S. Staněk (Palacký Univ., Czech Republic)

EXISTENCE PRINCIPLES FOR HIGHER ORDER NONLOCAL BOUNDARY-VALUE PROBLEMS AND THEIR APPLICATIONS TO SINGULAR STURM - LIOUVILLE PROBLEMS*
 ПРИНЦИПИ ІСНУВАННЯ ДЛЯ НЕЛОКАЛЬНИХ ГРАНИЧНИХ ЗАДАЧ ВИЩОГО ПОРЯДКУ ТА ЇХ ЗАСТОСУВАННЯ ДО СИНГУЛЯРНИХ ЗАДАЧ ШТУРМА - ЛІУВІЛЛЯ

The paper presents existence principles for the nonlocal boundary-value problem $\left(\phi\left(u^{(p-1)}\right)\right)^{\prime}=$ $=g\left(t, u, \ldots, u^{(p-1)}\right), \alpha_{k}(u)=0,1 \leq k \leq p-1$, where $p \geq 2, \phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing and odd homeomorphism, g is a Carathéodory function which is either regular or has singularities in its space variables and $\alpha_{k}: C^{p-1}[0, T] \rightarrow \mathbb{R}$ is a continuous functional. An application of the existence principles to singular Sturm-Liouville problems $(-1)^{n}\left(\phi\left(u^{(2 n-1)}\right)\right)^{\prime}=f\left(t, u, \ldots, u^{(2 n-1)}\right), u^{(2 k)}(0)=0$, $a_{k} u^{(2 k)}(T)+b_{k} u^{(2 k+1)}(T)=0,0 \leq k \leq n-1$, is given.

Наведено принципи існування для нелокальної граничної задачі $\left(\phi\left(u^{(p-1)}\right)\right)^{\prime}=g\left(t, u, \ldots, u^{(p-1)}\right)$, $\alpha_{k}(u)=0,1 \leq k \leq p-1$, де $p \geq 2, \phi: \mathbb{R} \rightarrow \mathbb{R}$ - гомеоморфізм, що зростає і ϵ непарним, $g-$ функція Каратеодорі, що або є регулярною, або має особливості за своїми просторовими змінними, а $\alpha_{k}: C^{p-1}[0, T] \rightarrow \mathbb{R}$ - неперервний функціонал. Показано застосування принципів існування до сингулярних задач Штурма - Ліувілля $(-1)^{n}\left(\phi\left(u^{(2 n-1)}\right)\right)^{\prime}=f\left(t, u, \ldots, u^{(2 n-1)}\right), u^{(2 k)}(0)=0$, $a_{k} u^{(2 k)}(T)+b_{k} u^{(2 k+1)}(T)=0,0 \leq k \leq n-1$.

1. Introduction. Let $T>0$ and let $\mathbb{R}_{-}=(-\infty, 0), \mathbb{R}_{+}=(0, \infty)$ and $\mathbb{R}_{0}=\mathbb{R} \backslash\{0\}$. As usual, $C^{j}[0, T]$ denotes the set of functions having the j th derivative continuous on $[0, T] . A C[0, T]$ and $L_{1}[0, T]$ is the set of absolutely continuous functions on $[0, T]$ and Lebesgue integrable functions on $[0, T]$, respectively. $C^{0}[0, T]$ and $L_{1}[0, T]$ is equipped with the norm

$$
\|x\|=\max \{|x(t)|: t \in[0, T]\} \quad \text { and } \quad\|x\|_{L}=\int_{0}^{T}|x(t)| d t
$$

respectively.
Assume that $G \subset \mathbb{R}^{p}, p \geq 2$. $\operatorname{Car}([0, T] \times G)$ stands for the set of functions $f:[0, T] \times G \rightarrow \mathbb{R}$ satisfying the local Caratéodory conditions on $[0, T] \times G$, that is: (i) for each $\left(x_{0}, \ldots, x_{p-1}\right) \in G$, the function $f\left(\cdot, x_{0}, \ldots, x_{p-1}\right):[0, T] \rightarrow \mathbb{R}$ is measurable; (ii) for a.e. $t \in[0, T]$, the function $f(t, \cdot, \ldots, \cdot): G \rightarrow \mathbb{R}$ is continuous; (iii) for each compact set $K \subset G, \sup \left\{\left|f\left(t, x_{0}, \ldots, x_{p-1}\right)\right|:\left(x_{0}, \ldots, x_{p-1}\right) \in K\right\} \in L_{1}[0, T]$.

Let $p \in \mathbb{N}, p \geq 2$. Denote by \mathcal{A} the set of functionals $\alpha: C^{p-1}[0, T] \rightarrow \mathbb{R}$ which are
(a) continuous and
(b) bounded, that is, $\alpha(\Omega)$ is bounded for any bounded $\Omega \subset C^{p-1}[0, T]$.

[^0]Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing and odd homeomorphism and let either $g \in \operatorname{Car}([0, T] \times$ $\left.\times \mathbb{R}^{p}\right)$ or $g \in \operatorname{Car}\left([0, T] \times \mathcal{D}_{*}\right), \mathcal{D}_{*} \subset \mathbb{R}^{p}$ and has singularities only at the value 0 of its space variables. Consider the nonlocal boundary-value problem

$$
\begin{gather*}
\left(\phi\left(u^{(p-1)}\right)\right)^{\prime}=g\left(t, u, \ldots, u^{(p-1)}\right), \tag{1.1}\\
\alpha_{k}(u)=0, \quad \alpha_{k} \in \mathcal{A}, \quad 0 \leq k \leq p-1, \tag{1.2}
\end{gather*}
$$

where α_{k} satisfy a compatibility condition that for each $\mu \in[0,1]$ there exists a solution of the problem

$$
\left(\phi\left(u^{(p-1)}\right)\right)^{\prime}=0, \quad \alpha_{k}(u)-\mu \alpha_{k}(-u)=0, \quad 0 \leq k \leq p-1 .
$$

This problem is equivalent to the fact that the system

$$
\begin{equation*}
\alpha_{k}\left(\sum_{i=0}^{p-1} A_{i} t^{i}\right)-\mu \alpha_{k}\left(-\sum_{i=0}^{p-1} A_{i} t^{i}\right)=0, \quad 0 \leq k \leq p-1, \tag{1.3}
\end{equation*}
$$

has a solution $\left(A_{0}, \ldots, A_{p-1}\right) \in \mathbb{R}^{p}$ for each $\mu \in[0,1]$.
We say that $u \in C^{p-1}[0, T]$ is a solution of problem (1.1), (1.2) if $\phi\left(u^{(p-1)}\right) \in$ $\in A C[0, T], u$ satisfies (1.2) and fulfils $\left(\phi\left(u^{(p-1)}(t)\right)\right)^{\prime}=g\left(t, u(t), \ldots, u^{(p-1)}(t)\right)$ for a.e. $t \in[0, T]$.

The aim of this paper is

1) to present existence principles for problem (1.1), (1.2) in a regular and a singular case and
2) to give an application of these existence principles to singular Sturm-Liouville boundary-value problems.

Notice that our existence principles stand a generalization of those obtained for second-order differential equations with ϕ-Laplacian in [1, 2].

Our Sturm-Liouville problem consisting of the differential equation

$$
\begin{equation*}
(-1)^{n}\left(\phi\left(u^{(2 n-1)}\right)\right)^{\prime}=f\left(t, u, \ldots, u^{(2 n-1)}\right) \tag{1.4}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
u^{(2 k)}(0)=0, \quad a_{k} u^{(2 k)}(T)+b_{k} u^{(2 k+1)}(T)=0, \quad 0 \leq k \leq n-1 . \tag{1.5}
\end{equation*}
$$

Here $n \geq 2, \phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing homeomorphism, $f \in \operatorname{Car}([0, T] \times \mathcal{D})$ is positive where

$$
\mathcal{D}= \begin{cases}\underbrace{\mathbb{R}_{+} \times \mathbb{R}_{0} \times \mathbb{R}_{-} \times \mathbb{R}_{0} \times \ldots \times \mathbb{R}_{+} \times \mathbb{R}_{0}}_{4 \ell-2} & \text { if } \quad n=2 \ell-1, \\ \underbrace{\mathbb{R}_{+} \times \mathbb{R}_{0} \times \mathbb{R}_{-} \times \mathbb{R}_{0} \times \ldots \times \mathbb{R}_{-} \times \mathbb{R}_{0}}_{4 \ell} & \text { if } n=2 \ell,\end{cases}
$$

f may be singular at the value 0 of all its space variables and

ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 2

$$
\begin{equation*}
a_{k}>0, \quad b_{k}>0, \quad a_{k} T+b_{k}=1 \quad \text { for } \quad 0 \leq k \leq n-1 . \tag{1.6}
\end{equation*}
$$

We say that a function $u \in C^{2 n-1}[0, T]$ is a solution of problem (1.4), (1.5) if $\phi\left(u^{(2 n-1)}\right) \in A C[0, T], u$ satisfies the boundary conditions (1.5) and fulfils the equality $(-1)^{n}\left(\phi\left(u^{(2 n-1)}(t)\right)\right)^{\prime}=f\left(t, u(t), \ldots, u^{(2 n-1)}(t)\right)$ for a.e. $t \in[0, T]$.

Singular problems of the Sturm - Liouville type for higher order differential equations were considered in [3-5]. In [3] the authors discuss the differential equation $u^{(n)}+$ $+h_{1}\left(t, u, \ldots, u^{(n-2)}\right)=0$ together with the boundary conditions

$$
\begin{gather*}
u^{(j)}(0)=0, \quad 0 \leq j \leq n-3 \tag{1.7}\\
\alpha u^{(n-2)}(0)-\beta u^{(n-1)}(0)=0, \quad \gamma u^{(n-2)}(1)+\delta u^{(n-1)}(1)=0,
\end{gather*}
$$

where $\alpha \gamma+\alpha \delta+\beta \gamma>0, \beta, \delta \geq 0, \beta+\alpha>0, \delta+\gamma>0$ and $h_{1} \in C^{0}\left((0,1) \times \mathbb{R}_{+}^{n-1}\right)$ is positive. The existence of a positive solution $u \in C^{n-1}[0,1] \cap C^{n}(0,1)$ is proved by a fixed point theorem for mappings that are decreasing with respect to a cone in a Banach space. Paper [4] deals with the problem $u^{(n)}+h_{2}\left(t, u, \ldots, u^{(n-1)}\right)=0$, (1.7), where $h_{2} \in \operatorname{Car}\left([0, T] \times \mathcal{D}_{*}\right), \mathcal{D}_{*}=\mathbb{R}_{+}^{n-1} \times \mathbb{R}_{0}$, is positive. The existence of a positive solution $u \in A C^{n-1}[0, T]$ is proved by a combination of regularization and sequential techniques with a Fredholm type existence theorem. In [5], by constructing some special cones and using a Krasnoselskii fixed point on a cone, the existence of a positive solution $u \in C^{4 n-2}[0,1] \cap C^{4 n}(0,1)$ is proved for problem $u^{(4 n)}=h_{3}\left(t, u, u^{(4 n-2)}\right), u(0)=$ $=u(1)=0, a u^{(2 k)}(0)-b u^{(2 k+1)}(0)=0, c u^{(2 k)}(1)+d u^{(2 k+1)}(1)=0,1 \leq k \leq 2 n-1$. Here $h_{3} \in C\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}_{-}\right)$is nonnegative, a, b, c, d are nonnegative constants and $a c+a d+b c>0$.

