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EXISTENCE PRINCIPLES FOR HIGHER ORDER
NONLOCAL BOUNDARY-VALUE PROBLEMS
AND THEIR APPLICATIONS

TO SINGULAR STURM - LIOUVILLE PROBLEMS®

MPUHIMION ICHYBAHHS JUISI HEJTOKAJIBHUX
T'PAHUYHUX 3AJIAUY BHILOT'O MMOPSIIKY

TA iX 3ACTOCYBAHHS

JIO CUHT YJISIPHUX 3AJTAY HITYPMA - JITYBLJLIA

The paper presents existence principles for the nonlocal boundary-value problem (¢(u(®~1)) =
= g(t,u,...,ulP™D), ap(u) = 0,1 < k < p—1, where p > 2, ¢: R — R is an increasing and
odd homeomorphism, g is a Carathéodory function which is either regular or has singularities in its space
variables and o : CP~1[0, 7] — R is a continuous functional. An application of the existence princi-
ples to singular Sturm—Liouville problems (—1)"(¢(u(2»=D)) = f(t, u,...,u?»=D), w(2k)(0) = 0,
apuF) (T) + buk+D(T) = 0,0 < k < n — 1, is given.

Hage/eHO NPHHIMIK iCHYBAHHS JUTs HeNOKabHOT rpanuyHoi 3amadi (¢p(uP~1)) = g(t, u,...,u®P=1D),
ag(u) =0,1<k<p-1,nmep>2 ¢: R — R — romeomopdism, 110 3pocTae i € HEHAPHUM, g —
¢ynkuis Kapareonopi, 1o ado € peryispHoro, a0o Mae 0coOIMBOCTI 32 CBOIMH MPOCTOPOBHMH 3MIHHHMH,
a ap: CP71[0,T] — R — Henepeppuuii dynxuionan. I[loka3aHo 3aCTOCYBAHHs NPHHIMINB iCHYBAHHS
7o cunrymsapaux 3anad [rypma—Jliysims (—1)" (¢p(ur=D)) = f(t,u,...,u?=1), 42K (0) = 0,
apuF)(T) + buCk+D)(T) =0,0< k< n—1.

1. Introduction. Let 7" > 0 and let R_ = (—00,0), Ry = (0,00) and Ry = R\ {0}.
As usual, C7[0, T'] denotes the set of functions having the jth derivative continuous on
[0,T]. AC[0,T] and L1[0, T is the set of absolutely continuous functions on [0, 7] and
Lebesgue integrable functions on [0, 7], respectively. C°[0, 7] and L, [0, T] is equipped
with the norm

lz]| = max{|ac(t)|: te [O,T]} and ||z = / |x(t)] dt,

respectively.

Assume that G C R?, p > 2. Car ([0,7] x G) stands for the set of functions
f:10,T]xG — R satisfying the local Caratéodory conditions on [0, T x G, that is: (i) for
each (zo,...,xp—1) € G, the function f(-,zo,...,2p—1): [0,7] — R is measurable;
(ii) for a.e. t € [0,T], the function f(¢,-,...,-): G — R is continuous; (iii) for each
compact set K C G, sup{|f(¢,zo,...,zp-1)|: (®0,...,2p—1) € K} € L1]0,T].

Let p € N, p > 2. Denote by A the set of functionals a: CP~1[0, 7] — R which are

(a) continuous and

(b) bounded, that is, (€2) is bounded for any bounded Q C C?~1[0, 7).
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Let ¢: R — R is an increasing and odd homeomorphism and let either g € Car([0, T] x
X RP) or g € Car([0,T] x D.), D, C R? and has singularities only at the value 0 of its
space variables. Consider the nonlocal boundary-value problem

((;S(u(p_l)))/ :g(t,u,...,u(”_l)), (1.1)

ar(u) =0, aped, 0<k<p-1, (12)

where «y, satisfy a compatibility condition that for each p € [0, 1] there exists a solution
of the problem

(p(uP=1)) =0, ap(u) — pag(—u) =0, 0<k<p-—1.

This problem is equivalent to the fact that the system

p—1 p—1
oy (Z Aiti> — o (— ZAitZ) =0, 0<k<p-1, (1.3)
i=0 i=0

has a solution (Ao, ..., Ap—1) € RP for each p € [0, 1].

We say that u € CP~1[0,7] is a solution of problem (1.1), (1.2) if ¢p(uP~1) €
€ AC[0,T], u satisfies (1.2) and fulfils (¢(u®~1(1)))" = g(t,u(t),...,uP=D(t)) for
ae. t€[0,7T].

The aim of this paper is

1) to present existence principles for problem (1.1), (1.2) in a regular and a singular
case and

2) to give an application of these existence principles to singular Sturm - Liouville
boundary-value problems.

Notice that our existence principles stand a generalization of those obtained for
second-order differential equations with ¢-Laplacian in [1, 2].

Our Sturm - Liouville problem consisting of the differential equation
(1) (o)) = f(t,u,...,u® D) (1.4)
and the boundary conditions
u®(0) =0,  apu®(T) +bu®*H(T) =0, 0<k<n-1. (1.5)

Here n > 2, ¢: R — R is an increasing homeomorphism, f € Car([0,T] x D) is
positive where

Ry XxRopxR_ xRy x...xRy xRg if n=20—-1,

D= 44—2
Ry XxRogxR_ xRgx...xR_ xRy if n=2¢

40

f may be singular at the value 0 of all its space variables and
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242 S. STANEK
ag >0, b, > 0, apT +b,=1 for 0<k<n-1. (1.6)

We say that a function u € C?"~1[0,T] is a solution of problem (1.4), (1.5) if
#(u?=1)) € AC|0, T, u satisfies the boundary conditions (1.5) and fulfils the equality
(=)™ (p(@= V@) = f(t, u(t),...,u V(1)) for ae. t € [0,T].

