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PERIODIC MOVING WAVES ON 2D LATTICES
WITH NEAREST NEIGHBOR INTERACTIONS™

MEPIOINYHI PYXOMI XBUJII HA IBOBUMIPHUX I'PATKAX
I3 BBAEMO/IISAMHA HAUBJIN2KYUX CYCIIIB

We study the existence of periodic moving waves on two-dimensional periodically forced lattices with
linear coupling between nearest particles and with periodic nonlinear substrate potentials. Such discrete
systems can model molecules adsorbed on a substrate crystal surface.

BuBueHo nUTaHHS ICHYBaHHS NEPIOAMYHUX PYXOMUX XBHJIb Ha [IBOBUMiPHUX NEPiOJUYHO 30ypEeHHX
rpaTKax i3 JIHITHIM 34eNJIeHHIM MiXK HaiOJIMKUYNMU 9YaCTUHKAMH Ta 3 TIePiOANYHUMHU HeJTiHIHHIMHI
MOTEeHIia/IaM1 MiAKJIagUHKH. Taki IUCKPEeTHI CUCTEMU MOXKYTb MOJIE/IIOBATH MOJIEKYJIH, IO a/ICOp-
OYyIOTBbCS Ha KPUCTA/IIYHY MOBEPXHIO MiIKJIAJUHKN.

1. Introduction. Recently, several papers have been devoted to the dynamics of
structures on two-dimensional (2d) lattice systems. For instance [1, 2], 2d Frenkel —
Kontorova type models are used to study either coherent localized and extended defects
such as dislocations, domain walls, vortices, grain boundaries, etc., which play an
important role in the dynamical properties of materials with applications to the problem
of adsorbates deposited on crystal surfaces; or in superlattices of ultrathin layers; or in
large-area Josephson junctions. On the other hand [3], the existence of longitudinal
solitary waves is shown for 2d cubic Hamiltonian lattices of particles interacting via
harmonic springs between nearest and next nearest neighborhoods which appear in
elastostatic investigation modeling a particle interaction via interatomic potentials,
which is a natural 2d analogy of the 1d Fermi — Pasta — Ulam lattice.

In this paper, we focus on forced 2d Frenkel — Kontorova models and their
generalizations. Motivated by [4], we consider an isotropic two-dimensional planar
model where rigid molecules rotate in the plane of a square lattice. At site (n, m) the
angle of rotation is u,,, each molecule interacts linearly with its first nearest

neighbors and with a nonlinear periodic substrate potential. If y is the linear coupling

2

coefficient, ®~ is the strength of the potential barrier or square of the frequency of

small oscillations in the bottom of the potential wells and ycos ¢ is the forcing then
the equation of motion of the rotator at site (n, m) is (see Figure)

. _ 2 .
un,m - X[un+1,m + un—l,m + un,m+1 + un,m—l - 4un,m] - Slnun,m + ycosus.

(1.1)

J. M. Tamga et al. [4] studied how a weak initial uniform perturbation can evolve
spontaneously into nonlinear localized modes with large amplitudes and investigated
the solitary-wave and particle-like properties of these robust nonlinear entities.

More general countable systems of nonlinear ordinary differential equations like
(1.1) are investigated in the book [5] focusing on the existence and stability of invariant
tories. We also refer the reader for more motivations to study equations on lattices
to [6].

Our paper has the following structure: Section 2 discusses the mathematical
formulation of the periodic moving wave solutions in two-dimensional lattices and its
connection to a small divisor problem. The existence of weak periodic moving waves
in equations like (1.1) is given in Section 3. More regular and classical periodic moving
waves are shown in Section 4. Final Section 5 is devoted to damped and periodically
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128 M. FECKAN

forced differential equations on two-dimensional lattices.

n—1 n n+1
Un,m+1 m+ 1
Un—1.m Un,m Unt1l.m m
Un,m—1 m—1

The two-dimensional lattice model of rigid rotation molecules with orientation u, , atsite (n, m).