To the best our knowledge, there is no paper considering singular problems of the Sturm-Liouville type in our generalization (1.4), (1.5). In addition, any solution u of problem (1.4), (1.5) has the maximal smoothness, u and its even derivatives $(\leq 2 n-2)$ 'start' at the singular points of f and its odd derivatives $(\leq 2 n-1)$ 'go throughout' singularities of f somewhere inside of $[0, T]$.

Throughout the paper we work with the following conditions on the functions ϕ and f in equation (1.4):
$\left(H_{1}\right) \phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing and odd homomorphism such that $\phi(\mathbb{R})=\mathbb{R}$,
$\left(H_{2}\right) f \in \operatorname{Car}([0, T] \times \mathcal{D})$ and there exists $a>0$ such that

$$
a \leq f\left(t, x_{0}, \ldots, x_{2 n-1}\right)
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathcal{D}$,
$\left(H_{3}\right) f\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq h\left(t, \sum_{j=0}^{2 n-1}\left|x_{j}\right|\right)+\sum_{j=0}^{2 n-1} \omega_{j}\left(\left|x_{j}\right|\right)$ for a.e. $t \in$ $\in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathcal{D}$, where $h \in \operatorname{Car}([0, T] \times[0, \infty))$ is positive and nondecreasing in the second variable, $\omega_{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is nonincreasing,

$$
\begin{equation*}
\limsup _{v \rightarrow \infty} \frac{1}{\phi(v)} \int_{0}^{T} h(t, 2 n+K v) d t<1 \tag{1.8}
\end{equation*}
$$

with

$$
K= \begin{cases}2 n & \text { if } \quad T=1 \tag{1.9}\\ \frac{T^{2 n}-1}{T-1} & \text { if } \quad T \neq 1\end{cases}
$$

and

$$
\begin{gathered}
\int_{0}^{1} \omega_{2 n-1}\left(\phi^{-1}(s)\right) d s<\infty, \quad \int_{0}^{1} \omega_{2 j}(s) d s<\infty \quad \text { for } 0 \leq j \leq n-1 \\
\int_{0}^{1} \omega_{2 j+1}\left(s^{2}\right) d s<\infty \quad \text { for } \quad 0 \leq j \leq n-2
\end{gathered}
$$

Remark 1.1. If ϕ satisfies $\left(H_{1}\right)$ then $\phi(0)=0$. Under assumption $\left(H_{3}\right)$ the functions $\omega_{2 n-1}\left(\phi^{-1}(s)\right), \omega_{2 j}(s), 0 \leq j \leq n-1$, and $\omega_{2 i+1}\left(s^{2}\right), 0 \leq i \leq n-2$, are locally Lebesgue integrable on $[0, \infty)$ since $\omega_{k}, 0 \leq k \leq 2 n-1$, is nonincreasing and positive on \mathbb{R}_{+}.

The rest of the paper is organized as follows. In Section 2, we present existence principles for a regular and a singular problem (1.1), (1.2). The regular existence principle is proved by the Leray-Schauder degree (see, e.g., [6]). An application of both principles is given in Section 3 to the Sturm-Liouville problem (1.4), (1.5).
2. Existence principles. The following result states conditions for solvability of problem (1.1), (1.2) where g in equation (1.1) is regular.

Theorem 2.1. Let $\left(H_{1}\right)$ hold. Let $g \in \operatorname{Car}\left([0, T] \times \mathbb{R}^{p}\right)$ and $\varphi \in L_{1}[0, T]$. Suppose that there exists a positive constant L independent of λ such that

$$
\left\|u^{(j)}\right\|<L, \quad 0 \leq j \leq p-1,
$$

for all solutions u of the differential equations

$$
\begin{align*}
\left(\phi\left(u^{(p-1)}\right)\right)^{\prime} & =(1-\lambda) \varphi(t), \quad \lambda \in[0,1], \tag{2.1}\\
\left(\phi\left(u^{(p-1)}\right)\right)^{\prime} & =\lambda g\left(t, u, \ldots, u^{(p-1)}\right)+(1-\lambda) \varphi(t), \quad \lambda \in[0,1], \tag{2.2}
\end{align*}
$$

satisfying the boundary conditions (1.2). Also assume that there exists a positive constant Λ such that

$$
\begin{equation*}
\left|A_{j}\right|<\Lambda, \quad 0 \leq j \leq p-1, \tag{2.3}
\end{equation*}
$$

for all solutions $\left(A_{0}, \ldots, A_{p-1}\right) \in \mathbb{R}^{p}$ of system (1.3) with $\mu \in[0,1]$.
Then problem (1.1), (1.2) has a solution $u \in C^{p-1}[0, T], \phi\left(u^{(p-1)}\right) \in A C[0, T]$.
Proof. Let

$$
\Omega=\left\{x \in C^{p-1}[0, T]:\left\|x^{(j)}\right\|<\max \left\{L, \Lambda K_{1}\right\} \text { for } 0 \leq j \leq p-1\right\}
$$

where

$$
K_{1}= \begin{cases}p & \text { if } T=1 \\ \frac{T^{p}-1}{T-1} & \text { if } T \neq 1\end{cases}
$$

Then Ω is an open and symmetric with respect to $0 \in C^{p-1}[0, T]$ subset of the Banach space $C^{p-1}[0, T]$. Define an operator $\mathcal{P}:[0,1] \times \bar{\Omega} \rightarrow C^{p-1}[0, T]$ by the formula

$$
\begin{align*}
\mathcal{P}(\rho, x)(t)=\int_{0}^{t} \frac{(t-s)^{p-2}}{(p-2)!} \phi^{-1} & \left(\phi\left(x^{(p-1)}(0)+\alpha_{p-1}(x)\right)+\int_{0}^{s} V(\rho, x)(v) d v\right) d s+ \\
& +\sum_{j=0}^{p-2} \frac{x^{(j)}(0)+\alpha_{j}(x)}{j!} t^{j} \tag{2.4}
\end{align*}
$$

where $V(\rho, x)(t)=\rho g\left(t, x(t), \ldots, x^{(p-1)}(t)\right)+(1-\rho) \varphi(t)$. It follows from the continuity of ϕ and $\alpha_{j}, 0 \leq j \leq p-1, g \in \operatorname{Car}\left([0, T] \times \mathbb{R}^{p}\right)$ and from the Lebesgue dominated convergence theorem that \mathcal{P} is a continuous operator. We now prove that $\mathcal{P}([0, T] \times \bar{\Omega})$ is relatively compact in $C^{p-1}[0, T]$. Notice that the boundedness of $\bar{\Omega}$ in $C^{p-1}[0, T]$ guarantees the existence of a positive constant r and a $\psi \in L_{1}[0, T]$ such that $\left|\alpha_{k}(x)\right| \leq r$ and $\left|g\left(t, x(t), \ldots, x^{(p-1)}(t)\right)\right| \leq \psi(t)$ for a.e. $t \in[0, T]$ and all $x \in \bar{\Omega}$, $0 \leq k \leq p-1$. Then

$$
\begin{gathered}
\left|(\mathcal{P}(\rho, x))^{(j)}(t)\right| \leq\left(r+\max \left\{L, \Lambda K_{1}\right\}\right) \sum_{i=0}^{p-j-2} \frac{T^{i}}{i!}+ \\
+\frac{T^{p-j-1}}{(p-j-2)!} \phi^{-1}\left(\phi\left(r+\max \left\{L, \Lambda K_{1}\right\}\right)+\|\psi\|_{L}+\|\varphi\|_{L}\right) \\
\left|(\mathcal{P}(\rho, x))^{(p-1)}(t)\right| \leq \phi^{-1}\left(\phi\left(r+\max \left\{L, \Lambda K_{1}\right\}\right)+\|\psi\|_{L}+\|\varphi\|_{L}\right), \\
\left|\phi\left((\mathcal{P}(\rho, x))^{(p-1)}\left(t_{2}\right)\right)-\phi\left((\mathcal{P}(\rho, x))^{(p-1)}\left(t_{1}\right)\right)\right| \leq\left|\int_{t_{1}}^{t_{2}}(\psi(s)+|\varphi(s)|) d s\right|
\end{gathered}
$$

for $t, t_{1}, t_{2} \in[0, T],(\rho, x) \in[0, T] \times \bar{\Omega}$ and $0 \leq j \leq n-2$. Hence $\mathcal{P}([0, T] \times$ $\times \bar{\Omega})$ is bounded in $C^{p-1}[0, T]$ and the set $\left\{\phi\left((\mathcal{P}(\rho, x))^{(p-1)}\right):(\rho, x) \in[0,1] \times \bar{\Omega}\right\}$ is equicontinuous on $[0, T]$. Since $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is increasing and continuous, the set $\left\{(\mathcal{P}(\rho, x))^{(p-1)}:(\rho, x) \in[0,1] \times \bar{\Omega}\right\}$ is equicontinuous on $[0, T]$ too. Now, by the Arzelà-Ascoli theorem, $\mathcal{P}([0,1] \times \bar{\Omega})$ is relatively compact in $C^{p-1}[0, T]$. We have proved that \mathcal{P} is a compact operator.