Singular problems of the Sturm — Liouville type for higher order differential equations
were considered in [3—5]. In [3] the authors discuss the differential equation u(™ +
+ hi(t,u, ..., u"?)) = 0 together with the boundary conditions

u@(0)=0, 0<j<n-—3,
(1.7)
au(”*2)(0) _ /gu(nfl)(()) =0, Ayum=2) ( )+ Suln—1) ( ) =0,

where ay+ad+8y>0,8, § >0, B+a>0,5+7 >0and hy € CO((0,1) x R} 1)
is positive. The existence of a positive solution u € C™~1[0,1] N C™(0,1) is proved
by a fixed point theorem for mappings that are decreasing with respect to a cone in a
Banach space. Paper [4] deals with the problem u(™ + hy(t,u, ..., u(""1) =0, (1.7),
where hy € Car ([0,T] xD.), D. = R} ™' xRy, is positive. The existence of a positive
solution u € AC™~1[0,T] is proved by a combination of regularization and sequential
techniques with a Fredholm type existence theorem. In [5], by constructing some special
cones and using a Krasnoselskii fixed point on a cone, the existence of a positive solution
u € C*=2]0,1] N C**(0,1) is proved for problem u(*™ = hy(t, u, u*"=2)), u(0) =
= u(1) = 0, au®® (0) —bu*+1(0) = 0, cu®®) (1) +-du*+1(1) = 0,1 < k < 2n—1.
Here hg € C ([0, 1] xRy x R,) is nonnegative, a, b, ¢, d are nonnegative constants and
ac+ ad+be > 0.

To the best our knowledge, there is no paper considering singular problems of the
Sturm — Liouville type in our generalization (1.4), (1.5). In addition, any solution u of
problem (1.4), (1.5) has the maximal smoothness, u and its even derivatives (< 2n — 2)
‘start’ at the singular points of f and its odd derivatives (< 2n — 1) ‘go throughout’
singularities of f somewhere inside of [0, 7.

Throughout the paper we work with the following conditions on the functions ¢ and
f in equation (1.4):

(H1) ¢: R — R is an increasing and odd homomorphism such that ¢(R) = R,

(Hs) f € Car([0,T] x D) and there exists a > 0 such that

a < f(t;wa“axanl)

for a.e. ¢ € [0,T] and all (zo,...,%2,_1) € D

2n— 2n—1
(Hs) f(t,0,...,Tan 1) < h( > |x]|> + 307 willy]) for ae. t €
€ [0,T) and all (xq,...,z2,-1) € D, where h € Car([0,T] x [0,00)) is positive and
nondecreasing in the second variable, w;: R, — R, is nonincreasing,

1
lim sup

v—00 ¢(U

T
/ht2n+KU dt < 1 (1.8)
0

with
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2n if T=1,
K= (1.9)
T2 — 1
L if T#1
7 i T#1L

and

1

1
/wgn_l(qb_l(s)) ds < o0, /ng(s) ds<oo for 0<j<n-1,
0 0

1
/ng+1(52)ds<oo for 0<j<n-—2
0

Remark 1.1. 1If ¢ satisfies (H;) then ¢(0) = 0. Under assumption (Hj) the functi-
ons wan—1(¢71(8)), wa;(s), 0 < j <n—1,and we;it1(s?), 0 < i < n— 2, are locally
Lebesgue integrable on [0, 00) since wg, 0 < k < 2n — 1, is nonincreasing and positive
onR,.

The rest of the paper is organized as follows. In Section 2, we present existence
principles for a regular and a singular problem (1.1), (1.2). The regular existence
principle is proved by the Leray—Schauder degree (see, e.g., [6]). An application of
both principles is given in Section 3 to the Sturm — Liouville problem (1.4), (1.5).

2. Existence principles. The following result states conditions for solvability of
problem (1.1), (1.2) where g in equation (1.1) is regular.

Theorem 2.1. Let (Hy) hold. Let g € Car([0,T])xRP) and ¢ € L1]0,T). Suppose
that there exists a positive constant L independent of \ such that

[uD|| <L, 0<j<p-1,
for all solutions v of the differential equations

(PP D)) = (1= Np(t), Ael0,1], 2.1)

(p(uP=D)) = Ag(t,u,...,uP™ D)+ (1= N)p(t), Xe]0,1], (2.2)

satisfying the boundary conditions (1.2). Also assume that there exists a positive constant
A such that

|4j| <A, 0<j<p—1, (2.3)

Sor all solutions (Ao, ..., Ap—1) € R of system (1.3) with 1 € [0,1].
Then problem (1.1),(1.2) has a solution u € CP~1[0,T], p(uP~V) € AC[0,T).
Proof. Let
Q= {l’ € CP710,T7: |29 < max{L,AK,} for 0<j<p-— 1},

where
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244 S. STANEK

P if T =1,
K, =
™ —1
if T 1.
71 T7

Then € is an open and symmetric with respect to 0 € CP~1[0, T] subset of the Banach
space CP~1[0, T']. Define an operator P: [0,1] x Q — CP~1[0,T] by the formula