2. Periodic moving waves. In this section, we consider the infinite system of
ODEs

liyy = XAy = flty) + hD),  (n.m) e 22, 2.1
on the two-dimensional integer lattice 7? for fe C! (R, R), he C(R,R), x >0,
(>0 under the following conditions:

(H,) f is odd and 2m-periodic, i.e., f(—x)=—f(x) and f(x +2rn) =f(x) Vxe
e R;

(H,) h#0 is m-antiperiodic, i.e., h(x+m)=—h(x) forall xe R.
A denotes the discrete Laplacian defined as

(Au)n,m = Mn+1,m + un—l,m tu 1 + un,m—l - 4un,m'

nm+
For f(u)= o’sinu and x =1, we get the 2d discrete sine-Gordon lattice equation
(1.1). Clearly f is globally Lipschitz continuous on R, i.e., |f(x)—f(y)|<L|x-y]|
Vx,ye R with L:=maxg |f"(x)].
We are interested in the existence of periodic moving wave solutions of the form
Uy (t) = U(ncos® + msin® — vz, ur) 2.2)
forsome v,0 € R and U € C2(R2, R) which is 2m-periodic in the both variables.
We may consider solutions of (2.2) to be moving waves on the lattice 7% in the
direction ¢™®. Substitution of (2.2) into (2.1) leads to the equation
szZZ(z, v) — 2uvU,(z, v) + uzUw(z, v) = y(U(z + cosH, v) + U(z — cos6, v) +
+ U(z + sin6, v) + U(z — sin®, v) — 4U(z, v)) — f(U(z, v)) + h(v) (2.3)

with z=ncos® +msin6—vr and v=ut.
The linear part of (2.3) has the form

LU := —VU,_(z, V) + 2uvU,(z, v) — W2U,(z, v) +
+ x(U(z + cos®, v) + U(z — cos6, v) +
+ U(z + sin®, v) + U(z — sin®, v) — 4U(z, v)). (2.4)
Taking e, ,, := L gitnzemo) e Gerive
’ T
L Crm = }"n,men,m

ISSN 1027-3190. Ykp. mam. xypn., 2008, m. 60, N° 1



PERIODIC MOVING WAVES ON 2D LATTICES ... 129

with

Ao = (nv —mp)? — 4y (sin2 neosd | sin’ ncose)‘

We see that in general £ 1is not invertible, since we are led to a problem of small
divisors [7 — 9]. To avoid this difficulty, we use the symmetry of f and % in the next
sections.

Finally, the unforced case of (2.1) with the form

”'in,m = (Au)n,m - f(un,m)’ (I’l, m) € Zz’ (25)
is investigated in [10] by looking for traveling waves of (2.5) of the form
Uy (1) = U(ncos® + msin6 — vi), (2.6)

when f satisfies assumption (H; ) in (2.5). Conditions are found in [10] to show the

existence of uniform sliding states and periodic traveling waves of (2.5). Comparing
formulas (2.2) and (2.6), this paper is a natural continuation of [10] to the periodically
forced case (2.1) of (2.5). Next, we are also motivated to study periodic moving waves
by the paper [11] where 1d undamped and periodically forced Frenkel — Kontorova
model is investigated.

3. Weak periodic moving waves. A function U: R?> SR is n-antiperiodic if
UGz+mv) = U(z,v+n) = -U(z,v) VY(zv)e R%. (3.1

Note that any such U satisfying (3.1) is also 2m-periodic in the both variables.
Let

H := {U e WARY)|U is n—antiperiodic}
be Hilbert spaces for r € Z, :=N U {0} with scalar products
(u, w), 1= (dLu, d,w)y + (dyu, dyw),

for re N and (u,w)o:= JQu(z, v)w(z, v)dzdv with Q :=(0, 1) x (0, ) (see cf.