Suppose that x_{*} is a fixed point of the operator $\mathcal{P}(1, \cdot)$. Then

$$
\begin{gathered}
x_{*}(t)=\sum_{j=0}^{p-2} \frac{x_{*}^{(j)}(0)+\alpha_{j}\left(x_{*}\right)}{j!} t^{j}+\int_{0}^{t} \frac{(t-s)^{p-2}}{(p-2)!} \phi^{-1} \times \\
\times\left(\phi\left(x_{*}^{(p-1)}(0)+\alpha_{p-1}\left(x_{*}\right)\right)+\int_{0}^{s} g\left(v, x_{*}(v), \ldots, x_{*}^{(p-1)}(v)\right) d v\right) d s
\end{gathered}
$$

for $t \in[0, T]$. Hence $\alpha_{k}\left(x_{*}\right)=0$ for $0 \leq k \leq p-1$ and x_{*} is a solution of equation (1.1). Consequently, x_{*} is a solution of problem (1.1), (1.2). In order to prove the assertion of our theorem it suffices to show that

$$
\begin{equation*}
\operatorname{deg}(\mathcal{I}-\mathcal{P}(1, \cdot), \Omega, 0) \neq 0 \tag{2.5}
\end{equation*}
$$

where "deg" stands for the Leray - Schauder degree and \mathcal{I} is the identical operator on $C^{p-1}[0, T]$. To show this let the compact operator $\mathcal{K}:[0,2] \times \bar{\Omega} \rightarrow C^{p-1}[0, T]$ be defied by
$\mathcal{K}(\mu, x)(t)= \begin{cases}\sum_{j=0}^{p-1}\left[x^{(j)}(0)+\alpha_{j+1}(x)-(1-\mu) \alpha_{j}(-x)\right] \frac{t^{j}}{j!} & \text { if } \mu \in[0,1], \\ \int_{0}^{t} \frac{(t-s)^{p-2}}{(p-2)!} \phi^{-1}\left(\phi\left(x^{(p-1)}(0)+\alpha_{p-1}(x)\right)+\right. & \\ \left.+(\mu-1) \int_{0}^{s} \varphi(v) d v\right) d s+\sum_{j=0}^{p-2} \frac{x^{(j)}(0)+\alpha_{j}(x)}{j!} t^{j} & \text { if } \mu \in(1,2] .\end{cases}$
Then $\mathcal{K}(0, \cdot)$ is odd (that is $\mathcal{K}(0,-x)=-\mathcal{K}(0, x)$ for $x \in \bar{\Omega})$ and

$$
\begin{equation*}
\mathcal{K}(2, x)=\mathcal{P}(0, x) \quad \text { for } \quad x \in \bar{\Omega} \tag{2.6}
\end{equation*}
$$

Assume that $\mathcal{K}\left(\mu_{0}, u_{0}\right)=u_{0}$ for some $\left(\mu_{0}, u_{0}\right) \in[0,1] \times \bar{\Omega}$. Then

$$
u_{0}(t)=\sum_{j=0}^{p-1}\left[u_{0}^{(j)}(0)+\alpha_{j}\left(u_{0}\right)-\left(1-\mu_{0}\right) \alpha_{j}\left(-u_{0}\right)\right] \frac{t^{j}}{j!}, \quad t \in[0, T]
$$

and therefore $u_{0}(t)=\sum_{j=0}^{p-1} \tilde{A}_{j} \frac{t^{j}}{j!}$ where $\tilde{A}_{j}=u_{0}^{(j)}(0)+\alpha_{j}\left(u_{0}\right)-\left(1-\mu_{0}\right) \alpha_{j}\left(-u_{0}\right)$. Consequently, $u_{0}^{(j)}(0)=\tilde{A}_{j}$ and so $\alpha_{j}\left(u_{0}\right)-\left(1-\mu_{0}\right) \alpha_{j}\left(-u_{0}\right)=0$ for $0 \leq j \leq p-1$, which means

$$
\alpha_{k}\left(\sum_{j=0}^{p-1} \tilde{A}_{j} \frac{t^{j}}{j!}\right)-\left(1-\mu_{0}\right) \alpha_{k}\left(-\sum_{j=0}^{p-1} \tilde{A}_{j} \frac{t^{j}}{j!}\right)=0, \quad 0 \leq k \leq p-1 .
$$

Then, by our assumption, $\left|\frac{\tilde{A}_{j}}{j!}\right|<\Lambda$ for $0 \leq j \leq p-1$ and we have

$$
\left\|u_{0}^{(j)}\right\|<\Lambda \sum_{j=0}^{p-1} T^{j}=\Lambda K_{1}, \quad 0 \leq j \leq p-1
$$

Hence $u_{0} \notin \partial \Omega$ and therefore, by the Borsuk antipodal theorem and the homotopy property,

$$
\begin{equation*}
\operatorname{deg}(\mathcal{I}-\mathcal{K}(0, \cdot), \Omega, 0) \neq 0 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg}(\mathcal{I}-\mathcal{K}(0, \cdot), \Omega, 0)=\operatorname{deg}(\mathcal{I}-\mathcal{K}(1, \cdot), \Omega, 0) \tag{2.8}
\end{equation*}
$$

We come to show that

$$
\begin{equation*}
\operatorname{deg}(\mathcal{I}-\mathcal{K}(1, \cdot), \Omega, 0)=\operatorname{deg}(\mathcal{I}-\mathcal{K}(2, \cdot), \Omega, 0) \tag{2.9}
\end{equation*}
$$

If $\mathcal{K}\left(\mu_{1}, u_{1}\right)=u_{1}$ for some $\left(\mu_{1}, u_{1}\right) \in(1,2] \times \bar{\Omega}$ then

$$
\begin{gathered}
u_{1}(t)=\sum_{j=0}^{p-2} \frac{u_{1}^{(j)}(0)+\alpha_{j}\left(u_{1}\right)}{j!} t^{j}+ \\
+\int_{0}^{t} \frac{(t-s)^{p-2}}{(p-2)!} \phi^{-1}\left(\phi\left(u_{1}^{(p-1)}(0)+\alpha_{p-1}\left(u_{1}\right)\right)+\left(\mu_{1}-1\right) \int_{0}^{s} \varphi(v) d v\right) d s
\end{gathered}
$$

for $t \in[0, T]$. Hence u_{1} satisfies the boundary conditions (1.2) and u_{1} is a solution of the differential equation (2.1) with $\lambda=2-\mu_{1} \in[0,1)$. By our assumptions, $\left\|u_{1}^{(j)}\right\|<L$ for $0 \leq j \leq p-1$. Therefore $u_{1} \notin \partial \Omega$ and equality (2.9) follows from the homotopy property. Finally, suppose that $\mathcal{P}(\tilde{\rho}, \tilde{u})=\tilde{u}$ for some $(\tilde{\rho}, \tilde{u}) \in[0,1] \times \bar{\Omega}$. Then \tilde{u} is a solution of problem (2.2), (1.2) with $\lambda=\tilde{\rho}$ and therefore $\left\|\tilde{u}^{(j)}\right\|<L$ for $0 \leq j \leq p-1$. Hence $\tilde{u} \notin \partial \Omega$ and, by the homotopy property, $\operatorname{deg}(\mathcal{I}-\mathcal{P}(0, \cdot), \Omega, 0)=\operatorname{deg}(\mathcal{I}-\mathcal{P}(1, \cdot), \Omega, 0)$. From this and from (2.6)-(2.9) it follows that (2.5) holds, which completes the proof.

Remark 2.1. If functional $\alpha_{k} \in \mathcal{A}$ is linear for $0 \leq k \leq p-1$ then system (1.3) has the form

$$
\sum_{j=0}^{p-1} A_{j} \alpha_{k}\left(t^{j}\right)=0, \quad 0 \leq k \leq p-1
$$

All of its solutions $\left(A_{0}, \ldots, A_{p-1}\right) \in \mathbb{R}^{p}$ are bounded exactly if $\operatorname{det}\left(\alpha_{k}\left(t^{j}\right)\right)_{k, j=0}^{p-1} \neq 0$ (and then $A_{j}=0$ for $0 \leq j \leq p-1$), which is equivalent to the fact that problem $\left(\phi\left(u^{(p-1)}\right)\right)^{\prime}=0,(1.2)$ has only the trivial solution.

If the function $g \in \operatorname{Car}\left([0, T] \times \mathcal{D}_{*}\right), \mathcal{D}_{*} \subset \mathbb{R}^{p}$ in equation (1.1) has singularities only at the value 0 of its space variables, then the following result for the solvability of problem (1.1), (1.2) holds.

Theorem 2.2. Let condition $\left(H_{1}\right)$ hold. Let $g \in \operatorname{Car}\left([0, T] \times \mathcal{D}_{*}\right), \mathcal{D}_{*} \subset \mathbb{R}^{p}$, have singularities only at the value 0 of its space variables. Let the function $g_{m} \in$ $\in \operatorname{Car}\left([0, T] \times \mathbb{R}^{p}\right)$ in the differential equation

$$
\begin{equation*}
\left(\phi\left(u^{(p-1)}\right)\right)^{\prime}=g_{m}\left(t, u, \ldots, u^{(p-1)}\right) \tag{2.10}
\end{equation*}
$$

satisfy

$$
\left\{\begin{array}{l}
0 \leq \nu g_{m}\left(t, x_{0}, \ldots, x_{p-1}\right) \leq q\left(t,\left|x_{0}\right|, \ldots,\left|x_{p-1}\right|\right) \tag{2.11}\\
\text { for a.e. } t \in[0, T] \quad \text { and all } \quad\left(x_{0}, \ldots, x_{p-1}\right) \in \mathbb{R}_{0}^{p}, \quad m \in \mathbb{N} \\
\text { where } \quad q \in \operatorname{Car}\left([0, T] \times \mathbb{R}_{+}^{p}\right) \quad \text { and } \quad \nu \in\{-1,1\}
\end{array}\right.
$$

Suppose that for each $m \in \mathbb{N}$, the regular problem (2.10), (1.2) has a solution u_{m} and there exists a subsequence $\left\{u_{k_{m}}\right\}$ of $\left\{u_{m}\right\}$ converging in $C^{p-1}[0, T]$ to some u.

