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MALLIAVIN CALCULUS

FOR DIFFERENCE APPROXIMATIONS
OF MULTIDIMENSIONAL DIFFUSIONS:
TRUNCATED LOCAL LIMIT THEOREM"

YUCJIIEHHA MAJUISABEHA JUIAA PI3BHULHEBUX HABJIN/KEHb
BATATOBUMIPHUX U ®Y3I1M:
JIOKAJIbHA TPAHUYHA TEOPEMA 31 3PI3BAHHSAM

For difference approximations of multidimensional diffusions, the truncated local limit theorem is proved.
Under very mild conditions on the distributions of difference terms, this theorem states that the transition
probabilities of these approximations, after truncation of some asymptotically negligible terms, possess
densities that converge uniformly to the transition probability density for the limiting diffusion and
satisfy certain uniform diffusion-type estimates. The proof is based on a new version of the Malliavin
calculus for the product of a finite family of measures that may contain non-trivial singular components.
Applications to the uniform estimation of mixing and convergence rates for difference approximations
of stochastic differential equations and to the convergence of difference approximations of local times of
multidimensional diffusions are given.

Jist pi3HHLEBHX HaOMMKEeHb 0araTOBHMIpHUX IUQY3iil JOBEJECHO JIOKAJbHY T'PAaHUYHY TEOpeMy 3i 3pi-
3anHAM. [lpu myxe crmaOkux ymMoBax Ha PO3NOAUIH PI3HULEBUX WICHIB I T€OpeMa CTBEPHXKYE, IO
HMOBIPHOCTI epexoy TAKUX HAOIMIKEHb ITiCIIs BUAANCHHS IEBHUX TOJAHKIB, IKUMU B ACHMITOTUYHOMY
CEHCI MOXKHA 3HEXTYBAaTH, MAIOTh IIUIBHOCTI, SIKi PIBHOMIPHO HPSAMYIOTh 10 IIUIBHOCTI HMOBIPHOCTI me-
pexony rpaHmyHol qudys3ii Ta 3aJ0BONBHSIOTH IIEBHI PIBHOMIPHI OIIHKH Audy3iiiHoro THMy. JloBeneHHS
0a3yeTbCs Ha HOBOMY BapiaHTi uHMclieHHs MauisiBeHa Juist 10OyTKy CKiH4eHHOI cim’1 Mip, siKi MOXYTb
MICTHTH HETPHBIAIbHI CUHTYISPHI KOMIIOHEHTH. HaBeeHo 3acToCyBaHHS 10 PIBHOMIPHOTO OLIHIOBAHHS
koedilieHTa MepeMillyBaHHs Ta MIBUAKOCTI 30DKHOCTI Ul PI3HHLEBHX HAOIMKEHb CTOXaCTHYHHUX IH-
(epeHmiaNbHUX PIBHAHb Ta O 30DKHOCTI PI3HHIEBUX HAOIMKEHb JIOKAIBHUX YaciB 0araTOBUMipHHX
audys3iit.

Introduction. Consider a diffusion process X in R? defined by the stochastic differential
equation

a(X(s))ds + /b(X(s)) dW(s), teRT, (0.1)
0
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o

and a sequence of processes X,,, n > 1, with their values at the time moments —, k € N,
n

defined by a difference relations

() () e () o () 5 0o

and, at all the other time moments, defined in a piece-wise linear way:
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X, (t) =X, (T) +(nt—k+1) [Xn (i) - X, (k;lﬂ te [kglfl)
(0.3)

Here and below, W is a Wiener process valued in R%, {¢;} is a sequence of i.i.d. random
vectors in R?, that belong to the domain of attraction of the normal law, are centered and
have the identity for covariance matrix. Under standard assumptions on the coefficients
of the equations (0.1), (0.2) (local Lipschitz condition and linear growth condition), the
distributions of the processes X,, in C(R*,R%) with the given initial value X,,(0) = z
converge weakly to the distribution of the process X with X (0) = « [1]. Thus, it is
natural to call the sequence {X,,} the difference approximation for the diffusion X.
Consider the transition probabilities for the processes X, X,,:

P,y (dy) =P(X(t) € dy|X(0) =),
Pry(dy) = P(X,(t) € dy| X, (0) =2), t>0, zeR™

It is well known [2] that if the coefficients a, b are Holder continuous and bounded and
the matrix b - b* is uniformly non-degenerate, then P, ;(dy) = p:(x, y) dy. The function
{pe(z,y),t € RT,z,y € R} (the transition probability density for X) possesses the
estimate