[7, 12]). The corresponding norms are denoted by || - ||,
In the first part of this section, we are interested in the existence of weak m-anti-
periodic solutions U of (2.3),1.e., Ue H° satisfying

[{-V2Uz vw..(z. v) + 209Uz, v, (2. v) = WU, v)w,, (2. v) +
Q

+ (x(U(z + cos®, v) + U(z — cos 6, v) + U(z + sin®, v) +
+ U(z —sin6, v) — 4U(z, v)) — f(U(z, v)) + h(v))w(z, v)}dzdv =0 (32

for all we H°N C?(R? R). Since the integration by parts formula holds for r-

antiperiodic functions, if U is w-antiperiodic and C 2_smooth solving (2.3) then U is
also a weak m-antiperiodic solution of (2.3). Clearly, (3.2) has the form

LU+NU)+h = 0, (3.3)

where £:D(L)c H® — H is defined by (2.4) and N: H° > HY isa Nemytskij
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130 M. FECKAN

operator N(U) := —f(U). Note that assumptions (H;) and (H,) imply that really N

maps H O toitself and h e H’. Now we are ready to prove the following result.

Theorem 3.1. Suppose (H,) and (H,) hold. If W > /L + 8y and one of the
following conditions holds:

i) V=u% forsome pe Z and ke N such that 2k < ﬁ,

i) v= u% for some ke Z and p € Z, suchthat 2p+1< ﬁ,

then for any 0 € R, (2.3) has a unique weak m-antiperiodic solution.

Proof. We expand ue H % in the Fourier series

M(Z’U) = 2 Cn,me2n—1,2m—l’ Cn,m = C—n+1,—m+l'
nmez

2 2 .
Then HMHO = Zn’mez‘cn,m‘ and Lu = zn,mezCn,m;"Zn—l,Zm—leZn—l,Zm—l' If 1)
holds, then we have

Manctomor 2 (@n=Dv—Q2m-1p)* - 8y =
2

= ((2n—1)u%—(2m—l)u) ~ 8y =

u? 2 w?
= —(2n-DRp+1)-2kCm-1))" =8 =2 — — 8 > 0.
pyE (( )(2p + 1) = 2k( )" — 8x e
If ii) holds, then we have

}\'2n71,2m71 2 ((2n -hv-02m- 1)“)2 -8 =

2
2k
=|12n-1 -2m-1 -8y =
((” )M2p+l (2m )H) X
u? > w?
= ——— ((2n-1D2k-2p+1DH2m-1) — 8 = ——— — 8 > 0.
2p+ 17 (« ) (Z2p +1)( ) X 2p+ 1) X
Consequently, £7': HY 5 HO satisfies
2
||L_1 | < % under condition i),
no =32k
2
||[f1 | < @p+1) under condition ii).

u? - 82p+ 1%y
Note that N: H° — H is Lipschitz continuous with a constant L. Next, we rewrite
(3.3) as a fixed point problem

U=FU) :=-L'NU)-£"h (3.4)

Clearly, F:H®— H° is Lipschitz continuous with a constant ||L_1 |[L. The
assumptions of Theorem 3.1 ensure that ||£f1 |IL < 1. So the Banach fixed point

theorem gives a unique solution U of (3.4) in H°. This is a unique weak -
antiperiodic solution of (2.3).

The theorem is proved.

Remark 3.1. We prove in [10] that if v> /L + 8 then (2.5) has a unique uniform
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PERIODIC MOVING WAVES ON 2D LATTICES ... 131

sliding state, i.e., a solution of the form (2.6) satisfying U(z + 2mn) = U(z) + 2%
Vze R
Now we look for solutions of (2.3) satisfying
UGz+m,v) = U(zv+7) = -U(z,v)+21n  Y(z,v)e R (3.5)

Note that any U satisfying (3.5) is 2m-periodic in the both variables. So we change
U(z,v)=u(z,v)+m, where u is m-antiperiodic. Substituting this into (2.3), we get
Vi, (z, ) = 2uVitg,(z, v) + Wz, v) = %z + cosb, v) + u(z — cos, v) +

+ u(z + sin®, v) + u(z — sin6, v) — 4u(z, v)) — f(u(z, v) + ©) + h(v). (3.6)
Assumption (H; ) implies that
f(m—x) = -f(t+x) VxeR (3.7

Using (3.7) we easily check that if u is m-antiperiodic, then also f(u(z,v) + T) is
n-antiperiodic. So the Nemytskij operator N(u)(z, v) :=f(u(z, v)+n) maps H to

H°. Consequently, by repeating the proof of Theorem 3.1, we obtain the following
result.