Then $\phi\left(u^{(p-1)}\right) \in A C[0, T]$ and u is a solution of the singular problem (1.1), (1.2) if $u^{(j)}$ has a finite number of zeros for $0 \leq j \leq p-1$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} g_{k_{m}}\left(t, u_{k_{m}}(t), \ldots, u_{k_{m}}^{(p-1)}(t)\right)=g\left(t, u(t), \ldots, u^{(p-1)}(t)\right) \tag{2.12}
\end{equation*}
$$

for a.e. $t \in[0, T]$.
Proof. Assume that (2.12) holds for a.e. $t \in[0, T]$ and let $0 \leq \xi_{1}<\ldots<\xi_{\ell} \leq T$ are all zeros of $u^{(j)}$ for $0 \leq j \leq p-1$. Since $\left\|u_{k_{m}}^{(j)}\right\| \leq L$ for each $m \in \mathbb{N}$ and $0 \leq j \leq p-1$, where L is a positive constant, it follows that

$$
\int_{0}^{T} \nu g_{k_{m}}\left(t, u_{k_{m}}(t), \ldots, u_{k_{m}}^{(p-1)}(t)\right) d t=\nu\left[\phi\left(u_{k_{m}}^{(p-1)}(T)\right)-\phi\left(u_{k_{m}}^{(p-1)}(0)\right)\right] \leq 2 \phi(L)
$$

for $m \in \mathbb{N}$. Now (2.11), (2.12) and the Fatou lemma [7, 8] give

$$
\int_{0}^{T} \nu g\left(t, u(t), \ldots, u^{(p-1)}(t)\right) d t \leq 2 \phi(L)
$$

Hence $\nu g\left(t, u(t), \ldots, u^{(p-1)}(t)\right) \in L_{1}[0, T]$ and so $g\left(t, u(t), \ldots, u^{(p-1)}(t)\right) \in L_{1}[0, T]$. Put $\xi_{0}=0$ and $\xi_{\ell+1}=T$. We show that the equality

$$
\begin{equation*}
\phi\left(u^{(p-1)}(t)\right)=\phi\left(u^{(p-1)}\left(\frac{\xi_{i+1}+\xi_{i}}{2}\right)\right)+\int_{\left(\xi_{i+1}+\xi_{i}\right) / 2}^{t} g\left(s, u(s), \ldots, u^{(p-1)}(s)\right) d s \tag{2.13}
\end{equation*}
$$

is satisfied on $\left[\xi_{i}, \xi_{i+1}\right]$ for each $i \in\{0, \ldots, \ell\}$ such that $\xi_{i}<\xi_{i+1}$. Indeed, let $i \in$ $\in\{0, \ldots, \ell\}, \xi_{i}<\xi_{i+1}$. Choose an arbitrary $\rho \in\left(0, \frac{\xi_{i+1}+\xi_{i}}{2}\right)$ and let us look at the interval $\left[\xi_{i}+\rho, \xi_{i+1}-\rho\right]$. We know that $\left|u^{(j)}\right|>0$ on $\left(\xi_{i}, \xi_{i+1}\right)$ for $0 \leq j \leq p-1$ and therefore $\left|u^{(j)}(t)\right| \geq \varepsilon$ for $t \in\left[\xi_{i}+\rho, \xi_{i+1}-\rho\right]$ and $0 \leq j \leq p-1$ where ε is a positive constant. Hence there exists $m_{0} \in \mathbb{N}$ such that $\left|u_{k_{m}}^{(j)}(t)\right| \geq \frac{\varepsilon}{2}$ for $t \in\left[\xi_{i}+\rho, \xi_{i+1}-\rho\right]$, $0 \leq j \leq p-1$ and $m \geq m_{0}$. This gives (see (2.11))

$$
\begin{gathered}
\left|g_{k_{m}}\left(t, u_{k_{m}}(t), \ldots, u_{k_{m}}^{(p-1)}(t)\right)\right| \leq \\
\leq \sup \left\{q\left(t, x_{0}, \ldots, x_{p-1}\right): t \in[0, T], \quad x_{j} \in\left[\frac{\varepsilon}{2}, L\right] \text { for } 0 \leq j \leq p-1\right\} \in L_{1}[0, T]
\end{gathered}
$$

for a.e. $t \in\left[\xi_{i}+\rho, \xi_{i+1}-\rho\right]$ and all $m \geq m_{0}$. Letting $m \rightarrow \infty$ in

$$
\begin{aligned}
& \phi\left(u_{k_{m}}^{(p-1)}(t)\right)=\phi\left(u_{k_{m}}^{(p-1)}\left(\frac{\xi_{i+1}+\xi_{i}}{2}\right)\right)+ \\
& +\int_{\left(\xi_{i+1}+\xi_{i}\right) / 2}^{t} g_{k_{m}}\left(s, u_{k_{m}}(s), \ldots, u_{k_{m}}^{(p-1)}(s)\right) d s
\end{aligned}
$$

yields (2.13) for $t \in\left[\xi_{i}+\rho, \xi_{i+1}+\rho\right]$ by the Lebesgue dominated convergence theorem. Since $\rho \in\left(0, \frac{\xi_{i+1}+\xi_{i}}{2}\right)$ is arbitrary, equality (2.13) holds on the interval $\left(\xi_{i}, \xi_{i+1}\right)$ and using the fact that $g\left(t, u(t), \ldots, u^{(p-1)}(t)\right) \in L_{1}[0, T],(2.13)$ is satisfied also at $t=\xi_{i}$ and ξ_{i+1}. From equality (2.13) on $\left[\xi_{i}, \xi_{i+1}\right]$ (for $0 \leq i \leq \ell$), we deduce that $\phi\left(u^{(p-1)}\right) \in A C[0, T]$ and u is a solution of equation (1.1). Finally, it follows from $\alpha_{j}\left(u_{k_{m}}\right)=0$ for $0 \leq j \leq p-1$ and $m \in \mathbb{N}$, and from the continuity of α_{j} that $\alpha_{j}(u)=0$ for $0 \leq j \leq p-1$. Consequently, u is a solution of problem (1.1), (1.2).

The theorem is proved.
3. Sturm-Liouville problem. 3.1. Auxiliary results. Throughout the next part of this paper we assume that numbers a_{k}, b_{k} in the boundary conditions (1.5) fulfil condition (1.6). For each $j \in\{0, \ldots, n-2\}$, denote by G_{j} the Green function of the Sturm-Liouville problem

$$
-u^{\prime \prime}=0, \quad u(0)=0, \quad a_{j} u(T)+b_{j} u^{\prime}(T)=0
$$

Then

$$
G_{j}(t, s)= \begin{cases}s\left(1-a_{j} t\right) & \text { for } 0 \leq s \leq t \leq T \\ t\left(1-a_{j} s\right) & \text { for } 0 \leq t<s \leq T\end{cases}
$$

Hence $G_{j}(t, s)>0$ for $(t, s) \in(0, T] \times(0, T]$ and $G_{j}(t, s)=G_{j}(s, t)$ for $(t, s) \in$ $\in[0, T] \times[0, T]$. Put $G^{[1]}(t, s)=G_{n-2}(t, s)$ for $(t, s) \in[0, T] \times[0, T]$ and define $G^{[j]}$ recurrently by the formula

$$
\begin{equation*}
G^{[j]}(t, s)=\int_{0}^{T} G_{n-j-1}(t, v) G^{[j-1]}(v, s) d v, \quad(t, s) \in[0, T] \times[0, T] \tag{3.1}
\end{equation*}
$$

for $2 \leq j \leq n-1$. It follows from the definition of the function $G^{[j]}$ that the equalities

$$
\begin{equation*}
u^{(2 n-2 j)}(t)=(-1)^{j-1} \int_{0}^{T} G^{[j-1]}(t, s) u^{(2 n-2)}(s) d s, \quad 2 \leq j \leq n \tag{3.2}
\end{equation*}
$$

are true on $[0, T]$ for each $u \in C^{2 n-2}[0, T]$ satisfying the boundary conditions (1.5).
Lemma 3.1. For $1 \leq j \leq n-1$, the inequality

$$
\begin{equation*}
G^{[j]}(t, s) \geq \frac{T^{2 j-3}(1-\alpha T)^{j}}{3^{j-1}} t s \quad \text { for } \quad(t, s) \in[0, T] \times[0, T] \tag{3.3}
\end{equation*}
$$

holds where

$$
\begin{equation*}
\alpha=\max \left\{a_{k}: 0 \leq k \leq n-2\right\} \quad\left(<\frac{1}{T}\right) \tag{3.4}
\end{equation*}
$$

Proof. Since

$$
G_{j}(t, s)= \begin{cases}s\left(1-a_{j} t\right) \geq s\left(1-a_{j} T\right) & \text { for } 0 \leq s \leq t \leq T \\ t\left(1-a_{j} s\right) \geq t\left(1-a_{j} T\right) & \text { for } 0 \leq t<s \leq T\end{cases}
$$

for $0 \leq j \leq n-2$, we have $G_{j}(t, s) \geq \frac{1-a_{j} T}{T} s t \geq \frac{1-\alpha T}{T}$ st for $(t, s) \in[0, T] \times[0, T]$ and $0 \leq j \leq n-2$. Consequently, $G^{[1]}(t, s)=G_{n-2}(t, s) \geq \frac{1-\alpha T}{T}$ st for $(t, s) \in$ $\in[0, T] \times[0, T]$ and therefore inequality (3.3) is true for $j=1$. We now proceed by induction. Assume that (3.3) is true for $j=i(<n-1)$. Then

$$
\begin{gathered}
G^{[i+1]}(t, s)=\int_{0}^{T} G_{n-i-2}(t, v) G^{[i]}(v, s) d v \geq \\
\geq \int_{0}^{T} \frac{1-\alpha T}{T} t v \frac{T^{2 i-3}(1-\alpha T)^{i}}{3^{i-1}} v s d v= \\
=\frac{T^{2 i-4}(1-\alpha T)^{i+1}}{3^{i-1}} t s \int_{0}^{T} v^{2} d s=\frac{T^{2 i-1}(1-\alpha T)^{i+1}}{3^{i}} t s
\end{gathered}
$$

for $(t, s) \in[0, T] \times[0, T]$. Therefore (3.3) is true with $j=i+1$.
The lemma is proved.
Let ϕ satisfy $\left(H_{1}\right)$. Choose an arbitrary $a>0$ and put

$$
\begin{gather*}
\mathcal{B}_{a}=\left\{u \in C^{2 n-1}[0, T]: \phi\left(u^{(2 n-1)}\right) \in A C[0, T], \quad(-1)^{n}\left(\phi\left(u^{(2 n-1)}(t)\right)\right)^{\prime} \geq a\right. \\
\text { for a.e. } t \in[0, T] \quad \text { and } \quad u \quad \text { satisfies }(1.5)\} \tag{3.5}
\end{gather*}
$$

