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EXISTENCE PRINCIPLES FOR HIGHER ORDER
NONLOCAL BOUNDARY-VALUE PROBLEMS
AND THEIR APPLICATIONS
TO SINGULAR STURM – LIOUVILLE PROBLEMS*

ПРИНЦИПИ IСНУВАННЯ ДЛЯ НЕЛОКАЛЬНИХ
ГРАНИЧНИХ ЗАДАЧ ВИЩОГО ПОРЯДКУ
ТА ЇХ ЗАСТОСУВАННЯ
ДО СИНГУЛЯРНИХ ЗАДАЧ ШТУРМА – ЛIУВIЛЛЯ

The paper presents existence principles for the nonlocal boundary-value problem (φ(u(p−1)))′ =

= g(t, u, . . . , u(p−1)), αk(u) = 0, 1 ≤ k ≤ p − 1, where p ≥ 2, φ : R → R is an increasing and
odd homeomorphism, g is a Carathéodory function which is either regular or has singularities in its space
variables and αk : Cp−1[0, T ] → R is a continuous functional. An application of the existence princi-
ples to singular Sturm – Liouville problems (−1)n(φ(u(2n−1)))′ = f(t, u, . . . , u(2n−1)), u(2k)(0) = 0,
aku(2k)(T ) + bku(2k+1)(T ) = 0, 0 ≤ k ≤ n− 1, is given.

Наведено принципи iснування для нелокальної граничної задачi (φ(u(p−1)))′ = g(t, u, . . . , u(p−1)),

αk(u) = 0, 1 ≤ k ≤ p − 1, де p ≥ 2, φ : R → R — гомеоморфiзм, що зростає i є непарним, g —

функцiя Каратеодорi, що або є регулярною, або має особливостi за своїми просторовими змiнними,

а αk : Cp−1[0, T ] → R — неперервний функцiонал. Показано застосування принципiв iснування

до сингулярних задач Штурма – Лiувiлля (−1)n(φ(u(2n−1)))′ = f(t, u, . . . , u(2n−1)), u(2k)(0) = 0,

aku(2k)(T ) + bku(2k+1)(T ) = 0, 0 ≤ k ≤ n− 1.

1. Introduction. Let T > 0 and let R− = (−∞, 0), R+ = (0,∞) and R0 = R \ {0}.
As usual, Cj [0, T ] denotes the set of functions having the jth derivative continuous on
[0, T ]. AC[0, T ] and L1[0, T ] is the set of absolutely continuous functions on [0, T ] and
Lebesgue integrable functions on [0, T ], respectively. C0[0, T ] and L1[0, T ] is equipped
with the norm

‖x‖ = max
{
|x(t)| : t ∈ [0, T ]

}
and ‖x‖L =

T∫
0

|x(t)| dt,

respectively.
Assume that G ⊂ Rp, p ≥ 2. Car

(
[0, T ] × G

)
stands for the set of functions

f : [0, T ]×G→ R satisfying the local Caratéodory conditions on [0, T ]×G, that is: (i) for
each (x0, . . . , xp−1) ∈ G, the function f(·, x0, . . . , xp−1) : [0, T ] → R is measurable;
(ii) for a.e. t ∈ [0, T ], the function f(t, ·, . . . , ·) : G → R is continuous; (iii) for each
compact set K ⊂ G, sup{|f(t, x0, . . . , xp−1)| : (x0, . . . , xp−1) ∈ K} ∈ L1[0, T ].

Let p ∈ N, p ≥ 2. Denote by A the set of functionals α : Cp−1[0, T ] → R which are
(a) continuous and
(b) bounded, that is, α(Ω) is bounded for any bounded Ω ⊂ Cp−1[0, T ].
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Let φ : R → R is an increasing and odd homeomorphism and let either g ∈ Car([0, T ]×
×Rp) or g ∈ Car([0, T ]×D∗), D∗ ⊂ Rp and has singularities only at the value 0 of its
space variables. Consider the nonlocal boundary-value problem(

φ(u(p−1))
)′ = g(t, u, . . . , u(p−1)), (1.1)

αk(u) = 0, αk ∈ A, 0 ≤ k ≤ p− 1, (1.2)

where αk satisfy a compatibility condition that for each µ ∈ [0, 1] there exists a solution
of the problem

(φ(u(p−1)))′ = 0, αk(u)− µαk(−u) = 0, 0 ≤ k ≤ p− 1.

This problem is equivalent to the fact that the system

αk

(
p−1∑
i=0

Ait
i

)
− µαk

(
−

p−1∑
i=0

Ait
i

)
= 0, 0 ≤ k ≤ p− 1, (1.3)

has a solution (A0, . . . , Ap−1) ∈ Rp for each µ ∈ [0, 1].
We say that u ∈ Cp−1[0, T ] is a solution of problem (1.1), (1.2) if φ(u(p−1)) ∈

∈ AC[0, T ], u satisfies (1.2) and fulfils
(
φ(u(p−1)(t))

)′ = g
(
t, u(t), . . . , u(p−1)(t)

)
for

a.e. t ∈ [0, T ].
The aim of this paper is

1) to present existence principles for problem (1.1), (1.2) in a regular and a singular
case and

2) to give an application of these existence principles to singular Sturm – Liouville
boundary-value problems.

Notice that our existence principles stand a generalization of those obtained for
second-order differential equations with φ-Laplacian in [1, 2].

Our Sturm – Liouville problem consisting of the differential equation

(−1)n
(
φ(u(2n−1))

)′ = f(t, u, . . . , u(2n−1)) (1.4)

and the boundary conditions

u(2k)(0) = 0, aku
(2k)(T ) + bku

(2k+1)(T ) = 0, 0 ≤ k ≤ n− 1. (1.5)

Here n ≥ 2, φ : R → R is an increasing homeomorphism, f ∈ Car([0, T ] × D) is
positive where

D =


R+ × R0 × R− × R0 × . . .× R+ × R0︸ ︷︷ ︸

4`−2

if n = 2`− 1,

R+ × R0 × R− × R0 × . . .× R− × R0︸ ︷︷ ︸
4`

if n = 2`,

f may be singular at the value 0 of all its space variables and
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ak > 0, bk > 0, akT + bk = 1 for 0 ≤ k ≤ n− 1. (1.6)

We say that a function u ∈ C2n−1[0, T ] is a solution of problem (1.4), (1.5) if
φ(u(2n−1)) ∈ AC[0, T ], u satisfies the boundary conditions (1.5) and fulfils the equality
(−1)n

(
φ(u(2n−1)(t))

)′ = f
(
t, u(t), . . . , u(2n−1)(t)

)
for a.e. t ∈ [0, T ].

