄ (x))− P̄f̄ (x) + λb̂x. (9)
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If to define now a related with (8) mapping â : E1 → E2 as

â(x, τ) := λb̂x

for any (x, τ) ∈ E1, the fixed point problem for the mapping f̄ : B → B becomes
equivalent to the following equation:

â (x, τ) = f(x, τ) ⇐⇒ f̄(P̄f̄ (x)) = P̄f̄ (x).

The following simple lemma holds.
Lemma 3. The mapping (9) is continuoes, â-compact and satisfying for some

nonzero value λ ∈ R the condition kf > k(â).
Thereby, based on main Theorem 1 there exists a point (xτ , τ) ∈ S1(0) ⊂ E1, such

that

f̄(P̄f̄ (xτ )) = P̄f̄ (xτ ) ⇐⇒ f̄(x̄) = x̄,

where x = P̄f̄ (xτ ) ∈ Mf̄ , prooving the theorem.
Remark 1. There exists [16 – 18] another nonstandard proof of the classical Leray –

Schauder fixed point theorem, based on the measure theory and a Krein – Milman type
theorem about a representation of convex compact sets by means of their extreme points.

3.2. A Hamilton – Jacobi type nonlinear equation in Rn. There is considered the
Cauchy problem to the following nonlinear Hamilton – Jacobi type equation in Rn :

∂u

∂t
+

1
2
(
|ux|2 + βu|x|2

)
= 0, (10)

where x ∈ Rn, t ∈ R+, β ∈ R is a constant parameter and

u|t=+0 = v

for v : Rn → R being a given mapping. The corresponding classical and generalized
solutions to equation (10), when v ∈ BSC(Rn) is a below semi-continuous function,
can be represented [2, 23 – 27] for t ∈ R+ as

u(x, t) = inf
y∈Rn

{
v(y)− 1

2
〈y, α̇〉|τ=0 −

β

16
(
|x|4 − |y|4

)
+

1
2
〈x, α̇〉|τ=t

}
,

where we denoted “ · ” :=
d

dτ
, “ · ·” :=

d2

dτ2
and α : Rn×R+→ Rn is the vector-valued

solution to the following set of nonlinear ordinary differential equations:

−α̈ = β

(
uα +

1
2
|α|2α̇

)
, (11)

u̇ =
1
2

(
|α̇|2 − βu|α|2

)
under the boundary conditions

α|τ=+0 = y, α|τ=t = x, (12)

u|τ=+0 = v(y)

for any x, y ∈ Rn and t ∈ R+. The problems like (11) are of very importance in the
mathematical theory of nonlinear oscillations [3] and were before extensively studied in
[2, 3, 28] by A. M. Samoilenko and his co-workers.
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To show that problem (11) and (12) is solvable, we rewrite it in the following
canonical form:

â(α, u) = fβ(α, u), (13)

where (α, u) ∈ H(0, t; Rn) ⊕ H(0, t; R) := E1, D(â) = H2(0, t; Rn) ⊕ H1(0, t; R),
E2 := H(0, t; Rn)⊕H(0, t; R) and

â(α, u) := (−α̈, u̇),

fβ(α, u) :=
(

β

(
uα +

1
2
|α|2α̇

)
,

1
2

(
|α̇|2 − βu|α|2

))
.

(14)

The corresponding solution set N (â, fβ) ∈ D(â) to problem (13) can be studied making
use of the main Theorem 1. Namely, the following theorem holds.

Theorem 3. Let a parameter β ∈ R be chosen in such a way that kfβ
> k(â),

where

k−1
fβ

:= sup
‖(α,u)‖1=r

1
r
‖fβ(α, u)‖2,

k(â) := ‖ã−1‖ = sup
‖w‖2=1

inf
(α,u)∈D(â)

{
‖(α, u)‖1 : (−α̈, u̇) = w

}
,

for some r > 0. Then there exists a nonempty solution set N (â, fβ) ∈D(â) to equati-
on (14), whose topological dimension dimN (â, fβ)≥2.

Thereby, the Cauchy problem for problem (11) and (12) is solvable and the space
of the corresponding solutions is not trivial (in general, it is nonunique!). Based now
on Theorem 3 the searched for solvability of the Cauchy problem to equation (10) is
completely stated.
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