The properties of functions belonging to the set \mathcal{B}_{a} are given in the following lemma.
Lemma 3.2. Let $u \in \mathcal{B}_{a}$. Then there exists $\left\{\xi_{2 j+1}\right\}_{j=0}^{n-1} \subset(0, T)$ such that

$$
\begin{equation*}
u^{(2 j+1)}\left(\xi_{2 j+1}\right)=0, \quad 0 \leq j \leq n-1, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|u^{(2 n-1)}(t)\right| \geq \phi^{-1}\left(a\left|t-\xi_{2 n-1}\right|\right), \tag{3.7}\\
\left|u^{(2 n-2 j+1)}(t)\right| \geq \frac{T^{2 j-4} S}{2 \cdot 3^{j-2}}(1-\alpha T)^{j-2}\left(t-\xi_{2 n-2 j+1}\right)^{2}, \quad 2 \leq j \leq n, \tag{3.8}\\
(-1)^{n+j} u^{(2 n-2 j)}(t) \geq \frac{T^{2 j-2} S}{3^{j-1}}(1-\alpha T)^{j-1} t, \quad 1 \leq j \leq n \tag{3.9}
\end{gather*}
$$

for $t \in[0, T]$, where

$$
\begin{equation*}
S=\frac{1}{T} \min \left\{b_{n-1} \int_{0}^{T / 2} \phi^{-1}(a t) d t, \frac{b_{n-1}}{a_{n-1}} \phi^{-1}\left(\frac{a T}{2}\right)\right\} \tag{3.10}
\end{equation*}
$$

and α is given in (3.4).
Proof. Since ϕ is increasing and $\left(\phi\left((-1)^{n} u^{(2 n-1)}(t)\right)\right)^{\prime}=(-1)^{n}\left(\phi\left(u^{(2 n-1)}(t)\right)\right)^{\prime} \geq$ $\geq a$ for a.e. $t \in[0, T]$, it follows that $(-1)^{n} u^{(2 n-1)}$ is increasing on $[0, T]$ and $(-1)^{n-1} u^{(2 n-2)}$ is concave on this interval. If $u^{(2 n-1)}(t) \neq 0$ for $t \in(0, T)$, then

$$
\begin{gathered}
\left|a_{n-1} u^{(2 n-2)}(T)+b_{n-1} u^{(2 n-1)}(T)\right|= \\
=\left|a_{n-1} \int_{0}^{T} u^{(2 n-1)}(t) d t+b_{n-1} u^{(2 n-1)}(T)\right|>0,
\end{gathered}
$$

contrary to $a_{n-1} u^{(2 n-2)}(T)+b_{n-1} u^{(2 n-1)}(T)=0$ by (1.5) with $k=n-1$. Hence $u^{(2 n-1)}\left(\xi_{2 n-1}\right)=0$ for a unique $\xi_{2 n-1} \in(0, T)$. Now integrating the equality $\left(\phi\left((-1)^{n} u^{(2 n-1)}(t)\right)\right)^{\prime} \geq a$ over $\left[t, \xi_{2 n-1}\right]$ and $\left[\xi_{2 n-1}, t\right]$ gives

$$
\begin{gather*}
(-1)^{n-1} u^{(2 n-1)}(t) \geq \phi^{-1}\left(a\left(\xi_{2 n-1}-t\right)\right), \quad t \in\left[0, \xi_{2 n-1}\right], \tag{3.11}\\
(-1)^{n} u^{(2 n-1)}(t) \geq \phi^{-1}\left(a\left(t-\xi_{2 n-1}\right)\right), \quad t \in\left[\xi_{2 n-1}, T\right], \tag{3.12}
\end{gather*}
$$

which shows that (3.7) holds. In order to prove inequality (3.9) for $j=1$ we consider two cases, namely $\xi_{2 n-1}<\frac{T}{2}$ and $\xi_{2 n-1} \geq \frac{T}{2}$.

Case 1. Let $\xi_{2 n-1}<\frac{T}{2}$. Then (see (3.12))

$$
(-1)^{n} u^{(2 n-1)}(T) \geq \phi^{-1}\left(a\left(T-\xi_{2 n-1}\right)\right)>\phi^{-1}\left(\frac{a T}{2}\right),
$$

and therefore (see (1.5) with $k=n-1$)

$$
\begin{equation*}
(-1)^{n-1} u^{(2 n-2)}(T)=(-1)^{n} \frac{b_{n-1}}{a_{n-1}} u^{(2 n-1)}(T)>\frac{b_{n-1}}{a_{n-1}} \phi^{-1}\left(\frac{a T}{2}\right) \tag{3.13}
\end{equation*}
$$

Case 2. Let $\xi_{2 n-1} \geq \frac{T}{2}$. Then (3.11) yields

$$
\begin{gathered}
(-1)^{n-1} u^{(2 n-2)}\left(\frac{T}{2}\right)=(-1)^{n-1} \int_{0}^{T / 2} u^{(2 n-1)}(t) d t \geq \int_{0}^{T / 2} \phi^{-1}\left(a\left(\xi_{2 n-1}-t\right)\right) d t \geq \\
\geq \int_{0}^{T / 2} \phi^{-1}\left(a\left(\frac{T}{2}-t\right)\right) d t=\int_{0}^{T / 2} \phi^{-1}(a t) d t=: L .
\end{gathered}
$$

Let $\varepsilon:=(-1)^{n} u^{(2 n-1)}(T)$. We know that $(-1)^{n} u^{(2 n-1)}$ is increasing on $[0, T]$ and $u^{(2 n-1)}\left(\xi_{2 n-1}\right)=0$. Hence $\varepsilon>0$ and

$$
\begin{aligned}
(-1)^{n-1} u^{(2 n-2)}(t) & =(-1)^{n-1} u^{(2 n-2)}\left(\xi_{2 n-1}\right)+(-1)^{n-1} \int_{\xi_{2 n-1}}^{t} u^{(2 n-1)}(s) d s> \\
& >(-1)^{n-1} u^{(2 n-2)}\left(\xi_{2 n-1}\right)-\varepsilon\left(t-\xi_{2 n-1}\right) \geq \\
& \geq(-1)^{n-1} u^{(2 n-2)}\left(\frac{T}{2}\right)-\varepsilon\left(t-\xi_{2 n-1}\right)
\end{aligned}
$$

for $t \in\left(\xi_{2 n-1}, T\right]$. Consequently, $(-1)^{n-1} u^{(2 n-2)}(T)>L-\varepsilon\left(T-\xi_{2 n-1}\right)>L-\varepsilon T$. Then $\frac{b_{n-1}}{a_{n-1}} \varepsilon=(-1)^{n} \frac{b_{n-1}}{a_{n-1}} u^{(2 n-1)}(T)=(-1)^{n-1} u^{(2 n-2)}(T)>L-\varepsilon T$, and so (see (1.6)) $\varepsilon>L\left(\frac{b_{n-1}}{a_{n-1}}+T\right)^{-1}=a_{n-1} L$. It follows that

$$
\begin{equation*}
(-1)^{n-1} u^{(2 n-2)}(T)=(-1)^{n} \frac{b_{n-1}}{a_{n-1}} u^{(2 n-1)}(T)=\frac{b_{n-1}}{a_{n-1}} \varepsilon>b_{n-1} L \tag{3.14}
\end{equation*}
$$

Now (3.13) and (3.14) imply that $(-1)^{n-1} u^{(2 n-2)}(T)>S T$ where S is given in (3.10). This and $u^{(2 n-2)}(0)=0$ and the fact that $(-1)^{n-1} u^{(2 n-2)}$ is concave on $[0, T]$ guarantee that $(-1)^{n-1} u^{(2 n-2)}(t) \geq S t$ for $t \in[0, T]$, which proves (3.9) for $j=1$.

Combining (3.2), (3.3) and (3.9) (with $j=1$), we get

$$
\begin{aligned}
& (-1)^{n+j} u^{(2 n-2 j)}(t)=(-1)^{n-1} \int_{0}^{T} G^{[j-1]}(t, s) u^{(2 n-2)}(s) d s \geq \\
& \quad \geq \frac{T^{2 j-5} S}{3^{j-2}}(1-\alpha T)^{j-1} t \int_{0}^{T} s^{2} d s=\frac{T^{2 j-2} S}{3^{j-1}}(1-\alpha T)^{j-1} t
\end{aligned}
$$

for $t \in[0, T]$ and $2 \leq j \leq n$. We have proved that (3.9) is true.
Since, by (3.9), $\left|u^{(2 n-2 j)}\right|>0$ on ($\left.0, T\right]$ for $1 \leq j \leq n$ and u satisfies (1.5), essentially the same reasoning as in the beginning of this prove shows that $u^{(2 j+1)}\left(\xi_{2 j+1}\right)=0$ for a unique $\xi_{2 j+1} \in(0, T), 0 \leq j \leq n-2$. Using (3.9) we obtain

$$
\begin{gathered}
\left|u^{(2 n-2 j+1)}(t)\right|=\left|\int_{\xi_{2 n-2 j+1}}^{t} u^{(2 n-2 j+2)}(s) d s\right| \geq \\
\geq \frac{T^{2 j-4} S}{3^{j-2}}(1-\alpha T)^{j-2}\left|\int_{\xi_{2 n-2 j+1}}^{t} s d s\right|= \\
=\frac{T^{2 j-4} S}{2 \cdot 3^{j-2}}(1-\alpha T)^{j-2}\left|t^{2}-\xi_{2 n-2 j+1}^{2}\right| \geq \frac{T^{2 j-4} S}{2 \cdot 3^{j-2}}(1-\alpha T)^{j-2}\left(t-\xi_{2 n-2 j+1}\right)^{2}
\end{gathered}
$$

for $t \in[0, T]$ and $2 \leq j \leq n$. Hence (3.8) is true, which finishes the proof.
3.2. Auxiliary regular problems. Let $\left(H_{2}\right)$ and $\left(H_{3}\right)$ hold. For each $m \in \mathbb{N}$, define $\chi_{m}, \varphi_{m}, \tau_{m} \in C^{0}(\mathbb{R})$ and $\mathbb{R}_{m} \subset \mathbb{R}$ by the formulas

$$
\begin{aligned}
\chi_{m}(v)= & \left\{\begin{array}{ll}
v & \text { for } v \geq \frac{1}{m}, \\
\frac{1}{m} & \text { for } v<\frac{1}{m},
\end{array} \quad \varphi_{m}(v)= \begin{cases}-\frac{1}{m} & \text { for } v>-\frac{1}{m} \\
v \quad & \text { for } v \leq-\frac{1}{m}\end{cases} \right. \\
\tau_{m} & =\left\{\begin{array}{ll}
\chi_{m} & \text { if } n=2 k-1, \\
\varphi_{m} & \text { if } n=2 k,
\end{array} \quad \mathbb{R}_{m}=\mathbb{R} \backslash\left(-\frac{1}{m}, \frac{1}{m}\right)\right.
\end{aligned}
$$