Pl = [ {60+ apa@) + [Vip))do ) ds
0 0

p—2 (i
+Z 2@ (0) Taj(x) 4 2.4)
=0 I

where V(p, z)(t) = pg(t,z(t),..., @~ (t)) + (1 — p)e(t). It follows from the conti-
nuity of ¢ and a;, 0 < j < p—1, g € Car([0,T] x RP) and from the Lebesgue
dominated convergence theorem that P is a continuous operator. We now prove that
P([0,T] x Q) is relatively compact in C?~*[0, T']. Notice that the boundedness of Q2 in
CP~1[0,T) guarantees the existence of a positive constant  and a 1) € L1[0,T] such
that oy ()] < 7 and |g(t, (1), ..., P~ (¢))| < ¢(t) forae. t € [0,T] and all z € Q,
0<k<p-—1.Then

(Pl e)D ()] < (r+ max{LAKYY) DD Tt

=0

O L,AK
TR T (6(r + max{L, AK1}) + [[¥]L + [lell),

[(P(p,2) V()] < ¢~ (¢(r + max{L, AK1}) + ¢l + [llz),

to

[B((P(p,2) D t2)) = 9((P(o, ) V(0)] < | [ 0) + (o)) ds

ty

for t, t1, to € [0,7], (p,2) € [0,7] x Q and 0 < j < n — 2. Hence P([0,T] x
x ) is bounded in CP~1[0, 7] and the set {¢((P(p,z))P~V): (p,z) € [0,1] x Q}
is equicontinuous on [0,7]. Since ¢: R — R is increasing and continuous, the set
{(P(p,a:))(p_l): (p,x) € [0,1] x ﬁ} is equicontinuous on [0,7] too. Now, by the
Arzela— Ascoli theorem, P([0,1] x Q) is relatively compact in CP~1[0,7]. We have
proved that P is a compact operator.

Suppose that z, is a fixed point of the operator P(1, ). Then

b2 .0 () — g)P—2
ST > LAY (s
0

(p—2)!
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fort € [0,T]. Hence a(z) = 0 for 0 < k < p—1 and x, is a solution of equation (1.1).
Consequently, z, is a solution of problem (1.1), (1.2). In order to prove the assertion of
our theorem it suffices to show that

where “deg” stands for the Leray — Schauder degree and 7 is the identical operator on

CP~10, T]. To show this let the compact operator K : [0,2] x Q — CP~1[0, T be defied
by

it pelo,1],
t g2
K(u, 2)(t) = /(t_)g¢‘1<¢(x(p‘”(0)+ap1(x))+
0

—1/<p dv)ds—&—z +a] )t' if pe(1,2].

0

Then K(0, -) is odd (that is K(0, —x) = —K(0, ) for z € Q) and
K(2,z) =P(0,z) for z€ Q. (2.6)

Assume that /C( g, 1) = ug for some (ug,uo) € [0,1] x Q. Then

p—1 4
[467(0) + 3 wo) — (1 = po)ory(—uo) .t € [0.7],
j=0 ’

—1 . tj ~ .
and therefore ug(t) = ijo Ajﬁ where A; = u(()])(O) + aj(ug) — (1 — po)a;(—uo).

Consequently, uéj)(O) = A; and so a;j(ug) — (1 — po)a;(—up) =0 for 0 < j < p—1,
which means

p=1 + p=l ti
i I =0

A
Then, by our assumption, ']’ < A for 0 < j <p-—1 and we have
J:

p—1
[uf’| < AD- TV =AKy, 0<j<p-1.
=0

Hence up ¢ 0N2 and therefore, by the Borsuk antipodal theorem and the homotopy
property,

and
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deg (T — K(0,-),9,0) = deg (T — K(1,),9,0). (2.8)
We come to show that

deg (T — K(1,-),9,0) = deg (T — K£(2,-),2,0). (2.9)
If KC(p1,u1) = uy for some (p1,u1) € (1,2] x Q then

p—2 u(j) ai(uy)
U (t) _ Z 1 (0); J( )
j=0 ’

t s

_ 52 _1
Jr/(t(p—)Q)!QSl (ﬁ(u(lp )(0) +ap_1(u1)) + (g1 — 1)/90(0) dv ) ds
0 0

fort € [0, T). Hence u; satisfies the boundary conditions (1.2) and u is a solution of the
differential equation (2.1) with A = 2 — i1 € [0, 1). By our assumptions, Hugj ) || < L for
0 < j < p—1. Therefore u; ¢ OS2 and equality (2.9) follows from the homotopy property.
Finally, suppose that P(p, @) = @ for some (p, @) € [0,1] x Q. Then 4 is a solution of
problem (2.2), (1.2) with A = j and therefore ||@/)|| < L for 0 < j < p — 1. Hence
@ ¢ 082 and, by the homotopy property, deg (Z—P(0,-),2,0) = deg (Z—P(1,-),,0).
From this and from (2.6)—(2.9) it follows that (2.5) holds, which completes the proof.

Remark 2.1. 1If functional oy € A is linear for 0 < k < p — 1 then system (1.3)
has the form

p—1
> Ajag(t’) =0, 0<k<p-L
=0

All of its solutions (Ao, ..., Ap—1) € R are bounded exactly if det (o (tj))zfjlzo # 0
(and then A; = 0 for 0 < 5 < p — 1), which is equivalent to the fact that problem
(¢(u(p*1))) =0, (1.2) has only the trivial solution.

If the function g € Car([0,T] x D.), D, C RP? in equation (1.1) has singularities
only at the value 0 of its space variables, then the following result for the solvability of
problem (1.1), (1.2) holds.