Singular problems of the Sturm – Liouville type for higher order differential equations
were considered in [3 – 5]. In [3] the authors discuss the differential equation u(n) +
+ h1(t, u, . . . , u(n−2)) = 0 together with the boundary conditions

u(j)(0) = 0, 0 ≤ j ≤ n− 3,

αu(n−2)(0)− βu(n−1)(0) = 0, γu(n−2)(1) + δu(n−1)(1) = 0,
(1.7)

where αγ+αδ+βγ > 0, β, δ ≥ 0, β+α > 0, δ+γ > 0 and h1 ∈ C0
(
(0, 1)×Rn−1

+

)
is positive. The existence of a positive solution u ∈ Cn−1[0, 1] ∩ Cn(0, 1) is proved
by a fixed point theorem for mappings that are decreasing with respect to a cone in a
Banach space. Paper [4] deals with the problem u(n) + h2(t, u, . . . , u(n−1)) = 0, (1.7),
where h2 ∈ Car

(
[0, T ]×D∗

)
, D∗ = Rn−1

+ ×R0, is positive. The existence of a positive
solution u ∈ ACn−1[0, T ] is proved by a combination of regularization and sequential
techniques with a Fredholm type existence theorem. In [5], by constructing some special
cones and using a Krasnoselskii fixed point on a cone, the existence of a positive solution
u ∈ C4n−2[0, 1] ∩ C4n(0, 1) is proved for problem u(4n) = h3(t, u, u(4n−2)), u(0) =
= u(1) = 0, au(2k)(0)−bu(2k+1)(0) = 0, cu(2k)(1)+du(2k+1)(1) = 0, 1 ≤ k ≤ 2n−1.
Here h3 ∈ C

(
[0, 1]×R+×R−

)
is nonnegative, a, b, c, d are nonnegative constants and

ac+ ad+ bc > 0.
To the best our knowledge, there is no paper considering singular problems of the

Sturm – Liouville type in our generalization (1.4), (1.5). In addition, any solution u of
problem (1.4), (1.5) has the maximal smoothness, u and its even derivatives (≤ 2n− 2)
‘start’ at the singular points of f and its odd derivatives (≤ 2n − 1) ‘go throughout’
singularities of f somewhere inside of [0, T ].

Throughout the paper we work with the following conditions on the functions φ and
f in equation (1.4):

(H1) φ : R → R is an increasing and odd homomorphism such that φ(R) = R,
(H2) f ∈ Car([0, T ]×D) and there exists a > 0 such that

a ≤ f(t, x0, . . . , x2n−1)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ D,
(H3) f(t, x0, . . . , x2n−1) ≤ h

(
t,
∑2n−1

j=0
|xj |
)

+
∑2n−1

j=0
ωj(|xj |) for a.e. t ∈

∈ [0, T ] and all (x0, . . . , x2n−1) ∈ D, where h ∈ Car([0, T ] × [0,∞)) is positive and
nondecreasing in the second variable, ωj : R+ → R+ is nonincreasing,

lim sup
v→∞

1
φ(v)

T∫
0

h(t, 2n+Kv) dt < 1 (1.8)

with
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K =


2n if T = 1,

T 2n − 1
T − 1

if T 6= 1,
(1.9)

and

1∫
0

ω2n−1(φ−1(s)) ds <∞,

1∫
0

ω2j(s) ds <∞ for 0 ≤ j ≤ n− 1,

1∫
0

ω2j+1(s2) ds <∞ for 0 ≤ j ≤ n− 2.

Remark 1.1. If φ satisfies (H1) then φ(0) = 0. Under assumption (H3) the functi-
ons ω2n−1(φ−1(s)), ω2j(s), 0 ≤ j ≤ n− 1, and ω2i+1(s2), 0 ≤ i ≤ n− 2, are locally
Lebesgue integrable on [0,∞) since ωk, 0 ≤ k ≤ 2n− 1, is nonincreasing and positive
on R+.

The rest of the paper is organized as follows. In Section 2, we present existence
principles for a regular and a singular problem (1.1), (1.2). The regular existence
principle is proved by the Leray – Schauder degree (see, e.g., [6]). An application of
both principles is given in Section 3 to the Sturm – Liouville problem (1.4), (1.5).

2. Existence principles. The following result states conditions for solvability of
problem (1.1), (1.2) where g in equation (1.1) is regular.

Theorem 2.1. Let (H1) hold. Let g ∈ Car([0, T ]×Rp) and ϕ ∈ L1[0, T ]. Suppose
that there exists a positive constant L independent of λ such that

‖u(j)‖ < L, 0 ≤ j ≤ p− 1,

for all solutions u of the differential equations

(φ(u(p−1)))′ = (1− λ)ϕ(t), λ ∈ [0, 1], (2.1)

(φ(u(p−1)))′ = λg(t, u, . . . , u(p−1)) + (1− λ)ϕ(t), λ ∈ [0, 1], (2.2)

satisfying the boundary conditions (1.2). Also assume that there exists a positive constant
Λ such that

|Aj | < Λ, 0 ≤ j ≤ p− 1, (2.3)

for all solutions (A0, . . . , Ap−1) ∈ Rp of system (1.3) with µ ∈ [0, 1].
Then problem (1.1), (1.2) has a solution u ∈ Cp−1[0, T ], φ(u(p−1)) ∈ AC[0, T ].
Proof. Let

Ω =
{
x ∈ Cp−1[0, T ] : ‖x(j)‖ < max{L,ΛK1} for 0 ≤ j ≤ p− 1

}
,

where
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K1 =


p if T = 1,

T p − 1
T − 1

if T 6= 1.

Then Ω is an open and symmetric with respect to 0 ∈ Cp−1[0, T ] subset of the Banach
space Cp−1[0, T ]. Define an operator P : [0, 1]× Ω → Cp−1[0, T ] by the formula

P(ρ, x)(t) =

t∫
0

(t− s)p−2

(p− 2)!
φ−1

φ(x(p−1)(0) + αp−1(x)) +

s∫
0

V (ρ, x)(v) dv

 ds+

+
p−2∑
j=0

x(j)(0) + αj(x)
j!

tj (2.4)

where V (ρ, x)(t) = ρg(t, x(t), . . . , x(p−1)(t)) + (1− ρ)ϕ(t). It follows from the conti-
nuity of φ and αj , 0 ≤ j ≤ p − 1, g ∈ Car([0, T ] × Rp) and from the Lebesgue
dominated convergence theorem that P is a continuous operator. We now prove that
P
(
[0, T ]×Ω

)
is relatively compact in Cp−1[0, T ]. Notice that the boundedness of Ω in

Cp−1[0, T ] guarantees the existence of a positive constant r and a ψ ∈ L1[0, T ] such
that |αk(x)| ≤ r and