Choose $m \in \mathbb{N}$ and use the function f to define $f_{m} \in \operatorname{Car}\left([0, T] \times \mathbb{R}^{2 n}\right)$ by the formula

$$
\begin{aligned}
& f_{m}\left(t, x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{2 n-2}, x_{2 n-1}\right)= \\
& \left(\begin{array}{l}
f\left(t, \chi_{m}\left(x_{0}\right), x_{1}, \varphi_{m}\left(x_{2}\right), x_{3}, \ldots, \tau_{m}\left(x_{2 n-2}\right), x_{2 n-1}\right) \\
\text { for } \quad\left(t, x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{2 n-2}, x_{2 n-1}\right) \in \\
\in[0, T] \times \mathbb{R} \times \mathbb{R}_{m} \times \mathbb{R} \times \mathbb{R}_{m} \times \ldots \times \mathbb{R} \times \mathbb{R}_{m}, \\
\frac{m}{2}\left[f_{m}\left(t, x_{0}, \frac{1}{m}, x_{2}, x_{3}, \ldots, x_{2 n-2}, x_{2 n-1}\right)\left(x_{1}+\frac{1}{m}\right)-\right.
\end{array}\right. \\
& \left.-f_{m}\left(t, x_{0},-\frac{1}{m}, x_{2}, x_{3}, \ldots, x_{2 n-2}, x_{2 n-1}\right)\left(x_{1}-\frac{1}{m}\right)\right] \\
& \text { for } \quad\left(t, x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{2 n-2}, x_{2 n-1}\right) \in \\
& \in[0, T] \times \mathbb{R} \times\left[-\frac{1}{m}, \frac{1}{m}\right] \times \mathbb{R} \times \mathbb{R}_{m} \times \ldots \times \mathbb{R} \times \mathbb{R}_{m}, \\
& =\left\{\begin{array}{l}
\frac{m}{2}\left[f_{m}\left(t, x_{0}, x_{1}, x_{2}, \frac{1}{m}, \ldots, x_{2 n-2}, x_{2 n-1}\right)\left(x_{3}+\frac{1}{m}\right)-\right. \\
\\
\left.\quad-f_{m}\left(t, x_{0}, x_{1}, x_{2},-\frac{1}{m}, \ldots, x_{2 n-2}, x_{2 n-1}\right)\left(x_{3}-\frac{1}{m}\right)\right]
\end{array}\right. \\
& \text { for } \quad\left(t, x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{2 n-2}, x_{2 n-1}\right) \in \\
& \in[0, T] \times \mathbb{R}^{3} \times\left[-\frac{1}{m}, \frac{1}{m}\right] \times \ldots \times \mathbb{R} \times \mathbb{R}_{m}, \\
& \frac{m}{2}\left[f_{m}\left(t, x_{0}, x_{1}, x_{2}, \ldots, x_{2 n-2}, \frac{1}{m}\right)\left(x_{2 n-1}+\frac{1}{m}\right)-\right. \\
& \left.-f_{m}\left(t, x_{0}, x_{1}, x_{2}, \ldots, x_{2 n-2},-\frac{1}{m}\right)\left(x_{2 n-1}-\frac{1}{m}\right)\right] \\
& \text { for }\left(t, x_{0}, x_{1}, x_{2}, \ldots, x_{2 n-2}, x_{2 n-1}\right) \in[0, T] \times \mathbb{R}^{2 n-1} \times\left[-\frac{1}{m}, \frac{1}{m}\right] \text {. }
\end{aligned}
$$

Then conditions $\left(H_{2}\right)$ and $\left(H_{3}\right)$ give

$$
\begin{equation*}
a \leq(1-\lambda) a+\lambda f_{m}\left(t, x_{0}, \ldots, x_{2 n-1}\right) \tag{3.15}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{R}^{2 n}, \lambda \in[0,1]$, and

$$
\begin{equation*}
(1-\lambda) a+\lambda f_{m}\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq h\left(t, 2 n+\sum_{j=0}^{2 n-1}\left|x_{j}\right|\right)+\sum_{j=0}^{2 n-1} \omega_{j}\left(\left|x_{j}\right|\right) \tag{3.16}
\end{equation*}
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{R}_{0}^{2 n}, \lambda \in[0,1]$.
Consider the family of approximate regular differential equations

$$
\begin{equation*}
(-1)^{n}\left(\phi\left(u^{(2 n-1)}\right)\right)=\lambda f_{m}\left(t, u, \ldots, u^{(2 n-1)}\right)+(1-\lambda) a, \quad \lambda \in[0,1] . \tag{3.17}
\end{equation*}
$$

Lemma 3.3. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then there exists a positive constant W independent of $m \in \mathbb{N}$ and $\lambda \in[0,1]$ such that

$$
\begin{equation*}
\left\|u^{(j)}\right\|<W, \quad 0 \leq j \leq 2 n-1 \tag{3.18}
\end{equation*}
$$

for all solutions u of problem (3.17), (1.5).
Proof. Let u be a solution of problem (3.17), (1.5). Then $(-1)^{n}\left(\phi\left(u^{(2 n-1)}(t)\right)\right)^{\prime} \geq$ $\geq a$ for a.e. $t \in[0, T]$ by (3.15) and consequently, $u \in \mathcal{B}_{a}$ where the set \mathcal{B}_{a} is given in (3.5). Hence, by Lemma 3.2, u satisfies (3.6) and (3.7) where $\xi_{2 j+1} \in(0, T)$ is the unique zero of $u^{(2 j+1)}, 0 \leq j \leq n-1$, and

$$
\begin{gathered}
\left|u^{(2 n-2 j+1)}(t)\right| \geq Q_{j}\left(t-\xi_{2 n-2 j+1}\right)^{2}, \quad 2 \leq j \leq n, \\
(-1)^{n+i} u^{(2 n-2 i)}(t) \geq P_{i} t, \quad 1 \leq i \leq n,
\end{gathered}
$$

for $t \in[0, T]$, where

$$
\begin{equation*}
Q_{j}=\frac{T^{2 j-4} S}{2 \cdot 3^{j-2}}(1-\alpha T)^{j-2}, \quad P_{i}=\frac{T^{2 i-2} S}{3^{i-1}}(1-\alpha T)^{i-1} \tag{3.19}
\end{equation*}
$$

with α and S given in (3.4) and (3.10), respectively. Accordingly,

$$
\begin{gather*}
\sum_{j=0}^{2 n-1} \int_{0}^{T} \omega_{j}\left(\left|u^{(j)}(t)\right|\right) d t \leq \sum_{j=1}^{n} \int_{0}^{T} \omega_{2 n-2 j}\left(P_{j} t\right) d t+ \\
+\sum_{j=2}^{n} \int_{0}^{T} \omega_{2 n-2 j+1}\left(Q_{j}\left(t-\xi_{2 n-2 j+1}\right)^{2}\right) d t+\int_{0}^{T} \omega_{2 n-1}\left(\phi^{-1}\left(a\left|t-\xi_{2 n-1}\right|\right)\right) d t< \\
<\sum_{j=1}^{n} \frac{1}{P_{j}} \int_{0}^{P_{j} T} \omega_{2 n-2 j}(s) d s+2 \sum_{j=2}^{n} \frac{1}{\sqrt{Q_{j}}} \int_{0}^{\sqrt{Q_{j}} T} \omega_{2 n-2 j+1}\left(s^{2}\right) d s+ \\
+\frac{2}{a T} \int_{0}^{a T} \omega_{2 n-1}\left(\phi^{-1}(s)\right) d s=: \Lambda \tag{3.20}
\end{gather*}
$$

By $\left(H_{3}\right), \Lambda<\infty$. Since $u^{(2 j)}(0)=0$ and $u^{(2 j+1)}\left(\xi_{2 j+1}\right)=0$ for $0 \leq j \leq n-1$, we have

$$
\begin{equation*}
\left\|u^{(j)}\right\| \leq T^{2 n-j-1}\left\|u^{(2 n-1)}\right\|, \quad 0 \leq j \leq 2 n-2 \tag{3.21}
\end{equation*}
$$

Combining (3.16), (3.20), (3.21) and $u^{(2 n-1)}\left(\xi_{2 n-1}\right)=0$, we obtain

$$
\begin{gathered}
\phi\left(\left|u^{(2 n-1)}(t)\right|\right)=\left|\int_{\xi_{2 n-1}}^{t}\left[(1-\lambda) a+\lambda f_{m}\left(s, u(s), \ldots, u^{(2 n-1)}(s)\right)\right] d s\right|< \\
<\int_{0}^{T} h\left(t, 2 n+\sum_{j=0}^{2 n-1}\left|u^{(j)}(t)\right|\right) d t+\sum_{j=0}^{2 n-1} \int_{0}^{T} \omega_{j}\left(\left|u^{(j)}(t)\right|\right) d t< \\
<\int_{0}^{T} h\left(t, 2 n+\left\|u^{(2 n-1)}\right\| \sum_{j=0}^{2 n-1} T^{j}\right) d t+\Lambda= \\
=\int_{0}^{T} h\left(t, 2 n+K\left\|u^{(2 n-1)}\right\|\right) d t+\Lambda
\end{gathered}
$$

for $t \in[0, T]$, where K is given in (1.9). Hence

$$
\begin{equation*}
\phi\left(\left\|u^{(2 n-1)}\right\|\right)<\int_{0}^{T} h\left(t, 2 n+K\left\|u^{(2 n-1)}\right\|\right) d t+\Lambda \tag{3.22}
\end{equation*}
$$

It follows from condition (1.8) that there exists a positive constant W_{*} such that $\int_{0}^{T} h(t, 2 n+K v) d t<\phi(v)$ whenever $v \geq W_{*}$. This and (3.22) yields $\left\|u^{(2 n-1)}\right\|<$ $<W_{*}$. Consequently, (3.21) shows that (3.18) is fulfilled with $W=W_{*} \max \left\{1, T^{2 n-1}\right\}$.