Theorem 2.2. Let condition (Hy) hold. Let g € Car([0,T] x D.), D. C RP,
have singularities only at the value 0 of its space variables. Let the function g, €

€ Car ([0, T] x R”) in the differential equation

(P D)) = g (t,u, ..., uP™D) (2.10)
satisfy
0 < vgm(t,zo, .., xp—1) < q(t, |zol, ..., |zp-1])
forae t€0,T) andall (zg,...,xp—1)€RY, meN, (2.11)

where q € Car([0,T] xRY) and ve{-1,1}.

Suppose that for each m € N, the regular problem (2.10), (1.2) has a solution u.,, and
there exists a subsequence {uy,, } of {u,} converging in CP=1[0,T) to some w.

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 2



EXISTENCE PRINCIPLES FOR HIGHER ORDER NONLOCAL BOUNDARY-VALUE ... 247

Then ¢(uP=1)) € AC[0,T) and u is a solution of the singular problem (1.1), (1.2)
if u'9) has a finite number of zeros for 0 < j < p —1 and

lim gr,, (£ up, (1), .., ul V() = g(tu(t), ..., u® V(1)) (2.12)

m—00

Jorae. t€0,T].

Proof. Assume that (2.12) holds for a.e. t € [O,Tg_and let0 <& <...<&<T
are all zeros of u9) for 0 < j < p — 1. Since Hukjw)zH < L for each m € N and
0 <j <p-—1, where L is a positive constant, it follows that

/ Vi (b (8), V() dt = v [o (w70 (1) = o(uf7V(0))] < 26(L)

for m € N. Now (2.11), (2.12) and the Fatou lemma [7, 8] give
T
[ratt.uto.....a D) de < 26(L),
0

Hence vg(t, u(t),...,uP~V(t)) € L1[0,T]andso g(t,u(t),...,uP~Y(t)) € L1[0, T).
Put §y = 0 and &1 = T. We show that the equality

o)) =6 (ard (S1EE) ) / s, u(s), w1 (s)) ds

(Eit1+E:)/2
(2.13)

is satisfied on [&;,&;+1] for each ¢ € {0,...,¢} such that §; < &11. Indeed, let i €

Eiv1+&

€{0,...,¢}, & < &41. Choose an arbitrary p € (O, and let us look at the

interval [£; + p, &41 — p]. We know that [u()| > 0 on (&,& 1) for0 < j <p—1 and
therefore [u(7) (t)| > ¢ fort € [& + p, &1 —p] and 0 < j < p— 1 where ¢ is a positive
constant. Hence there exists m € N such that {ugi )| > % fort € [& + p,&iv1 — p),
0 <j<p-—1and m > myg. This gives (see (2.11))

|Ghons (t e, (£, uP D (1)) <

Ssup{q(t,xo,...,mp_l):te[O,T], xj € E,L} for OSjSp—l}ELl[O,T]

forae. t € [& + p, &1 — p] and all m > myg. Letting m — oo in

o) =0 (a7 (S5 ) 4
t

+ / Ik, (s,ukm(s),...,u,(f:nfl)(s)) ds
(Civ1+€i)/2
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248 S. STANEK

yields (2.13) for t € [¢;+p, &1+ p] by the Lebesgue dominated convergence theorem.
Since p € (0, %
and using the fact that g(t,u(t),...,u?=Y(t)) € Ly[0,T], (2.13) is satisfied also at
t = & and &;41. From equality (2.13) on [£;,&;41] (for 0 < ¢ < £), we deduce that
#(uP=1) € AC[0,T] and u is a solution of equation (1.1). Finally, it follows from
aj(ug,) = 0for 0 < j < p—1and m € N, and from the continuity of «; that
a;(u) =0 for 0 < j < p— 1. Consequently, u is a solution of problem (1.1), (1.2).

) is arbitrary, equality (2.13) holds on the interval (&;,&;41)

The theorem is proved.

3. Sturm-Liouville problem. 3.1. Auxiliary results. Throughout the next part
of this paper we assume that numbers ag, by in the boundary conditions (1.5) fulfil
condition (1.6). For each j € {0,...,n — 2}, denote by G, the Green function of the
Sturm — Liouville problem

—u" =0, u(0) =0, aju(T) + bju'(T) = 0.
Then
s(l—a;t) for 0<s<t<T,
t(l—ajs) for 0<t<s<T.
Hence G,(t,s) > 0 for (¢,s) € (0,7] x (0,T) and G;(t,s) = Gj(s,t) for (t,s) €
€ [0,T] x [0,T]. Put G (t, ) = Gn_a(t, s) for (t,s) € [0,T] x [0,T] and define GU!
recurrently by the formula

T
Gll(t, 5) /Gn,j,l(t,v)a[i—l](v,s) d, (Ls)e0.T]x[0,T], (1)
0

for 2 < j < n — 1. It follows from the definition of the function G U] that the equalities
T
ulr=2) (1) = (=1)77! / GO, s)u 2 (s)ds, 2<j<n, (32
0
are true on [0, T'] for each u € C?"~2[0, T satisfying the boundary conditions (1.5).