Theorem 3.2. Under the assumptions of Theorem 3.1, for any 0 € R, (2.3) has

a unique weak solution satisfying (3.5), i.e., (3.6) possesses a weak solution u €
H°.

Hence under the assumptions of Theorem 3.1, for fixed involved parameters, we
have at least two 2m-periodic weak solutions of (2.3): one satisfying (3.1) and other
satisfying (3.5).

We can further utilize the symmetries of f and 4 as follows. We look for
solutions of (2.3) satisfying

U(z+mv) = U(z,v), U(zv+n) =-U(zv) V(zv)eR%L (3.8

Again, any U satisfying (3.8) is 2m-periodic in the both variables.
Instead of Hilbert spaces H', we consider similar ones defined by

X = {UeWZ®RY|U satisfies (3.8)}

keeping the scalar products (-, - ),.
Theorem 3.3. Suppose (H,) and (H,) hold. If

uw> JL+8x and v = k
2p+1
u
JL+ 8y’
(2.3) has a unique weak solution satisfying (3.8), i.e., a solution U € x° satisfying
(3.2) forall we X°N C*(R?, R).

for some p e Z, and k €Z such that 2p + 1 < then for any 0 € R,

Proof. We expand u € X° in the Fourier series

M(Z’U) = 2 Cn,meZn,Zm—l’ CTn,m = C—n,—m+l'
nmez
2
Then HuH(Z) = ) ‘cn’m‘ and Lu = Y CypmMinom-1€nom—1- From our
nmez nmez

assumptions, we derive

2
Mpomot 2 (2nv—Q2m—Du)* — 8y = (ZHMk—(Zm—l)H) -8 =
’ 2p+1
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2 2
u 2 u
= 2nk — 2p+D2m—-1))" — 8y = - 8¢ > 0.
(2p+1)2( n (2p + 1)( )) X (2P+1)2 X

The rest of the proof is similar to one of Theorem 3.1, so we omit it.
Similarly to (3.5), we look for solutions of (2.3) satisfying

UGz+m,v) = U(zv), U(zv+mn) = -U(zv)+2n V(zv)e R% (3.9)

Clearly, any U satisfying (3.9) is 2mn-periodic in the both variables. Repeating the
proof of Theorem 3.3, we obtain the following result.
Theorem 3.4. Under the assumptions of Theorem 3.3, for any 6 € R, (2.3) has

a unique weak solution satisfying (3.9), i.e., (3.6) possesses a weak solution u € X 0
Corollary 3.1. Suppose (H,) and (H,) hold. If

w> yL+8x and v = uzzk
14

+1
u

JL + 8y’

(2.3) has at least four weak 2m-periodic solutions: ones satisfying conditions (3.1),
(3.5), (3.8), and (3.9), respectively.
Clearly, if (H,) holds, then & is 2m-periodic. Now we only suppose

(H3) h#0 is 2m-periodic, i.e., h(x+2n)=h(x) Vxe R.
Then we look for solutions of (2.3) satisfying either
UGz+mv) =-U(zv), U(zv+2n) = U(z,v) V(zv)e R% (3.10)