∣∣g(t, x(t), . . . , x(p−1)(t))
∣∣ ≤ ψ(t) for a.e. t ∈ [0, T ] and all x ∈ Ω,

0 ≤ k ≤ p− 1. Then

∣∣(P(ρ, x))(j)(t)
∣∣ ≤ (r + max{L,ΛK1}

) p−j−2∑
i=0

T i

i!
+

+
T p−j−1

(p− j − 2)!
φ−1

(
φ(r + max{L,ΛK1}

)
+ ‖ψ‖L + ‖ϕ‖L),

∣∣(P(ρ, x))(p−1)(t)
∣∣ ≤ φ−1

(
φ
(
r + max{L,ΛK1}

)
+ ‖ψ‖L + ‖ϕ‖L

)
,

∣∣∣φ((P(ρ, x))(p−1)(t2))− φ((P(ρ, x))(p−1)(t1))
∣∣∣ ≤

∣∣∣∣∣∣
t2∫

t1

(ψ(s) + |ϕ(s)|) ds

∣∣∣∣∣∣
for t, t1, t2 ∈ [0, T ], (ρ, x) ∈ [0, T ] × Ω and 0 ≤ j ≤ n − 2. Hence P

(
[0, T ] ×

× Ω
)

is bounded in Cp−1[0, T ] and the set {φ((P(ρ, x))(p−1)) : (ρ, x) ∈ [0, 1] × Ω}
is equicontinuous on [0, T ]. Since φ : R → R is increasing and continuous, the set{

(P(ρ, x))(p−1) : (ρ, x) ∈ [0, 1] × Ω
}

is equicontinuous on [0, T ] too. Now, by the

Arzelà – Ascoli theorem, P([0, 1] × Ω ) is relatively compact in Cp−1[0, T ]. We have
proved that P is a compact operator.

Suppose that x∗ is a fixed point of the operator P(1, ·). Then

x∗(t) =
p−2∑
j=0

x
(j)
∗ (0) + αj(x∗)

j!
tj +

t∫
0

(t− s)p−2

(p− 2)!
φ−1×

×

φ(x(p−1)
∗ (0) + αp−1(x∗)) +

s∫
0

g(v, x∗(v), . . . , x
(p−1)
∗ (v))dv

 ds
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for t ∈ [0, T ]. Hence αk(x∗) = 0 for 0 ≤ k ≤ p−1 and x∗ is a solution of equation (1.1).
Consequently, x∗ is a solution of problem (1.1), (1.2). In order to prove the assertion of
our theorem it suffices to show that

deg (I − P(1, ·),Ω, 0) 6= 0 (2.5)

where “deg” stands for the Leray – Schauder degree and I is the identical operator on
Cp−1[0, T ]. To show this let the compact operator K : [0, 2]×Ω → Cp−1[0, T ] be defied
by

K(µ, x)(t) =



p−1∑
j=0

[
x(j)(0) + αj+1(x)− (1− µ)αj(−x)

] tj
j!

if µ ∈ [0, 1],

t∫
0

(t− s)p−2

(p− 2)!
φ−1

(
φ(x(p−1)(0) + αp−1(x))+

+(µ− 1)

s∫
0

ϕ(v) dv

)
ds+

p−2∑
j=0

x(j)(0) + αj(x)
j!

tj if µ ∈ (1, 2].

Then K(0, ·) is odd (that is K(0,−x) = −K(0, x) for x ∈ Ω) and

K(2, x) = P(0, x) for x ∈ Ω. (2.6)

Assume that K(µ0, u0) = u0 for some (µ0, u0) ∈ [0, 1]× Ω. Then

u0(t) =
p−1∑
j=0

[
u

(j)
0 (0) + αj(u0)− (1− µ0)αj(−u0)

] tj
j!
, t ∈ [0, T ],

and therefore u0(t) =
∑p−1

j=0
Ãj
tj

j!
where Ãj = u

(j)
0 (0) + αj(u0)− (1− µ0)αj(−u0).

Consequently, u(j)
0 (0) = Ãj and so αj(u0)− (1− µ0)αj(−u0) = 0 for 0 ≤ j ≤ p− 1,

which means

αk

p−1∑
j=0

Ãj
tj

j!

− (1− µ0)αk

− p−1∑
j=0

Ãj
tj

j!

 = 0, 0 ≤ k ≤ p− 1.

Then, by our assumption,

∣∣∣∣ Ãj

j!

∣∣∣∣ < Λ for 0 ≤ j ≤ p− 1 and we have

∥∥u(j)
0

∥∥ < Λ
p−1∑
j=0

T j = ΛK1, 0 ≤ j ≤ p− 1.

Hence u0 6∈ ∂Ω and therefore, by the Borsuk antipodal theorem and the homotopy
property,

deg (I − K(0, ·),Ω, 0) 6= 0 (2.7)

and
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deg (I − K(0, ·),Ω, 0) = deg (I − K(1, ·),Ω, 0). (2.8)

We come to show that

deg (I − K(1, ·),Ω, 0) = deg (I − K(2, ·),Ω, 0). (2.9)

If K(µ1, u1) = u1 for some (µ1, u1) ∈ (1, 2]× Ω then

u1(t) =
p−2∑
j=0

u
(j)
1 (0) + αj(u1)

j!
tj+

+

t∫
0

(t− s)p−2

(p− 2)!
φ−1

φ(u(p−1)
1 (0) + αp−1(u1)) + (µ1 − 1)

s∫
0

ϕ(v) dv

 ds

for t ∈ [0, T ]. Hence u1 satisfies the boundary conditions (1.2) and u1 is a solution of the
differential equation (2.1) with λ = 2−µ1 ∈ [0, 1). By our assumptions, ‖u(j)

1 ‖ < L for
0 ≤ j ≤ p−1. Therefore u1 6∈ ∂Ω and equality (2.9) follows from the homotopy property.
Finally, suppose that P(ρ̃, ũ) = ũ for some (ρ̃, ũ) ∈ [0, 1] × Ω. Then ũ is a solution of
problem (2.2), (1.2) with λ = ρ̃ and therefore ‖ũ(j)‖ < L for 0 ≤ j ≤ p − 1. Hence
ũ 6∈ ∂Ω and, by the homotopy property, deg (I−P(0, ·),Ω, 0) = deg (I−P(1, ·),Ω, 0).
From this and from (2.6) – (2.9) it follows that (2.5) holds, which completes the proof.

Remark 2.1. If functional αk ∈ A is linear for 0 ≤ k ≤ p − 1 then system (1.3)
has the form

p−1∑
j=0

Ajαk(tj) = 0, 0 ≤ k ≤ p− 1.

All of its solutions (A0, . . . , Ap−1) ∈ Rp are bounded exactly if det (αk(tj))p−1
k,j=0 6= 0

(and then Aj = 0 for 0 ≤ j ≤ p − 1), which is equivalent to the fact that problem(
φ(u(p−1))

)′ = 0, (1.2) has only the trivial solution.
If the function g ∈ Car([0, T ] × D∗), D∗ ⊂ Rp in equation (1.1) has singularities

only at the value 0 of its space variables, then the following result for the solvability of
problem (1.1), (1.2) holds.

Theorem 2.2. Let condition (H1) hold. Let g ∈ Car([0, T ] × D∗), D∗ ⊂ Rp,

have singularities only at the value 0 of its space variables. Let the function gm ∈
∈ Car

(
[0, T ]× Rp

)
in the differential equation(

φ(u(p−1))
)′ = gm(t, u, . . . , u(p−1)) (2.10)

satisfy
0 ≤ νgm(t, x0, . . . , xp−1) ≤ q

(
t, |x0|, . . . , |xp−1|

)
for a.e. t ∈ [0, T ] and all (x0, . . . , xp−1) ∈ Rp

0, m ∈ N,

where q ∈ Car([0, T ]× Rp
+) and ν ∈ {−1, 1}.