Lemma 3.1. For 1l < j < n — 1, the inequality

T%-3(1 — aT)!
2 -  ~ 7

GUl(t, s) = ts for (t,s)€[0,T]x [0,T] (3.3)
holds where
a=max{ay: 0 <k <n-—2} (<;> (3.4)

Proof. Since

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 2



EXISTENCE PRINCIPLES FOR HIGHER ORDER NONLOCAL BOUNDARY-VALUE ... 249

s(l—ajt) >s(1—a;T) for 0<s<t<T,
Gj(t,s) =
t(l—ajs) >t(l—a;T) for 0<t<s<T

- astt > 1= aTst for (¢,s) € [0,T]x[0,T)
T T

and 0 < j < n — 2. Consequently, GI'l(t,5) = G,,_a(t,s) > 1- Tst for (t,s) €

€ [0, 7] x [0,T] and therefore inequality (3.3) is true for j = 1. We now proceed by

induction. Assume that (3.3) is true for j = (< n — 1). Then

for0 < j < n—2,wehave G,(t,s) >

T
G+t s) = / Gri_a(t,0)G (v, s)dv >
0

T ) )
/ 1—aT, T*73(1—al)
> tv

T i T vsdv =

0

ts

T
2i—4(q _ i+1 2i—1(1 _ i+1
_r (14 aT) ts/v2ds:T (1 'aT)
31—1 3
0

for (¢,s) € [0,T] x [0, T]. Therefore (3.3) is true with j =i + 1.

The lemma is proved.

Let ¢ satisfy (H;). Choose an arbitrary a > 0 and put

B, = {u e 710, 7]: p(u® V) € AC[0,T], (—1)"(p(u® V(1)) >a

fora.e. t€[0,7] and wu satisfies (1.5)}. (3.5)

The properties of functions belonging to the set 3, are given in the following lemma.
Lemma 3.2. Letu € B,. Then there exists {§2j+1};":_01 C (0,T) such that

uB T (gg540) =0, 0<j<n—1, (3.6)
and
[uC D) > ¢ (alt — Lan-1), (3.7)
(2n—2j+1) %18 i—2 2 .
|u )] > m(l —aT)! 7%t — on—2j41)°, 2<j<mn, (3.8)
, , T2-2g ,
(=1)" =200 () > 3j7_1(1 —aT) ', 1<j<n, (3.9)

SJor t € 0,T), where
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T2

S:%min bn,l/qs—l(at)dt, b”*1¢‘1 (aT> (3.10)
0

ap—1 2

and « is given in (3.4).

Proof. Since ¢ is increasing and (qﬁ((—l)"u(z”*l)(t)))/ = (—1)"(¢(u(2”*1)(t)))/ >
> a for ae. t € [0,7T], it follows that (—1)"u(>"~1) is increasing on [0,7] and
(—1)"'u(®7=2) is concave on this interval. If u(>»~1)(t) # 0 for t € (0,T), then

’anilu(Qn—Q) (T) + bn,lu@"—l)(T)‘ _
T
= an,l/u<2”—1>(t)dt+bn,1u(2n—1>(T) >0,
0

contrary to a,_u?"=2(T) 4 b,_1u"~D(T) = 0 by (1.5) with & = n — 1. Hence
u?=D(£y,_1) = 0 for a unique &,_; € (0,7). Now integrating the equality
(&((=1)"u?=D())) > a over [t, E2,—1] and [€9,_1, 1] gives

(=" () > 67 a(€ano1 — 1)), t € [0,En1], (3.11)
(=1)"ulD(t) > 67 (alt — an1)), £ € [G2n1,T], (3.12)
which shows that (3.7) holds. In order to prove inequality (3.9) for j = 1 we consider

T
two cases, namely &5, < 3 and £o,_1 > 5

T
Case 1. Let £3y—1 < 3 Then (see (3.12))

(1) D(T) > ¢ (a(T = Ean1)) > &~ <<12T) 7

and therefore (see (1.5) with k =n — 1)

()P HAT) = (1 L) > 2l () ey

Ap—1 Ap—1

T
Case 2. Let &1 > 7 Then (3.11) yields
T/2

(- () = ://2u<2"1><t> &t > / 6 (Eans — 0) di >

T/2 T/2
T
e (a ( - t)) dt = [ ¢ *(at)dt =: L.

Let € := (—1)"u"~1(T). We know that (—1)"u(?>"~1 is increasing on [0,7] and
u(%*l)(fgn,l) = 0. Hence ¢ > 0 and
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t
(71)n71u(2n72)(t) _ (71)n71u(2n72) (£2n71) + (71)n71 / u(?n—l)(s) ds >
§2n—1
> (=" 1D (€ 1) — et — Eapm) >
T
> (_1)n—1u(2n—2) <2> _ E(t _ 5277,71)
for t € (2,1, T)]. Consequently, (—1)"uCn=2)(T) > L — &(T — &3,_1) > L — T
by b _ 1 (2n—
Then ——¢ = (—1)" ==Ly (1) = (=1)" WP"=2(T) > L — T, and so

Gp—1 Ap—1
by -t
(see (1.6)) e > L <a LA T) = ap_1 L. Tt follows that
n—1
n—1, (2n—2) nbn—1 (2n—1) bn—1
(=1)" ' (T) = (1) P (T) =~ <> bp_1L. (3.14)

Now (3.13) and (3.14) imply that (—1)"'u(?>"=2)(T)) > ST where S is given in
(3.10). This and ©(®>"~2)(0) = 0 and the fact that (—1)"~'u(?"~2) is concave on [0, T
guarantee that (—1)"~'u(?"=2)(t) > St for t € [0, T, which proves (3.9) for j = 1.

Combining (3.2), (3.3) and (3.9) (with 7 = 1), we get

T
(-1 (e) = (-1t [ Gt 5)un ) ) ds >
0

T%-59
3i-2

_T¥%

T
> (1—aT)j_1t/82d5— %ﬁl(l—aT)j_lt
0

37

fort € [0,7] and 2 < j < n. We have proved that (3.9) is true.