for some p € Z, and k €Z such that 2p + 1 < then for any 6 € R,

or
UGz+mv) = -U(zv)+2n, U(zv+2m) = U(z,v) V(zv)e R%.  (3.11)
Clearly, any U satisfying either (3.10) or (3.11) is 2r-periodic in the both variables.
Now we consider Hilbert spaces defined by
v = {U e WZ®Y|U satisfies (3.10)}
with scalar products
(u,wy, 1= (0u, 07wy + (dyu, dyw)gy
for re N and (u,w)o:= [, u(z, vw(z v)dzdy with € :=(0,m)x (0, 2m).
Theorem 3.5. Suppose (H;) and (Hy) hold. If \ > /L + 8% and condition i)
of Theorem 3.1 holds, then for any 0 € R, (2.3) has a unique weak solution
satisfying (3.10) and other unique weak solution satisfying (3.11), i.e., there are two
functions U | , € Y° satisfying (3.2) and (3.6) for all w € Y°N C*(R* R),

respectively.
Proof. We expand u € Y° in the Fourier series

1
M(Z’ U) = 2 Cnm ﬁehl—l,m’ Cam = Con+l—m-

n,mez

Then the rest of the proof is the same as for Theorem 3.3, so we omit it.
Remark 3.2. The function /& in (2.1) could be arbitrary satisfying either (H,) or

(H3). Next, the above results are applied to (1.1) forany y>0 and u>0, x>0, o>

>0 satisfying p> Jo? + 8y .
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4. More regular periodic moving waves. Now we study (2.3)in H' for re N.
First, we note the Sobolev embedding result [7, 12]

H* c C(R?) := H'N C(R%, R).
Moreover, we have

>

nmez

Cnm

z cn,meZn —-1,2m-1
nmez

U, := max |U(z, v)| < 1
zveR T

< \/ S Jean[ (@1 =1" +@m-1") J > :

nmeZ nmeZ. (2n - 1)4 +(2m — 1)4 -
1
< —q|lU
Lojul,
with

01222 1 342 ]4382 ;

_— <
4 4 4 2 22 =
— Cn-D)"+Q2m-1) nmeN U T m nmeN (n”+m")

<8y [P 5 -mY L« 2n[1+JCb§J = .
n l.x

2 22
neNo(n +y) neN

Hence we get the Sobolev inequality [7, 12]

Ul < %\Uuz VU e H. @
Next, supposing fe C*(R%,R), we compute for Ue C; =H'NC>(R* R)
[rlly < 17@ly + 17l 42)
Furthermore,
4 4 2 2
B < + . zly = zzll zllp°
L1l < lrow.l, + | rowz], < Lu.l, + L]

where L := max| f”(x)|. Similarly we derive
xeR

| f@)ly < LNU L + Lo U2 ],
Hence by (4.2)
lrly < Lllvzly +1vwly) + L(|v? ], +

Next, using integration by parts, we derive

U

0)'

T T
JUtz vyde = U3z vUG [y - 3 [U2(z 0)U,(z U, v)dz <
0 0

Y Y
< 3U0\/jUj(z, v)dz\/JUzzz(Z, v)dz
0 0

which implies

T T
[Vl vz < UL UGz, v)dz.
0 0
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Consequently, we obtain

vz, = W < ULz ly-
Q

HUI%HO s 3‘U‘0HUWHO'

Similarly, we get

Summarizing, we arrive at

[l < (L+3L|U )1l +1Uwlly) < V2(L +3L|U)|U],. @43)

Of course, (4.3) is the well-known Moser inequality [7, 12]. Assuming that p >

> V2L + 8y and one of the following conditions holds:
2p+1 n

Dv= for some p e Z and ke N such that 2k < ————,
JVER T b V2L + 8y

2k 0
I v=p —— f ke Z and peZ h that 2p+1 < ———,
) H2p+1 or some and p + suc at 2p x/§L+8X

and using (2.4), we get

(LU U), 2 U VYUe CE (4.4)

2 2
for any r>0 and with either &= ¥ -8y >0 or &= ———_8y >0.
4k Q2p+1)

Supposing 4 e CZ(R, R), from (4.1), (4.3), and (4.4) we derive

(LU= +h.0), = [e=2 (1438, 2 10L ) |IVE - 14l o,

If
¢ > 2L, 4.5)
then we get
(LU-f(U)+h,U), = (A= BlU,)|U, -[2l,)lU],
with
A := ¢ —A~2L > 0, B::3LZ%>O. (4.6)