(2.11)

Suppose that for each m ∈ N, the regular problem (2.10), (1.2) has a solution um and
there exists a subsequence {ukm} of {um} converging in Cp−1[0, T ] to some u.
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Then φ(u(p−1)) ∈ AC[0, T ] and u is a solution of the singular problem (1.1), (1.2)
if u(j) has a finite number of zeros for 0 ≤ j ≤ p− 1 and

lim
m→∞

gkm

(
t, ukm

(t), . . . , u(p−1)
km

(t)
)

= g
(
t, u(t), . . . , u(p−1)(t)

)
(2.12)

for a.e. t ∈ [0, T ].
Proof. Assume that (2.12) holds for a.e. t ∈ [0, T ] and let 0 ≤ ξ1 < . . . < ξ` ≤ T

are all zeros of u(j) for 0 ≤ j ≤ p − 1. Since ‖u(j)
km
‖ ≤ L for each m ∈ N and

0 ≤ j ≤ p− 1, where L is a positive constant, it follows that

T∫
0

νgkm

(
t, ukm

(t), . . . , u(p−1)
km

(t)
)
dt = ν

[
φ
(
u

(p−1)
km

(T )
)
− φ

(
u

(p−1)
km

(0)
)]
≤ 2φ(L)

for m ∈ N. Now (2.11), (2.12) and the Fatou lemma [7, 8] give

T∫
0

νg(t, u(t), . . . , u(p−1)(t)) dt ≤ 2φ(L).

Hence νg
(
t, u(t), . . . , u(p−1)(t)

)
∈ L1[0, T ] and so g

(
t, u(t), . . . , u(p−1)(t)

)
∈ L1[0, T ].

Put ξ0 = 0 and ξ`+1 = T. We show that the equality

φ(u(p−1)(t)) = φ

(
u(p−1)

(
ξi+1 + ξi

2

))
+

t∫
(ξi+1+ξi)/2

g(s, u(s), . . . , u(p−1)(s)) ds

(2.13)

is satisfied on [ξi, ξi+1] for each i ∈ {0, . . . , `} such that ξi < ξi+1. Indeed, let i ∈

∈ {0, . . . , `}, ξi < ξi+1. Choose an arbitrary ρ ∈
(

0,
ξi+1 + ξi

2

)
and let us look at the

interval [ξi + ρ, ξi+1 − ρ]. We know that |u(j)| > 0 on (ξi, ξi+1) for 0 ≤ j ≤ p− 1 and
therefore |u(j)(t)| ≥ ε for t ∈ [ξi + ρ, ξi+1− ρ] and 0 ≤ j ≤ p− 1 where ε is a positive

constant. Hence there exists m0 ∈ N such that
∣∣u(j)

km
(t)
∣∣ ≥ ε

2
for t ∈ [ξi + ρ, ξi+1 − ρ],

0 ≤ j ≤ p− 1 and m ≥ m0. This gives (see (2.11))∣∣gkm
(t, ukm

(t), . . . , u(p−1)
km

(t))
∣∣ ≤

≤ sup

{
q(t, x0, . . . , xp−1) : t ∈ [0, T ], xj ∈

[
ε

2
, L

]
for 0 ≤ j ≤ p− 1

}
∈ L1[0, T ]

for a.e. t ∈ [ξi + ρ, ξi+1 − ρ] and all m ≥ m0. Letting m→∞ in

φ
(
u

(p−1)
km

(t)
)

= φ

(
u

(p−1)
km

(
ξi+1 + ξi

2

))
+

+

t∫
(ξi+1+ξi)/2

gkm

(
s, ukm(s), . . . , u(p−1)

km
(s)
)
ds
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yields (2.13) for t ∈ [ξi +ρ, ξi+1 +ρ] by the Lebesgue dominated convergence theorem.

Since ρ ∈
(

0,
ξi+1 + ξi

2

)
is arbitrary, equality (2.13) holds on the interval (ξi, ξi+1)

and using the fact that g
(
t, u(t), . . . , u(p−1)(t)

)
∈ L1[0, T ], (2.13) is satisfied also at

t = ξi and ξi+1. From equality (2.13) on [ξi, ξi+1] (for 0 ≤ i ≤ `), we deduce that
φ(u(p−1)) ∈ AC[0, T ] and u is a solution of equation (1.1). Finally, it follows from
αj(ukm) = 0 for 0 ≤ j ≤ p − 1 and m ∈ N, and from the continuity of αj that
αj(u) = 0 for 0 ≤ j ≤ p− 1. Consequently, u is a solution of problem (1.1), (1.2).

The theorem is proved.

3. Sturm – Liouville problem. 3.1. Auxiliary results. Throughout the next part
of this paper we assume that numbers ak, bk in the boundary conditions (1.5) fulfil
condition (1.6). For each j ∈ {0, . . . , n − 2}, denote by Gj the Green function of the
Sturm – Liouville problem

−u′′ = 0, u(0) = 0, aju(T ) + bju
′(T ) = 0.

Then

Gj(t, s) =

s(1− ajt) for 0 ≤ s ≤ t ≤ T,

t(1− ajs) for 0 ≤ t < s ≤ T.

Hence Gj(t, s) > 0 for (t, s) ∈ (0, T ] × (0, T ] and Gj(t, s) = Gj(s, t) for (t, s) ∈
∈ [0, T ]× [0, T ]. Put G[1](t, s) = Gn−2(t, s) for (t, s) ∈ [0, T ]× [0, T ] and define G[j]

recurrently by the formula

G[j](t, s) =

T∫
0

Gn−j−1(t, v)G[j−1](v, s) dv, (t, s) ∈ [0, T ]× [0, T ], (3.1)

for 2 ≤ j ≤ n− 1. It follows from the definition of the function G[j] that the equalities

u(2n−2j)(t) = (−1)j−1

T∫
0

G[j−1](t, s)u(2n−2)(s) ds, 2 ≤ j ≤ n, (3.2)

are true on [0, T ] for each u ∈ C2n−2[0, T ] satisfying the boundary conditions (1.5).
Lemma 3.1. For 1 ≤ j ≤ n− 1, the inequality

G[j](t, s) ≥ T 2j−3(1− αT )j

3j−1
ts for (t, s) ∈ [0, T ]× [0, T ] (3.3)

holds where

α = max{ak : 0 ≤ k ≤ n− 2}
(
<

1
T

)
. (3.4)

Proof. Since
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Gj(t, s) =

s(1− ajt) ≥ s(1− ajT ) for 0 ≤ s ≤ t ≤ T,

t(1− ajs) ≥ t(1− ajT ) for 0 ≤ t < s ≤ T

for 0 ≤ j ≤ n−2,we haveGj(t, s) ≥
1− ajT

T
st ≥ 1− αT

T
st for (t, s) ∈ [0, T ]×[0, T ]

and 0 ≤ j ≤ n − 2. Consequently, G[1](t, s) = Gn−2(t, s) ≥
1− αT

T
st for (t, s) ∈

∈ [0, T ] × [0, T ] and therefore inequality (3.3) is true for j = 1. We now proceed by
induction. Assume that (3.3) is true for j = i (< n− 1). Then

G[i+1](t, s) =

T∫
0

Gn−i−2(t, v)G[i](v, s) dv ≥

≥
T∫

0

1− αT

T
tv
T 2i−3(1− αT )i

3i−1
vs dv =

=
T 2i−4(1− αT )i+1

3i−1
ts

T∫
0

v2ds =
T 2i−1(1− αT )i+1

3i
ts

for (t, s) ∈ [0, T ]× [0, T ]. Therefore (3.3) is true with j = i+ 1.