Since, by (3.9), [u(?*=29)| > 0 on (0,T] for 1 < j < n and u satisfies (1.5), essenti-
ally the same reasoning as in the beginning of this prove shows that «(2/+1) (&2541) =0
for a unique &1 € (0,7), 0 < j < n — 2. Using (3.9) we obtain

t

}u(2n72j+1)(t)| _ / u(zn—2j+2)(5) ds| >
E2n—2j+1
7218 : /
> W(l —aT)i™2 / sds| =
§2n—2j+1
T2j—4S T2j—4S

=5y ATV 2|t — & pja| 2 gz aT) 72 (t — Ean—2j41)°

fort € [0,7] and 2 < j < n. Hence (3.8) is true, which finishes the proof.
3.2. Auxiliary regular problems. Let (H;) and (Hs) hold. For each m € N,
define X, Pm, 7m € C°(R) and R,,, C R by the formulas
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1 1 1
v for v>—, — for v > ——,
m m m
Xm(v) = @wz(v)
1 1 1
— for v < —, v for v < ——
m m m

11
Tm = IRm:}R\<_a)
om if n =2k, mem

Choose m € N and use the function f to define f,,, € Car ([0,7] x R?>") by the
formula

fm(tax()vxlal'%m&h e ax2n—27x2n—1) -
f(ta Xm(xO)lev Spm(mQ)a Z3, ... aTm(I2n—2)7x2n—1)
for (t,20,21,72,%3,...,Tan—2,Tan—1) €

E0,T)]XRXRy x RXRyp X ..o X R X Ry,

m 1 1
? fm taan7ax27x37"-;x2n—25-/172n—1 1+ — |-
m m

1 1
_fm ta'r07_7a$27x3,'--;xQn—anQ’n—l Tl — —
m m

for (t,zo0,%1,%2,23,...,%Ton—2,Tan—1) €

m- m

m 1 1
— o fm taZOaxhx%7,"';x2n—23x2n—1 T3+ — |—
2 m m
1 1
—fm<t,$0,l'1,l'2,—,...,fEQnQ,.’Ein) <$3_>]
m m

for (taanxlax%xI’n“-;xZn—anQn—l) €

1 1
€[0,T] x R x [,} XRXRpy X ... xR X Ry,

1 1
€[0,7T] x R? x [—,} X ... X R xRy,
m’m

m 1 1
5 fm ta$07x17x27"~7$2n72;7 Top—1+ — |—
m m
1 1
_fm tax07xl7x2a"-7m2n72a_7 Tan—1 — —
m m
1

1
for (t,xo,fﬂl,ﬂ?Q,. .. ,ZL’Qn_Q,CEQn_l) S [O,T] x R2n—1 x |: :| .

)
m m

Then conditions (H2) and (Hs) give

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 2



EXISTENCE PRINCIPLES FOR HIGHER ORDER NONLOCAL BOUNDARY-VALUE ... 253

a<(1=XNa+ Am(t,xo,...,T2n-1) (3.15)

for a.e. t € [0,7] and all (zo,...,22,—1) € R?", X € [0,1], and

2n—1 2n—1
(L= Na+ At 2o, wan1) <h [ 620+ > o] | + Y wi(lal) (3.16)
j=0 j=0

for a.e. t € [0,7] and all (zo,...,72,-1) € R3", A € [0,1].
Consider the family of approximate regular differential equations

(=)™ (D)) = A ltouy ..., u® D) 4 (1= Na, Ae[0,1].  (3.17)

Lemma 3.3. Let (Hy)—(Hs) hold. Then there exists a positive constant W
independent of m € N and X € [0, 1] such that

[uD| <W, 0<j<2n-1, (3.18)

for all solutions u of problem (3.17), (1.5).

Proof. Let u be a solution of problem (3.17), (1.5). Then (—1)" (¢(u®>*~1 (1)) >
> a for a.e. t € [0,T] by (3.15) and consequently, u € B, where the set B, is given
in (3.5). Hence, by Lemma 3.2, u satisfies (3.6) and (3.7) where £2541 € (0,T) is the
unique zero of u(2+1), 0 < j <n—1, and

|U(2n72j+1)(t)| > Qi(t — &on—2jt1)®, 2<j<n,

(=) =2 () > Pt, 1<i<n
for t € [0, 7], where

T2j—4 . T2z 2
Waj(l —aT)i 72 P, = 75(1 —aT)™ (3.19)

Qj = 3t

with o and S given in (3.4) and (3.10), respectively. Accordingly,

an—1 T n T
Z/ (ju9) (¢ dth/wgn 2 (Pjt) dt+
0

3=0 7} j=1

n

T
+ /w2n 2j+1 Q] t_on 2j+1) )dt+
j=2 0

wan—1(¢~ " (alt — Ean—1])) dt <

St~

" P,T . VQ;T
1 ~ 1
< Z E / Wop—2;(s)ds + 2 Z \/@ / w2”_2j+1(32) ds+
0

<
||
¥

o

42 / wan—1(671(s)) ds =: A, (3.20)
0
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By (H3), A < oo. Since u(?)(0) = 0 and w2 +V(&y;41) =0for 0 < j <n—1, we
have

[u@ | < T3 D) 0<j<2n—2. (3.21)
Combining (3.16), (3.20), (3.21) and u?"~1) (&, 1) = 0, we obtain

t

o[V ()]) = / (1= Na+ Mom(s,u(s), ..., u®V(s))]ds| <

Ean—1
T 2n—1 o1 T
< [u[t2n+ X w00l are Y [ur(uo) <
o j=0 J=0 7%
T 2n—1
< /h t,2n+ [uCr D YT | dt+ A=
0 =0

T
- / h(t, 2n + K u® D)) dt + A
0
for ¢t € [0, T, where K is given in (1.9). Hence
T
o([u® 1)) < /h(t, 2n + K|u® =) dt + A. (3.22)
0

It follows from condition (1.8) that there exists a positive constant W, such that
T

/ h(t,2n + Kv)dt < ¢(v) whenever v > W.,. This and (3.22) yields |[u®>"~ V| <
0

< W.. Consequently, (3.21) shows that (3.18) is fulfilled with W = W, max {1, 72"~}

The lemma is proved.