2
The quadratic function x — (A — Bx)x has its maximum E at xp = % So if

2
Ia|l, < A—, then there is K € O,i such that forany U € C; with |U|, = x,
2 " 4pB? 2B n 2
the following inequality holds:
(LU-f(U)+h,U), > 0. 4.7

Now we take the finite-dimensional Banach spaces H, c C;, k€ N, given by

k
H, := { Z Cpm€nm | - m are odd integers and ¢, ,, = cn,m}

nm=—k

Next, like in [13], we take a convex set
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Vi := {UeH||U], < x}.
Then, on the boundary 9V, of V,, (4.7) holds. Hence we consider the homotopy
HMU) (= AP(LU-f(U)+h)+(1-MU, UeV,, 4.8)

where P,: H 15 H (S H 2 s the orthogonal projection. According to (4.7), we see
that

(HA UYL U)y = MLU-f(U)+h, U)y+ (1=-L)|U[; > 0 (4.9)

for any A€ [0,1] and U € 9dV,. Then 0 ¢ H(A,dV,) for any A € [0, 1].
Consequently, using the Brouwer topological degree theory [9], we derive

deg (P(LU=F(U)+h), V;, 0) = deg (I, V. 0) = 1,
where [, : H, — H is the identity mapping. This gives a solution Uj € V,; of
P(LU,-F(Uy)+h) = 0. (4.10)

Since H? is compactly embedded into H 9 [12], we can suppose that U, - Uy e H 2
in H°. We note that

Pu = z Cnm€2n-12m-1
[2n-1||2m-1|<k
when
u(z,v) = 2 Cpm€2n—12m—1
nmez

with €, ,, = C_,41_my1- Itis easy to check that P,: H — H, < H' is an orthogonal
projection for any r > 0. Then (4.10) gives (LU —f(Uy) + h,w),=0 Vwe Hy
and k=k;. Butthis means that (3.2) holds with U = U forany we€ H; and k 2
2k;. Since N(U)=-F(U) is continuous from H° to itself, fixing k; and passing
to the infinity with k — e, we see that (3.2) holds with U = U, forany w e H; and

k;>1. So Uye H? is a weak m-antiperiodic solution of (2.3) which is continuous.
Summarizing, we get the following result.
Theorem 4.1. Suppose f, h e C*(R,R) satisfy (H;) and (Hy). If

W > V2L + 8y
and one of the conditions 1) and 11) holds, and
~ 2
| A H2 < w, ie., \th is sufficiently small,
21615
u? u?
where ¢ = —5 — 8¢ >0 for)and ¢ = ——— — 8 >0 for 1), then for
TR for D) 21 1) X I ) fe

any 0 € R, (2.3) has a unique m-antiperiodic solution U belonging to H? ie.,
(2.3) is satisfied when generalized derivatives of U are considered.

Proof. Note that 1 > \ V2L + 8y and I), II) imply assumptions of Theorem 3.1.
So (2.3) has a unique weak m-antiperiodic solution U. Since also (4.5) is satisfied,
from the above consideration we also known that U e H>.
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The theorem is proved.
The same arguments can be applied to show thatif £, h € C*(R, R) and [h[, is

sufficiently small in Theorem 4.1, then U € H* < C*(R, R). So we get a unique
classical solution of (2.3). Indeed, we have for ue C,;

lranl, < @) lly + 1@ lly <

< L(luzly+lvily) + ors(luzvel, + |vivs. |y) +

+ 4Ly (|UU e[y + 10U ) + 3Lo([UZ ], + |02 ) +

+ L(|u

mHO +|U 4.11)

oo l)-
where L; := gleaﬂé;\f(i)(x)\, i =2, 3, 4. Using the Sobolev inequality (4.1) and the
Nirenberg ones like in [7, p. 273, 274; 12], we get from (4.11)
I, < [e(LlU s + LU + LU l,) +v2L]|u ], 4.12)
for a constant ¢ > 0. Supposing either I) or II), from (4.4) and (4.12), we derive
(LU-f(U)+h,U)y, 2