The lemma is proved.

Let φ satisfy (H1). Choose an arbitrary a > 0 and put

Ba =
{
u ∈ C2n−1[0, T ] : φ(u(2n−1)) ∈ AC[0, T ], (−1)n

(
φ(u(2n−1)(t))

)′ ≥ a

for a.e. t ∈ [0, T ] and u satisfies (1.5)
}
. (3.5)

The properties of functions belonging to the set Ba are given in the following lemma.
Lemma 3.2. Let u ∈ Ba. Then there exists {ξ2j+1}n−1

j=0 ⊂ (0, T ) such that

u(2j+1)(ξ2j+1) = 0, 0 ≤ j ≤ n− 1, (3.6)

and

∣∣u(2n−1)(t)
∣∣ ≥ φ−1

(
a|t− ξ2n−1|

)
, (3.7)

∣∣u(2n−2j+1)(t)
∣∣ ≥ T 2j−4S

2 · 3j−2
(1− αT )j−2(t− ξ2n−2j+1)2, 2 ≤ j ≤ n, (3.8)

(−1)n+ju(2n−2j)(t) ≥ T 2j−2S

3j−1
(1− αT )j−1t, 1 ≤ j ≤ n, (3.9)

for t ∈ [0, T ], where
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S =
1
T

min

bn−1

T/2∫
0

φ−1(at) dt,
bn−1

an−1
φ−1

(
aT

2

) (3.10)

and α is given in (3.4).
Proof. Since φ is increasing and

(
φ((−1)nu(2n−1)(t))

)′ = (−1)n
(
φ(u(2n−1)(t))

)′ ≥
≥ a for a.e. t ∈ [0, T ], it follows that (−1)nu(2n−1) is increasing on [0, T ] and
(−1)n−1u(2n−2) is concave on this interval. If u(2n−1)(t) 6= 0 for t ∈ (0, T ), then∣∣an−1u

(2n−2)(T ) + bn−1u
(2n−1)(T )

∣∣ =
=

∣∣∣∣∣∣an−1

T∫
0

u(2n−1)(t)dt+ bn−1u
(2n−1)(T )

∣∣∣∣∣∣ > 0,

contrary to an−1u
(2n−2)(T ) + bn−1u

(2n−1)(T ) = 0 by (1.5) with k = n − 1. Hence
u(2n−1)(ξ2n−1) = 0 for a unique ξ2n−1 ∈ (0, T ). Now integrating the equality(
φ((−1)nu(2n−1)(t))

)′ ≥ a over [t, ξ2n−1] and [ξ2n−1, t] gives

(−1)n−1u(2n−1)(t) ≥ φ−1
(
a(ξ2n−1 − t)

)
, t ∈ [0, ξ2n−1], (3.11)

(−1)nu(2n−1)(t) ≥ φ−1
(
a(t− ξ2n−1)

)
, t ∈ [ξ2n−1, T ], (3.12)

which shows that (3.7) holds. In order to prove inequality (3.9) for j = 1 we consider

two cases, namely ξ2n−1 <
T

2
and ξ2n−1 ≥

T

2
.

Case 1. Let ξ2n−1 <
T

2
. Then (see (3.12))

(−1)nu(2n−1)(T ) ≥ φ−1(a(T − ξ2n−1)) > φ−1

(
aT

2

)
,

and therefore (see (1.5) with k = n− 1)

(−1)n−1u(2n−2)(T ) = (−1)n bn−1

an−1
u(2n−1)(T ) >

bn−1

an−1
φ−1

(
aT

2

)
. (3.13)

Case 2. Let ξ2n−1 ≥
T

2
. Then (3.11) yields

(−1)n−1u(2n−2)

(
T

2

)
= (−1)n−1

T/2∫
0

u(2n−1)(t) dt ≥
T/2∫
0

φ−1
(
a(ξ2n−1 − t)

)
dt ≥

≥
T/2∫
0

φ−1

(
a

(
T

2
− t

))
dt =

T/2∫
0

φ−1(at) dt =: L.

Let ε := (−1)nu(2n−1)(T ). We know that (−1)nu(2n−1) is increasing on [0, T ] and
u(2n−1)(ξ2n−1) = 0. Hence ε > 0 and
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(−1)n−1u(2n−2)(t) = (−1)n−1u(2n−2)(ξ2n−1) + (−1)n−1

t∫
ξ2n−1

u(2n−1)(s) ds >

> (−1)n−1u(2n−2)(ξ2n−1)− ε(t− ξ2n−1) ≥

≥ (−1)n−1u(2n−2)

(
T

2

)
− ε(t− ξ2n−1)

for t ∈ (ξ2n−1, T ]. Consequently, (−1)n−1u(2n−2)(T ) > L− ε(T − ξ2n−1) > L− εT.

Then
bn−1

an−1
ε = (−1)n bn−1

an−1
u(2n−1)(T ) = (−1)n−1u(2n−2)(T ) > L − εT, and so

(see (1.6)) ε > L

(
bn−1

an−1
+ T

)−1

= an−1L. It follows that

(−1)n−1u(2n−2)(T ) = (−1)n bn−1

an−1
u(2n−1)(T ) =

bn−1

an−1
ε > bn−1L. (3.14)

Now (3.13) and (3.14) imply that (−1)n−1u(2n−2)(T ) > ST where S is given in
(3.10). This and u(2n−2)(0) = 0 and the fact that (−1)n−1u(2n−2) is concave on [0, T ]
guarantee that (−1)n−1u(2n−2)(t) ≥ St for t ∈ [0, T ], which proves (3.9) for j = 1.