The lemma is proved.
Remark 3.1. Let $c>0$. If follows from the proof of Lemma 3.3 that any solution u of problem $(-1)^{n}\left(\phi\left(u^{(2 n-1)}\right)\right)^{\prime}=c$, (1.5) satisfies the inequality $\left\|u^{(j)}\right\|<$ $<\phi^{-1}(c T) \max \left\{1, T^{2 n-1}\right\}$ for $0 \leq j \leq 2 n-1$.

We are now in a position to show that for each $m \in \mathbb{N}$ there exists a solution u_{m} of the regular differential equation

$$
\begin{equation*}
(-1)^{n}\left(\phi\left(u^{(2 n-1)}\right)\right)^{\prime}=f_{m}\left(t, u, \ldots, u^{(2 n-1)}\right) \tag{3.23}
\end{equation*}
$$

satisfying the boundary conditions (1.5).
Lemma 3.4. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then for each $m \in \mathbb{N}$ there exists a solution $u_{m} \in C^{2 n-1}[0, T], \phi\left(u^{(2 n-1)}\right) \in A C[0, T]$, of problem (3.23), (1.5) and

$$
\begin{equation*}
\left\|u_{m}^{(j)}\right\|<W \quad \text { for } \quad m \in \mathbb{N} \quad \text { and } \quad 0 \leq j \leq 2 n-1 \tag{3.24}
\end{equation*}
$$

where W is a positive constant. In addition, the sequence $\left\{u_{m}^{(2 n-1)}\right\}$ is equicontinuous on $[0, T]$.

Proof. Choose an arbitrary $m \in \mathbb{N}$. Let W be a positive constant in Lemma 3.3. In order to prove the existence of a solution of problem (3.23), (1.5) we use Theorem 2.1 with $p=2 n, g=(-1)^{n} f_{m}$ and $\varphi=(-1)^{n} a$ in equations (2.1), (2.2) and with

$$
\begin{equation*}
\alpha_{2 k}(u)=u^{(2 k)}(0), \quad \alpha_{2 k+1}(u)=a_{k} u^{(2 k)}(T)+b_{k} u^{(2 k+1)}(T), \quad 0 \leq k \leq n-1, \tag{3.25}
\end{equation*}
$$

in the boundary conditions (1.2).
Due to Lemma 3.3 and Remark 3.1, all solutions u of problems (3.17), (1.5) and $(-1)^{n}\left(\phi\left(u^{(2 n-1)}\right)\right)^{\prime}=\lambda a$, (1.5) $(0 \leq \lambda \leq 1)$ satisfy inequality (3.18). Moreover, α_{k} (defined in (3.25)) belongs to the set \mathcal{A} (with $p=2 n$) for $0 \leq k \leq 2 n-1$. The system (see (1.3))

$$
\begin{equation*}
\alpha_{k}\left(\sum_{i=0}^{2 n-1} A_{i} t^{i}\right)-\mu \alpha_{k}\left(-\sum_{i=0}^{2 n-1} A_{i} t^{i}\right)=0, \quad 0 \leq k \leq 2 n-1, \tag{3.26}
\end{equation*}
$$

has the form (see (3.25))

$$
\begin{align*}
& \left.(1+\mu)\left(\sum_{i=0}^{2 n-1} A_{i} t^{i}\right)^{(2 k)}\right|_{t=0}=0, \quad 0 \leq k \leq n-1, \tag{3.27}\\
& (1+\mu)\left[\left.a_{k}\left(\sum_{i=0}^{2 n-1} A_{i} t^{i}\right)^{(2 k)}\right|_{t=T}+\right. \\
& \left.+\left.b_{k}\left(\sum_{i=0}^{2 n-1} A_{i} t^{i}\right)^{(2 k+1)}\right|_{t=T}\right]=0, \quad 0 \leq k \leq n-1 . \tag{3.28}
\end{align*}
$$

It follows from (3.27) that $A_{2 k}=0$ for $0 \leq k \leq n-1$ and then we deduce from (3.28) and from $a_{k} T+b_{k}=1$ that $A_{2 j+1}=0$ for $0 \leq j \leq n-1$. Consequently, $\left(A_{0}, \ldots, A_{2 n-1}\right)=(0, \ldots, 0) \in \mathbb{R}^{2 n}$ is the unique solution of (3.26) for each $\mu \in[0,1]$. Hence all the assumptions of Theorem 2.1 are satisfied and therefore for each $m \in \mathbb{N}$, there exists a solution $u_{m} \in C^{2 n-1}[0, T], \phi\left(u^{(2 n-1)}\right) \in A C[0, T]$, of problem (3.23), (1.5) fulfilling inequality (3.24).

It remains to show that the sequence $\left\{u_{m}^{(2 n-1)}\right\}$ is equicontinuous on $[0, T]$. Notice that $u_{m} \in \mathcal{B}_{a}$ for all $m \in \mathbb{N}$ where the set \mathcal{B}_{a} is given in (3.5). Then, by Lemma 3.2, there exists $\left\{\xi_{2 j+1, m}\right\}_{j=0}^{n-1} \subset(0, T), m \in \mathbb{N}$, such that

$$
\begin{equation*}
u_{m}^{(2 j+1)}\left(\xi_{2 j+1, m}\right)=0, \quad 0 \leq j \leq n-1, \quad m \in \mathbb{N}, \tag{3.29}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|u_{m}^{(2 n-1)}(t)\right| \geq \phi^{-1}\left(a\left|t-\xi_{2 n-1, m}\right|\right), \\
\left|u_{m}^{(2 n-2 j+1)}(t)\right| \geq Q_{j}\left(t-\xi_{2 n-2 j+1, m}\right)^{2}, \quad 2 \leq j \leq n, \tag{3.30}\\
(-1)^{n+j} u_{m}^{(2 n-2 j)}(t) \geq P_{j} t, \quad 1 \leq j \leq n,
\end{gather*}
$$

for $t \in[0, T]$ and $m \in \mathbb{N}$, where Q_{j}, P_{j} are given in (3.19). Let $0 \leq t_{1}<t_{2} \leq T$. Then (see (3.16) with $\lambda=1$, (3.24) and (3.30))

$$
\begin{gather*}
\left|\phi\left(u_{m}^{(2 n-1)}\left(t_{2}\right)\right)-\phi\left(u_{m}^{(2 n-1)}\left(t_{1}\right)\right)\right|= \\
=\int_{t_{1}}^{t_{2}} f_{m}\left(t, u_{m}(t), \ldots, u_{m}^{(2 n-1)}(t)\right) d t \leq \\
\leq \int_{t_{1}}^{t_{2}} h\left(t, 2 n+\sum_{j=0}^{2 n-1}\left\|u_{m}^{(j)}\right\|\right) d t+\sum_{j=0}^{2 n-1} \int_{t_{1}}^{t_{2}} \omega_{j}\left(\left|u_{m}^{(j)}(t)\right|\right) d t \leq \\
\leq \int_{t_{1}}^{t_{2}} h(t, 2 n(1+W)) d t+\int_{t_{1}}^{t_{2}} \omega_{2 n-1}\left(\phi^{-1}\left(a\left|t-\xi_{2 n-1, m}\right|\right) d t+\right. \\
+\sum_{j=2}^{n} \int_{t_{1}}^{t_{2}} \omega_{2 n-2 j+1}\left(Q_{j}\left(t-\xi_{2 n-2 j+1, m}\right)^{2}\right) d t+ \\
+\sum_{j=1}^{n} \int_{t_{1}}^{t_{2}} \omega_{2 n-2 j}\left(P_{j} t\right) d t \tag{3.31}
\end{gather*}
$$

for $m \in \mathbb{N}$. $\operatorname{By}\left(H_{3}\right), h(t, 2 n(1+W)) \in L_{1}[0, T]$ and $\omega_{2 n-1}\left(\phi^{-1}(s)\right), \omega_{2 j}(s), 0 \leq j \leq$ $\leq n-1, \omega_{2 i+1}\left(s^{2}\right), 0 \leq i \leq n-2$, are locally integrable on $[0, \infty)$. From these facts and from (3.31) and from the relations

$$
\int_{t_{1}}^{t_{2}} \omega_{2 n-1}\left(\phi^{-1}\left(a\left|t-\xi_{2 n-1, m}\right|\right)\right) d t=
$$

$$
= \begin{cases}\frac{1}{a} \int_{a\left(\xi_{2 n-1, m}-t_{2}\right)}^{a\left(\xi_{2 n-1, m}-t_{1}\right)} \omega_{2 n-1}\left(\phi^{-1}(t)\right) d t, & \text { if } \quad t_{2} \leq \xi_{2 n-1, m}, \\ \frac{1}{a}\left[\int_{0}^{a\left(\xi_{2 n-1, m}-t_{1}\right)} \omega_{2 n-1}\left(\phi^{-1}(t)\right) d t+\right. \\ \left.\quad \int_{a\left(t_{2}-\xi_{2 n-1, m}\right)} \int_{0} \omega_{2 n-1}\left(\phi^{-1}(t)\right) d t\right] & \text { if } \quad t_{1}<\xi_{2 n-1, m}<t_{2}, \\ \frac{1}{a} \int_{a\left(t_{1}-\xi_{2 n-1, m}\right)}^{a\left(t_{2}-\xi_{2 n-1, m)}\right.} \omega_{2 n-1}\left(\phi^{-1}(t)\right) d t & \text { if } \quad \xi_{2 n-1, m} \leq t_{1},\end{cases}
$$

$$
\int_{t_{1}}^{t_{2}} \omega_{2 n-2 j+1}\left(Q_{j}\left(t-\xi_{2 n-2 j+1, m}\right)^{2}\right) d t=
$$

$$
= \begin{cases}\frac{1}{\sqrt{Q_{j}}} \int_{\sqrt{Q_{j}}\left(\xi_{2 n-2 j+1, m}-t_{2}\right)}^{\sqrt{Q_{j}}\left(\xi_{2 n-2 j+1, m}-t_{1}\right)} \omega_{2 n-2 j+1}\left(t^{2}\right) d t \quad \text { if } \quad t_{2} \leq \xi_{2 n-2 j+1, m}, \\ \frac{1}{\sqrt{Q_{j}}}\left[\int_{0}^{\sqrt{Q_{j}}\left(\xi_{2 n-2 j+1, m}-t_{1}\right)} \omega_{2 n-2 j+1}\left(t^{2}\right) d t+\right. \\ \left.\quad \int_{0}^{\sqrt{Q_{j}}\left(t_{2}-\xi_{2 n-2 j+1, m}\right)} \omega_{2 n-2 j+1}\left(t^{2}\right) d t\right] & \text { if } t_{1}<\xi_{2 n-2 j+1, m}<t_{2}, \\ \quad \int_{\sqrt{Q_{j}}\left(t_{2}-\xi_{2 n-2 j+1, m}\right)}^{\int_{0}} \omega_{2 n-2 j+1}\left(t^{2}\right) d t \quad & \text { if } \quad \xi_{2 n-2 j+1, m} \leq t_{1},\end{cases}
$$

it follows that $\left\{\phi\left(u_{m}^{(2 n-1)}\right)\right\}$ is equicontinuous on $[0, T]$. We now deduce the equicontinuity of $\left\{u_{m}^{(2 n-1)}\right\}$ on $[0, T]$ from the equality

$$
\left|u_{m}^{(2 n-1)}\left(t_{2}\right)-u_{m}^{(2 n-1)}\left(t_{1}\right)\right|=\left|\phi^{-1}\left(\phi\left(u_{m}^{(2 n-1)}\left(t_{2}\right)\right)\right)-\phi^{-1}\left(\phi\left(u_{m}^{(2 n-1)}\left(t_{1}\right)\right)\right)\right|
$$

for $0 \leq t_{1}<t_{2} \leq \mathrm{T}, m \in \mathbb{N}$, and the facts that $\left\{\phi\left(u_{m}^{(2 n-1)}\right)\right\}$ is bounded in $C^{0}[0, T]$ and ϕ^{-1} is continuous and increasing on \mathbb{R}.