> (6= 2L - (LUl + LJUR + LU LIVE - [nl1Ul,.  @13)

Since ¢ > +2L, the equation
¢—2L — c(Lyx> + Lyx* + Lyx) = 0

has a unique positive root X,. Finally, we define a function G: [0, «) — [0, ) by

2
A—2 for x 2 A,
G(x) = 4B 2B
(A-Bx)x for 0<x < —,
2B
u?
where constants A and B are given in (4.6) and ¢ = o 8 >0 forI)and ¢ =
2
= (leil)z — 8y >0 forII). Now we are ready to prove the following result.
p+

Theorem 4.2. Suppose (H,) and (H,) for f,he C*(R,R). If

u > \xZL + 8%
and one of the conditions 1) and 1I) holds, and
Ihl, < G(xy). ie.,

|h H2 is sufficiently small,
then for any 0 € R, (2.3) has a unique classical m-antiperiodic solution U.
Proof. From |h|, < G(X,) we infer the existence of 0 <k < min {%, )EO}

and R>>1 such that (4.7) holds forany U e C, with H UH2 =k, and forany U e
e Cy with |U|, <x and |U], =R, the following inequality holds:

(LU-f(U)+h,U), > 0. (4.14)
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Next, like in [13], we take a convex set

W, := {UeH]|U|, <«

ul, < R}

We consider the homotopy H (A, U) defined in (4.8). We recall that P,: H" — H, C
c H'" is an orthogonal projection for any r>0. On the boundary oW, of W,, either
|U||, =% which, by (4.7), implies (4.9) forany A € [0, 1], or [U|, =R which, by
(4.14), implies (H(A, U),U),>0 forany A € [0, 1]. Summarizing, we see that O
¢ ¢ H(A, 0W,) for any A € [0, 1]. Consequently, using the Brouwer topological

degree theory [9], we derive

deg (Pk(LU—F(U) + h), Wk’ 0) = deg(Hk, Wk’ O) = 1

This gives a solution U, e W, of P, (LU, ~F(U;)+ h) =0 forany ke N. So we
can suppose that weakly U, — U e H*, and so strongly U, — U in H?. The rest of

the proof is the same as for Theorem 4.1, consequently, U € H *isa unique weak -
antiperiodic solution of (2.3). Since Ue H Yc CP(R% R), we get a unique classical

solution of (2.3).
The theorem is proved.
Remark 4.1. i) We note that in Theorem 4.2 we need only to control the norm

| 2], in spite of the fact that h e C*(R* R). For instance, for

sin(2p + 1)z +e sin(2g + v

hyq4e(z,v) = € , DgqeZ, & %0,

Q2p+1y (2q + 1)
we have th,q’a H2 = |e|m, while th,q’a H4 — oo as |p|+|g|— . Sofor £=0
sufficiently small, Theorem 4.2 can be applied with h= h, , . forany p, q€ Z.

ii) Next, it seems to be awkward to find the constant ¢ in (4.12) and subsequently
the root X, for this reason we present Theorem 4.1 with concrete and explicit values

of involved constants.
5. Damped and periodically forced systems. In this section, we consider the
infinite system of ODEs

L'i,,’m = —Sb.tn’m + x(Auw), ,, — f(u,,,) + h(ue), (n,m)e 72, 5.1
on the two-dimensional integer lattice Z? for fe C! (R, R), he C(R,R), & >0,
% >0, nw>0 under conditions (H; ) and (H,). Inserting (2.2) into (5.1), we get

VAU (2, V) = 2UVU (2, V) + WU,,(2, v) + S(UU(z, v) — VU, (z, V) =
= (x(U(z + cos®, v) + U(z — cos6, v) +
+ U(z + sin6, v) + U(z — sin6, v) — 4U(z, v)) — f(U(z, v)) + h(v). (5.2)

Now we write (5.2) as follows:

LU + NU)+h =0 (5.3)
with
LU = —=VU_(z,v) + 20U, (2, V) = LU, (2 v) + 8(VU.(z, v) — pU,(z, v))
(5.4)
and

N(U) := x(U(z + cos6, v) + U(z — cosb, v) +
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+ U(z + sin6, v) + U(z — sin6, v) — 4U(z, v)) — f(U(z, v)).