Combining (3.2), (3.3) and (3.9) (with j = 1), we get

(−1)n+ju(2n−2j)(t) = (−1)n−1

T∫
0

G[j−1](t, s)u(2n−2)(s) ds ≥

≥ T 2j−5S

3j−2
(1− αT )j−1t

T∫
0

s2 ds =
T 2j−2S

3j−1
(1− αT )j−1t

for t ∈ [0, T ] and 2 ≤ j ≤ n. We have proved that (3.9) is true.
Since, by (3.9), |u(2n−2j)| > 0 on (0, T ] for 1 ≤ j ≤ n and u satisfies (1.5), essenti-

ally the same reasoning as in the beginning of this prove shows that u(2j+1)(ξ2j+1) = 0
for a unique ξ2j+1 ∈ (0, T ), 0 ≤ j ≤ n− 2. Using (3.9) we obtain

∣∣u(2n−2j+1)(t)
∣∣ =

∣∣∣∣∣∣∣
t∫

ξ2n−2j+1

u(2n−2j+2)(s) ds

∣∣∣∣∣∣∣ ≥

≥ T 2j−4S

3j−2
(1− αT )j−2

∣∣∣∣∣∣∣
t∫

ξ2n−2j+1

s ds

∣∣∣∣∣∣∣ =
=
T 2j−4S

2 · 3j−2
(1− αT )j−2|t2 − ξ22n−2j+1| ≥

T 2j−4S

2 · 3j−2
(1− αT )j−2(t− ξ2n−2j+1)2

for t ∈ [0, T ] and 2 ≤ j ≤ n. Hence (3.8) is true, which finishes the proof.
3.2. Auxiliary regular problems. Let (H2) and (H3) hold. For each m ∈ N,

define χm, ϕm, τm ∈ C0(R) and Rm ⊂ R by the formulas
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χm(v) =


v for v ≥ 1

m
,

1
m

for v <
1
m
,

ϕm(v) =


− 1
m

for v > − 1
m
,

v for v ≤ − 1
m
,

τm =

χm if n = 2k − 1,

ϕm if n = 2k,
Rm = R \

(
− 1
m
,

1
m

)
.

Choose m ∈ N and use the function f to define fm ∈ Car
(
[0, T ] × R2n

)
by the

formula

fm(t, x0, x1, x2, x3, . . . , x2n−2, x2n−1) =

=



f(t, χm(x0), x1, ϕm(x2), x3, . . . , τm(x2n−2), x2n−1)

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1) ∈

∈ [0, T ]× R× Rm × R× Rm × . . .× R× Rm,

m

2

[
fm

(
t, x0,

1
m
,x2, x3, . . . , x2n−2, x2n−1

)(
x1 +

1
m

)
−

−fm

(
t, x0,−

1
m
,x2, x3, . . . , x2n−2, x2n−1

)(
x1 −

1
m

)]
for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1) ∈

∈ [0, T ]× R×
[
− 1
m
,

1
m

]
× R× Rm × . . .× R× Rm,

m

2

[
fm

(
t, x0, x1, x2,

1
m
, . . . , x2n−2, x2n−1

)(
x3 +

1
m

)
−

−fm

(
t, x0, x1, x2,−

1
m
, . . . , x2n−2, x2n−1

)(
x3 −

1
m

)]
for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1) ∈

∈ [0, T ]× R3 ×
[
− 1
m
,

1
m

]
× . . .× R× Rm,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m

2

[
fm

(
t, x0, x1, x2, . . . , x2n−2,

1
m

)(
x2n−1 +

1
m

)
−

−fm

(
t, x0, x1, x2, . . . , x2n−2,−

1
m

)(
x2n−1 −

1
m

)]
for (t, x0, x1, x2, . . . , x2n−2, x2n−1) ∈ [0, T ]× R2n−1 ×

[
− 1
m
,

1
m

]
.

Then conditions (H2) and (H3) give
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a ≤ (1− λ)a+ λfm(t, x0, . . . , x2n−1) (3.15)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R2n, λ ∈ [0, 1], and

(1− λ)a+ λfm(t, x0, . . . , x2n−1) ≤ h

t, 2n+
2n−1∑
j=0

|xj |

+
2n−1∑
j=0

ωj

(
|xj |
)

(3.16)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R2n
0 , λ ∈ [0, 1].

Consider the family of approximate regular differential equations

(−1)n
(
φ(u(2n−1))

)
= λfm(t, u, . . . , u(2n−1)) + (1− λ)a, λ ∈ [0, 1]. (3.17)

Lemma 3.3. Let (H1) – (H3) hold. Then there exists a positive constant W
independent of m ∈ N and λ ∈ [0, 1] such that

‖u(j)‖ < W, 0 ≤ j ≤ 2n− 1, (3.18)

for all solutions u of problem (3.17), (1.5).
Proof. Let u be a solution of problem (3.17), (1.5). Then (−1)n

(
φ(u(2n−1)(t))

)′ ≥
≥ a for a.e. t ∈ [0, T ] by (3.15) and consequently, u ∈ Ba where the set Ba is given
in (3.5). Hence, by Lemma 3.2, u satisfies (3.6) and (3.7) where ξ2j+1 ∈ (0, T ) is the
unique zero of u(2j+1), 0 ≤ j ≤ n− 1, and∣∣u(2n−2j+1)(t)

∣∣ ≥ Qj(t− ξ2n−2j+1)2, 2 ≤ j ≤ n,

(−1)n+iu(2n−2i)(t) ≥ Pit, 1 ≤ i ≤ n,

for t ∈ [0, T ], where

Qj =
T 2j−4S

2 · 3j−2
(1− αT )j−2, Pi =

T 2i−2S

3i−1
(1− αT )i−1 (3.19)

with α and S given in (3.4) and (3.10), respectively. Accordingly,

2n−1∑
j=0

T∫
0

ωj

(
|u(j)(t)|

)
dt ≤

n∑
j=1

T∫
0

ω2n−2j(Pjt) dt+

+
n∑

j=2

T∫
0

ω2n−2j+1

(
Qj(t− ξ2n−2j+1)2

)
dt+

T∫
0

ω2n−1(φ−1(a|t− ξ2n−1|)
)
dt <

<
n∑

j=1

1
Pj

PjT∫
0

ω2n−2j(s) ds+ 2
n∑

j=2

1√
Qj

√
QjT∫
0

ω2n−2j+1(s2) ds+

+
2
aT

aT∫
0

ω2n−1(φ−1(s)) ds =: Λ. (3.20)
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By (H3), Λ < ∞. Since u(2j)(0) = 0 and u(2j+1)(ξ2j+1) = 0 for 0 ≤ j ≤ n − 1, we
have

‖u(j)‖ ≤ T 2n−j−1‖u(2n−1)‖, 0 ≤ j ≤ 2n− 2. (3.21)

Combining (3.16), (3.20), (3.21) and u(2n−1)(ξ2n−1) = 0, we obtain

φ
(
|u(2n−1)(t)|

)
=

∣∣∣∣∣∣∣
t∫

ξ2n−1

[(1− λ)a+ λfm(s, u(s), . . . , u(2n−1)(s))] ds

∣∣∣∣∣∣∣ <

<

T∫
0

h

t, 2n+
2n−1∑
j=0

|u(j)(t)|

 dt+
2n−1∑
j=0

T∫
0

ωj

(
|u(j)(t)|

)
dt <

<

T∫
0

h

t, 2n+ ‖u(2n−1)‖
2n−1∑
j=0

T j

 dt+ Λ =

=

T∫
0

h(t, 2n+K‖u(2n−1)‖) dt+ Λ

for t ∈ [0, T ], where K is given in (1.9). Hence

φ
(
‖u(2n−1)‖

)
<

T∫
0

h
(
t, 2n+K‖u(2n−1)‖

)
dt+ Λ. (3.22)

It follows from condition (1.8) that there exists a positive constant W∗ such that∫ T

0

h(t, 2n + Kv) dt < φ(v) whenever v ≥ W∗. This and (3.22) yields ‖u(2n−1)‖ <

< W∗.Consequently, (3.21) shows that (3.18) is fulfilled withW = W∗max
{
1, T 2n−1

}
.