12
—M) t<T, zycRL  (0.4)

pe(a,y) < C(T)t % exp (

The general question, that motivates the present paper, is whether any (more or less
restrictive) conditions can be imposed on the coefficients a,b and the distribution of
&k in order to provide that P, (dy) = pi'(x,y)dy for n large enough, the densities
p" possess an estimate analogous to (0.4) and p™ converge to p in an appropriate
way. Such a question both is interesting by itself and has its origin in the numerous
applications, such as nonparametric estimation problems in time series analysis and
diffusion models (see the discussion in the Introduction to [3]), the uniform bounds
for the mixing coefficients of the difference approximations to stochastic differential
equations (see [4] and Subsection 4.1 below), the difference approximation for local
times of multidimensional diffusions (see [5] and Subsection 4.2 below).

In the current paper, we consider the question exposed above in a slightly modified
setting. For the distributions P™, we prove the result that we call the truncated local
limit theorem. Let us explain this term. We show that the kernel P™ can be decomposed
into the sum P™ = Q™ + R" in such a way that both Q™ and R" are a non-negative
kernels and

(1) for Qm, its density ¢™ exists, satisfies an analogue of (0.4) and converges to p;

(i) for R™, its total mass can be estimated explicitly and converges to 0.

The kernel Q™ represents the main term of the distribution P™ and satisfies the local
limit theorem; the kernel R™ represents the remainder term, and typically decreases rapi-
dly (see statements (iii) and (iii") of Theorem 1.1 below). Such kind of a representation
appears to be powerful enough to provide non-trivial applications (see Section 2 below).
On the other hand, the conditions that we impose on the distribution of &, in order to
provide such a decomposition to exist are very mild; in a simplest cases, these conditi-
ons have "if and only if" form (see Theorem 1.2 below). Our main tool in the current
research is a certain modification of the Malliavin calculus.
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Let us make a brief overview of the bibliography in the field. Malliavin calculus have
not been used widely for studying the properties of the distributions of the processes
defined by the difference relations of the type (0.2), (0.3). The only paper in this direction
available to the author is [4], where rather restrictive conditions are imposed both on
the coefficients (b should be constant) and the distribution of & (it should possess the
density from the class C%). A powerful group of results is presented in the papers [3, 6],
where a modification of the parametrix method in a difference set-up is developed. When
applied to the problem formulated above, the results of [3, 6] allow one to prove that

1
p™ converge to p with the best possible rate O <f> However, conditions imposed
n

on the distribution of &, in [3, 6], are somewhat more restrictive than those used in our
approach. For instance, condition (A3) of [3] requires, in our settings, & to possess the
density of the class C*(R?) (compare with the condition (B3) in Theorem 1.1 below).
The paper is organized in the following way. In Section 1, we formulate the main
theorem of the paper together with its particular version, that is an intermediate between
classic Gnedenko’s and Prokhorov’s local limit theorems. In the same section, we discuss
briefly some possible improvements of the main result. In Section 2, two applications
are given. In Section 3, the construction of the partial Malliavin calculus, that is our
main tool, is explained in details. In Section 4, the proofs of the main results are given.
1. The main results. 1.1. Formulation. Let us introduce the notation. We write
|| - || for the Euclidean norm, not indicating explicitly the space this norm is written for.
The adjoint matrix for the matrix A is denoted by A*. The classes of functions, that
have k continuous derivatives, and functions, that are continuous and bounded together
with their k derivatives, are denoted by C* and CF, correspondingly. The derivative
(the gradient) is denoted by V, the partial derivative w.r.t. the variable z, is denoted
by O,. The Lebesgue measure on R? is denoted by \¢. For the measure ;1 on B(R?),
1 denotes its absolutely continuous component w.r.t. A%. Any time the kernel P™ is
decomposed into a sum P" = Q™ + R", we mean that the kernels @™, R™ are non-
negative; the same convention is used for decompositions of measures, also. In order to
simplify notation we consider the processes defined by (0.1), (0.2) and (0.3) for ¢ € [0, 1]
only. Of course, all the statements given below have their straightforward analogues on
an arbitrary finite time interval [0, 7.
K2 — 3Kk —2

Through all the paper, « is a fixed integer, k > 4. We denote €(k) = Gy
K

We also denote, by u, the distribution of &;.
Theorem 1.1. Let the following conditions hold true:

(B1) a € C’lgd+2)2(Rd,]Rd), be C’édH)Q(Rd,RdXd) and there exists = 3(b) > 0
such that