We have .Zen,m = in,men,m with 71,,’,,, := (nv — mp)* + id(nv — mp). Clearly, N:
H° > HO is Lipschitz continuous with constant L + 8%. A weak m-antiperiodic

solution U e H® of (5.2) is formulated like in (3.2), so we omit that formula.
Theorem 5.1. Suppose (H;) and (H,) hold. If one of the following conditions
holds:

a) v = p% for some pe Z and k € N such that u4+462u2k2 >
> 16k*(L + 8x)°,
7 4 262 2
b) v= “2 1 forsome ke Z and p € Z, such that W + (2p+1)7d7nu” >
p
> 2p+ DML +8Y)°,
then for any 0 € R, (5.2) has a unique weak T-antiperiodic solution.

Proof. We expand ue H % in the Fourier series

M(Z,U) = Z Cn,meZn—l,2m—l’ cn,m = c—n+l,—m+l'
nmez

2 2 - -
Then H“Ho = Zn’mez‘cn,m‘ and Lu = Zn’mezCn,mxzn—l,zm—lezn—l,zm—l~ If a)
holds, then we have

4 2
Ko 52 L'
16k* 4k>

Man—12m-1 ‘ 2

If b) holds, then we have

4 2

Mo o 1| > H I -
2ntan-| J Cp+1)' @2p+1)

Consequently, L7 HY - HO satisfies

H ! H < 4K’ under condition a),
2
H ! H < Cp+1) under condition b).

Vit + 2p+ 17872
In both cases we get H L H(L + 8x) < 1, so rewriting (5.3) as a fixed point problem

U= -L'NU) - £7'n, (5.5)

and applying the Banach fixed point theorem to (5.5), we get the desired unique weak
m-antiperiodic solution of (5.2).

The theorem is proved.

Of course, other results of Sections 3 and 4 can be extended for (5.2), but since it is
straightforward, we omit details.

We note that for sufficiently large & >0, equation (5.2) has a weak m-antiperiodic
solution. Indeed, if

ou > 2(L + 8y, (5.6)

then condition a) is satisfied with k=1 and any p € Z, and condition b) holds as well
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with p=0 and any k€ Z. So we get an expected result that if the damping & > 0 is

sufficiently large, for instance, if (5.6) holds, then the system (5.1) has a (weak)
periodic moving wave solution. Moreover, they are infinitely many in any direction

(cos 0, sin0). Indeed, for different values of v in (5.2), the above derived weak
solutions are different. To show this, suppose that (5.2) has a weak m-antiperiodic
solution U for two parameters v; # v, with the same [, y, 0 and 6 satisfying
assumptions of Theorem 5.1. Then according to (5.5) we get

U= -L/'(NU)-h) = —L;'(NW) - h), 5.7)

where LI12 are linear maps of (5.4) for parameters u, 8, v, , with eigenvalues

7~L2n_1’2m_1,]’2, respectively. Then we derive
Im Ay ooty = (21 = 1)V, — 2m - D) =
#z 8((2n—1vy, =2m—=Du) = ImAy, 12,12

So forany n,m e Z we see that Ay, 15,11 # Ayy_12m-12- But then f,l_]ﬁ # i;ﬁ

forany 0# heH Clearly N(U) - h#0 in (5.7), since otherwise U =0 and then
h =0, which is excluded in (H,). But then L;'(N(U)-h) = L, (NU)-h), which

contradicts to (5.7). So solutions in Theorem 5.1 are different for different values of v,
i.e., we have infinitely many of them.
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