Remark 3.1. Let c > 0. If follows from the proof of Lemma 3.3 that any soluti-
on u of problem (—1)"(p(u®*~1))" = ¢, (1.5) satisfies the inequality [[ul)| <
< ¢ Y eT)max{1,T?" 1} for0 < j <2n— 1.

We are now in a position to show that for each m € N there exists a solution u,, of
the regular differential equation

()" (¢ ) = fu(t,u, ..., u®D) (3.23)

satisfying the boundary conditions (1.5).
Lemma 3.4. Let (Hy)—(Hs) hold. Then for each m € N there exists a solution
Uy, € C?H0,T], p(u®=D) € AC|0,T), of problem (3.23), (1.5) and

|| < W for meN and 0<j<2n—1, (3.24)

where W is a positive constant. In addition, the sequence {uSZ”‘”} is equicontinuous
on [0,T].
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Proof- Choose an arbitrary m € N. Let W be a positive constant in Lemma 3.3. In
order to prove the existence of a solution of problem (3.23), (1.5) we use Theorem 2.1
with p = 2n, g = (—1)" f,, and p = (—1)"a in equations (2.1), (2.2) and with

g (u) = u?(0), g1 (1) = apu®(T) + bu®*FN(T), 0<k<n-1,
(3.25)
in the boundary conditions (1.2).

Due to Lemma 3.3 and Remark 3.1, all solutions u of problems (3.17), (1.5) and
(-1)» ((b(u(Q”_l)))/ = Aa, (1.5) (0 < X < 1) satisty inequality (3.18). Moreover, ay
(defined in (3.25)) belongs to the set A (with p = 2n) for 0 < k < 2n — 1. The system
(see (1.3))

2n—1 2n—1
k (Z A,;ti> — poy, < > A,;ti> =0, 0<k<2n-—1, (3.26)
1=0 1=0

has the form (see (3.25))

2n—1 (2K)
(14 ) (Z At)

1=0

=0, 0<k<n-—1, (3.27)
t=0

2n—1 (2K)
Z At ‘ +
=T

2n—1 (2k+1)
k (Z Aiti>
i=0

It follows from (3.27) that Ay, = 0 for 0 < k < n — 1 and then we deduce from
(3.28) and from a1 + b, = 1 that Ay;11 = 0 for 0 < j < n — 1. Consequently,
(Ag, ..., Asp_1) = (0,...,0) € R?" is the unique solution of (3.26) for each u € [0, 1].
Hence all the assumptions of Theorem 2.1 are satisfied and therefore for each m € N,
there exists a solution u,, € C?"~1[0,T], ¢(u®>"~1) € AC[0,T], of problem (3.23),
(1.5) fulfilling inequality (3.24).

It remains to show that the sequence {uginfl)} is equicontinuous on [0, 7']. Notice
that u,,, € B, for all m e N where the set B, is given in (3.5). Then, by Lemma 3.2,

(1+p)

=0, 0<k<n-—1L. (3.28)
t=T

there exists {£2j4+1,m C (0,T), m € N, such that
uﬁ,%j“)(ggjﬂym) =0, 0<j<n—1, meN, (3.29)
and

Jui* D (1) = 7" (alt — €an1.ml)
2D ()] 2 Qy(t — ban2j11,m)’, 25 <, (3.30)

(=) a2 () > Pit, 1<j<n,
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fort € [0,T] and m € N, where Q;, P; are given in (3.19). Let 0 < t; <ty < T. Then
(see (3.16) with A = 1, (3.24) and (3.30))

(2 (22) = (2" ()| =
to
:/fm(t,um(t),...,uﬁﬁ"*)(t)) dt <
t1
t2 2n—1 on—1 b2
S/h ton+ Y fud | dt+ > /wj(|ugg>(t)|)dt§
i j=0 J=0 {
to to
< /h(t,Qn(l +W))dt + /w2n71(¢_1(a\t—§2n,1}m|) dt+

t1 ty

n 12
+ Z/w2n—2j+1 (Q] (t - §2n—2j+1,'m)2) dt+

j:2t1

n 2
+Z/w2n—2j(Pjt) dt (331)

j=1 t1

for m € N. By (H3), h(t,2n(1+W)) € L1[0,T] and wo,—1(¢71(s)), we;(s),0 < j <
<n—1, wyyi1(s?), 0 < i < n— 2, are locally integrable on [0, 00). From these facts
and from (3.31) and from the relations

ty

/W2n71 (07 (alt — Eon—1ml)) dt =

t1

a(€2n—1,m—t1)

1 .
p / wan—1(¢7 (1)) dt, ittt < &on—1,m,
a(§2n—1,m—12)

a(€an—1,m—t1)

1
- / wan—1(¢7(t)) dt+
0
a(ta—&2n—1,m)
+ / Wan—1 (¢71(t)) dt lf tl < £2n—1,m < t2;
0

a(tz—&2n—1,m)

p wan—1(¢~"(t)) dt it Son—1,m <t

a(tl_f2n—1,m)

S|

—_

to

/w2n72j+1 (Qj(t = on—2j11,m)?) dt =

ty
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VQj(&2n—2j+1,m—1t1)