The lemma is proved.
Remark 3.1. Let c > 0. If follows from the proof of Lemma 3.3 that any soluti-

on u of problem (−1)n
(
φ(u(2n−1))

)′ = c, (1.5) satisfies the inequality ‖u(j)‖ <

< φ−1(cT ) max{1, T 2n−1} for 0 ≤ j ≤ 2n− 1.
We are now in a position to show that for each m ∈ N there exists a solution um of

the regular differential equation

(−1)n
(
φ(u(2n−1))

)′ = fm(t, u, . . . , u(2n−1)) (3.23)

satisfying the boundary conditions (1.5).
Lemma 3.4. Let (H1) – (H3) hold. Then for each m ∈ N there exists a solution

um ∈ C2n−1[0, T ], φ(u(2n−1)) ∈ AC[0, T ], of problem (3.23), (1.5) and

‖u(j)
m ‖ < W for m ∈ N and 0 ≤ j ≤ 2n− 1, (3.24)

where W is a positive constant. In addition, the sequence {u(2n−1)
m } is equicontinuous

on [0, T ].
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Proof. Choose an arbitrary m ∈ N. Let W be a positive constant in Lemma 3.3. In
order to prove the existence of a solution of problem (3.23), (1.5) we use Theorem 2.1
with p = 2n, g = (−1)nfm and ϕ = (−1)na in equations (2.1), (2.2) and with

α2k(u) = u(2k)(0), α2k+1(u) = aku
(2k)(T ) + bku

(2k+1)(T ), 0 ≤ k ≤ n− 1,
(3.25)

in the boundary conditions (1.2).
Due to Lemma 3.3 and Remark 3.1, all solutions u of problems (3.17), (1.5) and

(−1)n
(
φ(u(2n−1))

)′ = λa, (1.5) (0 ≤ λ ≤ 1) satisfy inequality (3.18). Moreover, αk

(defined in (3.25)) belongs to the set A (with p = 2n) for 0 ≤ k ≤ 2n− 1. The system
(see (1.3))

αk

(
2n−1∑
i=0

Ait
i

)
− µαk

(
−

2n−1∑
i=0

Ait
i

)
= 0, 0 ≤ k ≤ 2n− 1, (3.26)

has the form (see (3.25))

(1 + µ)

(
2n−1∑
i=0

Ait
i

)(2k) ∣∣∣∣
t=0

= 0, 0 ≤ k ≤ n− 1, (3.27)

(1 + µ)

[
ak

(
2n−1∑
i=0

Ait
i

)(2k) ∣∣∣∣
t=T

+

+bk

(
2n−1∑
i=0

Ait
i

)(2k+1) ∣∣∣∣
t=T

]
= 0, 0 ≤ k ≤ n− 1. (3.28)

It follows from (3.27) that A2k = 0 for 0 ≤ k ≤ n − 1 and then we deduce from
(3.28) and from akT + bk = 1 that A2j+1 = 0 for 0 ≤ j ≤ n − 1. Consequently,
(A0, . . . , A2n−1) = (0, . . . , 0) ∈ R2n is the unique solution of (3.26) for each µ ∈ [0, 1].
Hence all the assumptions of Theorem 2.1 are satisfied and therefore for each m ∈ N,
there exists a solution um ∈ C2n−1[0, T ], φ(u(2n−1)) ∈ AC[0, T ], of problem (3.23),
(1.5) fulfilling inequality (3.24).

It remains to show that the sequence {u(2n−1)
m } is equicontinuous on [0, T ]. Notice

that um ∈ Ba for all m ∈ N where the set Ba is given in (3.5). Then, by Lemma 3.2,
there exists {ξ2j+1,m}n−1

j=0 ⊂ (0, T ), m ∈ N, such that

u(2j+1)
m (ξ2j+1,m) = 0, 0 ≤ j ≤ n− 1, m ∈ N, (3.29)

and ∣∣u(2n−1)
m (t)

∣∣ ≥ φ−1
(
a|t− ξ2n−1,m|

)
,

∣∣u(2n−2j+1)
m (t)

∣∣ ≥ Qj(t− ξ2n−2j+1,m)2, 2 ≤ j ≤ n, (3.30)

(−1)n+ju(2n−2j)
m (t) ≥ Pjt, 1 ≤ j ≤ n,
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for t ∈ [0, T ] and m ∈ N, where Qj , Pj are given in (3.19). Let 0 ≤ t1 < t2 ≤ T. Then
(see (3.16) with λ = 1, (3.24) and (3.30))∣∣∣φ(u(2n−1)

m (t2)
)
− φ

(
u(2n−1)

m (t1)
)∣∣∣ =

=

t2∫
t1

fm

(
t, um(t), . . . , u(2n−1)

m (t)
)
dt ≤

≤
t2∫

t1

h

t, 2n+
2n−1∑
j=0

‖u(j)
m ‖

 dt+
2n−1∑
j=0

t2∫
t1

ωj

(
|u(j)

m (t)|
)
dt ≤

≤
t2∫

t1

h(t, 2n(1 +W )) dt+

t2∫
t1

ω2n−1

(
φ−1(a|t− ξ2n−1,m|

)
dt+

+
n∑

j=2

t2∫
t1

ω2n−2j+1

(
Qj(t− ξ2n−2j+1,m)2

)
dt+

+
n∑

j=1

t2∫
t1

ω2n−2j(Pjt) dt (3.31)

for m ∈ N. By (H3), h(t, 2n(1+W )) ∈ L1[0, T ] and ω2n−1(φ−1(s)), ω2j(s), 0 ≤ j ≤
≤ n − 1, ω2i+1(s2), 0 ≤ i ≤ n − 2, are locally integrable on [0,∞). From these facts
and from (3.31) and from the relations

t2∫
t1

ω2n−1

(
φ−1(a|t− ξ2n−1,m|)

)
dt =

=



1
a

a(ξ2n−1,m−t1)∫
a(ξ2n−1,m−t2)

ω2n−1

(
φ−1(t)

)
dt, if t2 ≤ ξ2n−1,m,

1
a

 a(ξ2n−1,m−t1)∫
0

ω2n−1

(
φ−1(t)

)
dt+

+

a(t2−ξ2n−1,m)∫
0

ω2n−1

(
φ−1(t)

)
dt

 if t1 < ξ2n−1,m < t2,

1
a

a(t2−ξ2n−1,m)∫
a(t1−ξ2n−1,m)

ω2n−1

(
φ−1(t)