The lemma is proved.
3.3. Existence result and an example. The main result is presented in the following theorem.

Theorem 3.1. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then problem (1.4), (1.5) has a solution $u \in$ $\in C^{2 n-1}[0, T], \phi\left(u^{(2 n-1)}\right) \in A C[0, T]$ and $(-1)^{k} u^{(2 k)}>0$ on $(0, T], u^{(2 k+1)}\left(\xi_{2 k+1}\right)=$ $=0$ for $0 \leq k \leq n-1$ where $\xi_{2 k+1} \in(0, T)$.

Proof. By Lemma 3.4, for each $m \in \mathbb{N}$ there exists a solution u_{m} of problem (3.23), (1.5). Consider the sequence $\left\{u_{m}\right\}$. Then inequality (3.24) is satisfied with a positive constant W and since $u_{m} \in \mathcal{B}_{a}$, Lemma 3.2 guarantees the existence of $\left\{\xi_{2 j+1, m}\right\}_{j=0}^{n-1} \subset$ $\subset(0, T)$ such that (3.29) and (30) hold for $t \in[0, T]$ and $m \in \mathbb{N}$, where Q_{j} and P_{j} are given in (3.19). Moreover, the sequence $\left\{u_{m}^{2 n-1}\right\}$ is equicontinuous on $[0, T]$ by Lemma 3.4. Hence there exist a subsequence $\left\{u_{k_{m}}\right\}$ converging in $C^{2 n-1}[0, T]$ and a subsequence $\left\{\xi_{2 j+1, k_{m}}\right\}, 1 \leq j \leq n-1$, converging in \mathbb{R}. Let $\lim _{m \rightarrow \infty} u_{k_{m}}=u$ and $\lim _{m \rightarrow \infty} \xi_{2 j+1, k_{m}}=\xi_{2 j+1}, 1 \leq j \leq n-1$. Letting $m \rightarrow \infty$ in (3.24), (3.29) and (3.30) (with k_{m} instead of m) yields (for $t \in[0, T]$)

$$
\begin{aligned}
& \left|u^{(2 n-1)}(t)\right| \geq \phi^{-1}\left(a\left|t-\xi_{2 n-1}\right|\right) \\
& u^{(2 j+1)}\left(\xi_{2 j+1}\right)=0 \quad \text { for } \quad 0 \leq j \leq n-1, \\
& \left|u^{(2 n-2 j+1)}(t)\right| \geq Q_{j}\left(t-\xi_{2 n-2 j+1}\right)^{2} \quad \text { for } \quad 2 \leq j \leq n-1, \\
& \left\|u^{(j)}\right\| \leq W \quad \text { for } \quad 0 \leq j \leq 2 n-1
\end{aligned}
$$

and

$$
\begin{equation*}
(-1)^{n+j} u^{(2 n-2 j)}(t) \geq P_{j} t \quad \text { for } \quad 1 \leq j \leq n \tag{3.32}
\end{equation*}
$$

Hence $u^{(j)}$ has exactly one zero in $[0, T]$ for $0 \leq j \leq 2 n-1$ and

$$
\begin{gathered}
\lim _{m \rightarrow \infty} f_{k_{m}}\left(t, u_{k_{m}}(t), \ldots, u_{k_{m}}^{(2 n-1)}(t)\right)= \\
=f\left(t, u(t), \ldots, u^{(2 n-1)}(t)\right) \quad \text { for a.e. } \quad t \in[0, T] .
\end{gathered}
$$

In addition, by $(3.32),(-1)^{k} u^{(2 k)}>0$ on $(0, T]$ and $(-1)^{k} u^{(2 k+1)}(0) \geq P_{n-k}>0$ for $0 \leq k \leq n-1$. Hence $(-1)^{k} u^{(2 k+1)}(T)<0$ for $0 \leq k \leq n-1$ by (1.5), which combining with $(-1)^{k} u^{(2 k+1)}(0)>0$ implies $\xi_{2 k+1} \in(0, T)$ for $0 \leq k \leq n-1$. Finally, having in mind the definition of the function f_{m} and inequality (3.16) we have

$$
0 \leq f_{m}\left(t, x_{0}, \ldots, x_{2 n-1}\right) \leq q\left(t,\left|x_{0}\right|, \ldots,\left|x_{2 n-1}\right|\right)
$$

for a.e. $t \in[0, T]$ and all $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{R}_{0}^{2 n}$
where $q\left(t, x_{0}, \ldots, x_{2 n-1}\right)=h\left(t, 2 n+\sum_{j=0}^{2 n-1} x_{j}\right)+\sum_{j=0}^{2 n-1} \omega_{j}\left(x_{j}\right)$ for $t \in[0, T]$ and $\left(x_{0}, \ldots, x_{2 n-1}\right) \in \mathbb{R}_{+}^{2 n}$. Clearly, $q \in \operatorname{Car}\left([0, T] \times \mathbb{R}_{+}^{2 n}\right)$. Hence problem (1.4), (1.5) satisfies the assumptions of Theorem 2.2 with $p=2 n, g=(-1)^{n} f, g_{m}=f_{m}$ (that is $\nu=(-1)^{n}$ in (2.11)) and with the boundary conditions (3.25) which are the special case of the boundary conditions (1.2). Consequently, Theorem 2.2 guarantees that $\phi\left(u^{(2 n-1)}\right) \in A C[0, T]$ and u is a solution of problem (1.4), (1.5).

The theorem is proved.
Example 3.1. Let $p>1, \alpha_{2 n-1} \in(0, p-1), \alpha_{2 j} \in(0,1)$ for $0 \leq j \leq n-1$, $\alpha_{2 j+1} \in\left(0, \frac{1}{2}\right)$ for $0 \leq j \leq n-2, \beta_{k} \in(0, p-1), c_{k}>0, d_{k} \in L_{1}[0, T]$ for $0 \leq k \leq 2 n-1, d_{k}$ is nonnegative and $r \in L_{1}[0, T], r(t) \geq a>0$ for a.e. $t \in[0, T]$. Consider the differential equation

$$
\begin{equation*}
(-1)^{n}\left(\left|u^{(2 n-1)}\right|^{p-2} u^{(2 n-1)}\right)^{\prime}=r(t)+\sum_{k=0}^{2 n-1}\left(\frac{c_{k}}{\left|u^{(k)}\right|^{\alpha_{k}}}+d_{k}(t)\left|u^{(k)}\right|^{\beta_{k}}\right) \tag{3.33}
\end{equation*}
$$

Equation (3.33) satisfies conditions $\left(H_{1}\right)-\left(H_{3}\right)$ with $\phi(v)=|v|^{p-2} v, h(t, v)=r(t)+$ $+\left(2 n+v^{\gamma}\right) \sum_{j=0}^{2 n-1} d_{k}(t)$ where $\gamma=\max \left\{\beta_{k}: 0 \leq k \leq 2 n-1\right\}<p-1$ and $\omega_{k}(v)=\frac{c_{k}}{v^{\alpha_{k}}}, 0 \leq k \leq 2 n-1$. Hence Theorem 3.1 guarantees that problem (3.33), (1.5) has a solution $u \in C^{2 n-1}[0, T], \phi\left(u^{(2 n-1)}\right) \in A C[0, T]$ and $(-1)^{k} u^{(2 k)}>0$ on $(0, T], u^{(2 k+1)}\left(\xi_{2 k+1}\right)=0$ for $0 \leq k \leq n-1$ where $\xi_{2 k+1} \in(0, T)$.

1. Agarwal R. P., O’Regan D., Staněk S. General existence principles for nonlocal boundary value problems with ϕ-Laplacian and their applications // Abstrs. Anal. Appl. - 2006. - 30 p.
2. Rachůnková I., Staněk S., Tvrdý M. Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations // Handb. Different. Equat. Ordinary Different. Equat. / Eds A. Cañada, P. Drábek, A. Fonda. - 2006. - Vol. 3. - P. 607-723.
3. Agarwal R. P., Wong P. J. Y. Existence of solutions for singular boundary value problems for higher order differential equations // Rend. Semin. mat. e fis. Milano. - 1995. - 65. - P. 249-264.
4. Rachïnková I., Staněk S. Sturm-Liouville and focal higher order BVPs with singularities in phase variables // Georg. Math. J. - 2003. - 10. - P. 165-191.
5. Zhao Ch., Yuan Y., Liu Y. A necessary and sufficient condition for the existence of positive solutions to singular boundary-value problems of higher order differential equations // Electron. J. Different. Equat. - 2006. - № 8. - P. 1-19.
6. Deimling K. Nonlinear functional analysis. - Berlin: Springer, 1985.
7. Bartle R. G. A modern theory of integration. - Providence, Rhode Island: AMS, 2001.
8. Lang S. Real and functional analysis. - New York: Springer Inc., 1993.

[^0]: *Supported by grant No. A100190703 of the Grant Agency of the Academy of Science of the Czech Republic and by the Council of Czech Government MSM 6198959214.