1 .
Wan—oj+1(t?) dt ittty < &an—2j+1,m»

V@;
Qi (62n—2j11,m—t2)

@(EQW,—2_7+1,m/_tl)

W2n—2j+1 (tQ) dt +

1

V@i

(=)

\/Qij(tQ_EQn—2j+1,m,)

+ Wan—2j4+1(t?) dt it t1 <&on—2j41,m < t2,

\/Q>j(t2_52n—2j+1,'m,)

1 .
wan—2j+1(t%) dt if &on—2j+1,m < t1,

V@i
VQi(t1—82n—2j+1,m)

it follows that {¢(u£§n71))} is equicontinuous on [0, 7"]. We now deduce the equiconti-

nuity of {u{Z" "} on [0, T] from the equality

lul D (k) — ulr ™ ()| = ’¢71(¢(U53"71)(t2))) - ¢71(¢(u55”71)(t1))))
for 0 < t; <ty <T, m € N, and the facts that {¢(ugn71))} is bounded in C°[0, T
and ¢! is continuous and increasing on R.

The lemma is proved.

3.3. Existence result and an example. The main result is presented in the following
theorem.

Theorem 3.1. Let (Hy)-(Hs) hold. Then problem (1.4), (1.5) has a solution u €
e C*10,T], p(u®=D) € AC[0,T) and (—1)*u®*) > 00n (0, T], u® D (£341) =
=0for 0 <k <n—1where 11 € (0,T).

Proof. By Lemma 3.4, for each m € N there exists a solution u,, of problem (3.23),
(1.5). Consider the sequence {u,,}. Then inequality (3.24) is satisfied with a positive
constant W and since u,,, € B,, Lemma 3.2 guarantees the existence of {§2j+1,m}?:_01 C
C (0,T) such that (3.29) and (30) hold for ¢t € [0,7] and m € N, where Q; and P;
are given in (3.19). Moreover, the sequence {u2"~!} is equicontinuous on [0,7] by
Lemma 3.4. Hence there exist a subsequence {uy, } converging in C?"~1[0, 7] and a
subsequence {€2j41,k,, }» 1 < j < n—1, converging in R. Let lim,, o ug,, = v and
limy, oo £2j41,k,, = 2541, 1 <7 < n—1. Letting m — oo in (3.24), (3.29) and (3.30)
(with k., instead of m) yields (for ¢ € [0,77])

@D (8)| > ¢ (alt — Ean—r),
u(2j+1) (£2j+1) = 0 fOI‘ O S] S n— 17
’u(2”_2j+1)(t)’ > Q,(t —&an—2j11)? for 2<j<n-—1,

[uP | <W for 0<j<2n—1

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 2



258 S. STANEK

and
(—1)"Hun=20(t) > Pt for 1< j <n. (3.32)
Hence ©7) has exactly one zero in [0,7] for 0 <j <2n—1and
i fi, (8, ur,, (1), () =
= f(t,u(t),...,u® V(1)) forae te[0,T]

In addition, by (3.32), (—1)*u(**) > 0 on (0,7] and (—1)*Fu®*+)(0) > P, 1, > 0
for 0 < k < n — 1. Hence (—1)*u**+1)(T) < 0 for 0 < k < n — 1 by (1.5), which
combining with (—1)*u(2**1(0) > 0 implies o1 € (0,7) for 0 < k < n — 1.
Finally, having in mind the definition of the function f,,, and inequality (3.16) we have

0 S fm(t7m07 .. ~1‘r2n71) S Q(t» ‘.’L’O|, ey |x2n71|)

forae. t€[0,7] andall (2¢,...,29, 1) € RZ"

2n—1 2n—1

where ¢(t,zo,...,2on-1) = h <t,2n+ ijo xj> + X imo wilwy) for t € [0, 7]
and (zo,...,T2,—1) € R3". Clearly, ¢ € Car([0,T] x R2"). Hence problem (1.4),
(1.5) satisfies the assumptions of Theorem 2.2 with p = 2n, g = (=1)"f, gm = fim
(that is ¥ = (—1)™ in (2.11)) and with the boundary conditions (3.25) which are the
special case of the boundary conditions (1.2). Consequently, Theorem 2.2 guarantees
that ¢(u(>"~1)) € AC[0,T) and u is a solution of problem (1.4), (1.5).

The theorem is proved.

Example 3.1. Letp > 1, agpq € (0,p—1), agj € (0,1) for 0 < j <n-—1,
iyl € (0, ;) for0 < j<n-—2 0 € (0,p—1), ¢, >0, dr € L1[0,T] for

0 < k < 2n —1, di is nonnegative and r € L1[0,T], r(t) > a > 0 for a.e. t € [0,T].
Consider the differential equation

2n—1
_1\n (], (2n—1)p—2, (2n—1)\/ _ Ck (k) |8
(—1)"(Ju P2y ) =r(t) + kz_o (|u(k)|ak + djs () [P k). (3.33)
Equation (3.33) satisfies conditions (H;)—(H3) with ¢(v) = |[v[P~2v, h(t,v) = r(t) +
2n—1
+ (2n+v7)Z‘LO di(t) where v = max{f;: 0 < k < 2n -1} < p—1 and
=
wr(v) = %, 0 < k < 2n — 1. Hence Theorem 3.1 guarantees that problem (3.33),

(1.5) has a solution v € C?"~1[0,T], ¢(u**~D) € AC[0,T] and (—1)*u(**) > 0 on
(0,7, uP D (€911) = 0 for 0 < k < n — 1 where &9,41 € (0,T).
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