)
dt if ξ2n−1,m ≤ t1,

t2∫
t1

ω2n−2j+1

(
Qj(t− ξ2n−2j+1,m)2

)
dt =
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=



1√
Qj

√
Qj(ξ2n−2j+1,m−t1)∫

√
Qj(ξ2n−2j+1,m−t2)

ω2n−2j+1(t2) dt if t2 ≤ ξ2n−2j+1,m,

1√
Qj


√

Qj(ξ2n−2j+1,m−t1)∫
0

ω2n−2j+1(t2) dt +

+

√
Qj(t2−ξ2n−2j+1,m)∫

0

ω2n−2j+1(t2) dt

 if t1 < ξ2n−2j+1,m < t2,

1√
Qj

√
Qj(t2−ξ2n−2j+1,m)∫

√
Qj(t1−ξ2n−2j+1,m)

ω2n−2j+1(t2) dt if ξ2n−2j+1,m ≤ t1,

it follows that
{
φ(u(2n−1)

m )
}

is equicontinuous on [0, T ]. We now deduce the equiconti-

nuity of {u(2n−1)
m } on [0, T ] from the equality∣∣u(2n−1)

m (t2)− u(2n−1)
m (t1)

∣∣ = ∣∣∣φ−1
(
φ(u(2n−1)

m (t2))
)
− φ−1

(
φ(u(2n−1)

m (t1))
)∣∣∣

for 0 ≤ t1 < t2 ≤T, m ∈ N, and the facts that
{
φ(u(2n−1)

m )
}

is bounded in C0[0, T ]
and φ−1 is continuous and increasing on R.

The lemma is proved.
3.3. Existence result and an example. The main result is presented in the following

theorem.
Theorem 3.1. Let (H1) – (H3) hold. Then problem (1.4), (1.5) has a solution u ∈

∈ C2n−1[0, T ], φ(u(2n−1)) ∈ AC[0, T ] and (−1)ku(2k) > 0 on (0, T ], u(2k+1)(ξ2k+1) =
= 0 for 0 ≤ k ≤ n− 1 where ξ2k+1 ∈ (0, T ).

Proof. By Lemma 3.4, for each m ∈ N there exists a solution um of problem (3.23),
(1.5). Consider the sequence {um}. Then inequality (3.24) is satisfied with a positive
constantW and since um ∈ Ba, Lemma 3.2 guarantees the existence of {ξ2j+1,m}n−1

j=0 ⊂
⊂ (0, T ) such that (3.29) and (30) hold for t ∈ [0, T ] and m ∈ N, where Qj and Pj

are given in (3.19). Moreover, the sequence {u2n−1
m } is equicontinuous on [0, T ] by

Lemma 3.4. Hence there exist a subsequence {ukm
} converging in C2n−1[0, T ] and a

subsequence {ξ2j+1,km
}, 1 ≤ j ≤ n − 1, converging in R. Let limm→∞ ukm

= u and
limm→∞ ξ2j+1,km = ξ2j+1, 1 ≤ j ≤ n−1. Letting m→∞ in (3.24), (3.29) and (3.30)
(with km instead of m) yields (for t ∈ [0, T ])∣∣u(2n−1)(t)

∣∣ ≥ φ−1
(
a|t− ξ2n−1|

)
,

u(2j+1)(ξ2j+1) = 0 for 0 ≤ j ≤ n− 1,∣∣u(2n−2j+1)(t)
∣∣ ≥ Qj(t− ξ2n−2j+1)2 for 2 ≤ j ≤ n− 1,

‖u(j)‖ ≤W for 0 ≤ j ≤ 2n− 1
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and

(−1)n+ju(2n−2j)(t) ≥ Pjt for 1 ≤ j ≤ n. (3.32)

Hence u(j) has exactly one zero in [0, T ] for 0 ≤ j ≤ 2n− 1 and

lim
m→∞

fkm

(
t, ukm(t), . . . , u(2n−1)

km
(t)
)

=

= f
(
t, u(t), . . . , u(2n−1)(t)

)
for a.e. t ∈ [0, T ].

In addition, by (3.32), (−1)ku(2k) > 0 on (0, T ] and (−1)ku(2k+1)(0) ≥ Pn−k > 0
for 0 ≤ k ≤ n − 1. Hence (−1)ku(2k+1)(T ) < 0 for 0 ≤ k ≤ n − 1 by (1.5), which
combining with (−1)ku(2k+1)(0) > 0 implies ξ2k+1 ∈ (0, T ) for 0 ≤ k ≤ n − 1.
Finally, having in mind the definition of the function fm and inequality (3.16) we have

0 ≤ fm(t, x0, . . . , x2n−1) ≤ q
(
t, |x0|, . . . , |x2n−1|

)
for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R2n

0

where q(t, x0, . . . , x2n−1) = h

(
t, 2n+

∑2n−1

j=0
xj

)
+
∑2n−1

j=0 ωj(xj) for t ∈ [0, T ]

and (x0, . . . , x2n−1) ∈ R2n
+ . Clearly, q ∈ Car([0, T ] × R2n

+ ). Hence problem (1.4),
(1.5) satisfies the assumptions of Theorem 2.2 with p = 2n, g = (−1)nf, gm = fm

(that is ν = (−1)n in (2.11)) and with the boundary conditions (3.25) which are the
special case of the boundary conditions (1.2). Consequently, Theorem 2.2 guarantees
that φ(u(2n−1)) ∈ AC[0, T ] and u is a solution of problem (1.4), (1.5).

The theorem is proved.
Example 3.1. Let p > 1, α2n−1 ∈ (0, p − 1), α2j ∈ (0, 1) for 0 ≤ j ≤ n − 1,

α2j+1 ∈
(

0,
1
2

)
for 0 ≤ j ≤ n − 2, βk ∈ (0, p − 1), ck > 0, dk ∈ L1[0, T ] for

0 ≤ k ≤ 2n − 1, dk is nonnegative and r ∈ L1[0, T ], r(t) ≥ a > 0 for a.e. t ∈ [0, T ].
Consider the differential equation

(−1)n
(
|u(2n−1)|p−2u(2n−1)

)′ = r(t) +
2n−1∑
k=0

(
ck

|u(k)|αk
+ dk(t)|u(k)|βk

)
. (3.33)

Equation (3.33) satisfies conditions (H1) – (H3) with φ(v) = |v|p−2v, h(t, v) = r(t) +

+ (2n + vγ)
∑2n−1

j=0
dk(t) where γ = max{βk : 0 ≤ k ≤ 2n − 1} < p − 1 and

ωk(v) =
ck
vαk

, 0 ≤ k ≤ 2n − 1. Hence Theorem 3.1 guarantees that problem (3.33),

(1.5) has a solution u ∈ C2n−1[0, T ], φ(u(2n−1)) ∈ AC[0, T ] and (−1)ku(2k) > 0 on
(0, T ], u(2k+1)(ξ2k+1) = 0 for 0 ≤ k ≤ n− 1 where ξ2k+1 ∈ (0, T ).
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