(b(z)b* (x)v,v)ga > ,8||1)H27 z, v e R%

(B5) E[l&uf|” < +o00;
(B3) there exist o € (0,1) and bounded open set U C R such that

dps© S _

W5 O gy M.
M =M@y v A

Then P" can be represented in the form P" = Q™ + R" in such a way that
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(i) Q1 (dy) = qf*(x,y) dy and ¢ — p, n — 400, uniformly on the set [5,1] x R x
x RY for every § € (0,1);
(ii) there exist constants B, C, v > 0 such that, for t € [0, 1],

o2
o) Ct‘éexp(””xty”>7 lz —y|| < tBnw,
qt xayg

ct-fexp (—n T —y|), o -yl > BT,

in addition, for every p > 1 there exists C}, > 0 such that, fort € [0,1], z,y € RY,

_ 2\"P
g (w,y) < Cpt ™ (1 N xty) ;

(iii) there exist constants D, p > 0 such that R} ,(R%) < Dln=¢®) 4 e=pnt],
reRL te(0,1].
If the condition (BY) is replaced by the stronger condition

(BS™®) Fs¢ > 0 such that Eexp|s||x[|?] < +oo,
then the following stronger analogues of (i), (iii) hold true:

(ii") there exist constants C, v > 0 such that

= =yl

@ (z,y) < Ct™% exp ( ;

), te0,1), =, yeR%:

(iii’") there exist constants D, p > 0 such that R} ,(R?) < De=r™ z € R, t €
€ [0,1].

Let us formulate separately a modification of Theorem 1.1 in the most studied partial
case is a = 0,b = Ipa. In this case, X,, (1) is just the normalized sum n=: Zn &k
and the limiting behavior of the distributions of such kind of a sums is given ﬁ;lthe
Central Limit Theorem. For the densities of the truncated distributions, the following

n

criterium can be derived. We denote by P, the distribution of n-z Zk_l &
Theorem 1.2. The following statements are equivalent: B
1. There exists ng € N such that [P, ]°¢ is not equal to zero measure.

2. There exists a representation of P, in the form P, = Q, + Ry, such that

ly)?

Qi) Qu(dy) = qu(y) dy and supega |qn(y) — (27) "% 2 ‘ — 0, n — oo0;

(2ii) there exist constants D, p > 0 such that R,,(R%) < De™", n € N.

The well known theorem by Prokhorov states that the given above statement 1 is
equivalent to L;-convergence of the density of [P,]* to the standard normal density
(see [7], Theorem 4.4.1 for the case d = 1). There exist examples showing that,
even while P, < \9, the density of P, may fail to converge to the standard normal
density uniformly (see [7], Ch. 4, § 3 for the example by Kolmogorov and Gnedenko).
The criterium of the uniform convergence is given by another well known theorem by
Gnedenko: such a convergence holds if and only if there exists no € N such that P,
possesses a bounded density (see [7], Theorem 4.3.1 for the case d = 1). Theorem 1.2
shows the following curious feature: under condition of the Prokhorov’s criterium, some
exponentially negligible remainder term can be removed from the total distribution in
such a way that, for the truncated distribution, the statement of the Gnedenko’s theorem
holds. This feature does not seem to be essentially new; one can provide it by using the
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Fourier transform technique, that is the standard tool in the proofs of the Prokhorov’s and
Gnedenko’s theorems. We give a simple proof of Theorem 1.2 using the partial Malliavin
calculus, developed in Section 3 below. This illustrates that the partial Malliavin calculus
is a powerful tool that allow one to provide local limit theorems in a precise (in some
cases, an “if and only if”’) form.

1.2. Some possible improvements. In the present paper, in order to keep exposition
reasonably short and transparent, we formulate the main results not in their widest
possible generality. In this subsection, we discuss shortly what kind of improvements
can be made in the context of our research.

1. Difference relation (0.2) is written w.r.t. uniform partitions {0 = 2 < ¢} < ...}

th = = k € Z*,n € N. Without a significant change of the proofs, one can prove

n
analogues of Theorem 1.1 for the processes, defined by the difference relations of the

type (0.2) with ka replaced by &4/ tF — th=1 and partitions {tF} satisfying condition
n

n—-—4oo N 77/, n

1
3¢, C, d, D> 0: lim inf #{ktﬁ <t (th—th1ye {C C]} > td,

1
lim sup —# {k

n—+oo N

<t (tF—thY) e [C,CH <tD, te(0,1. (L)
n’'n

2. One can, without a significant change of the proofs, replace the sequence of
i.i.d. random vectors {{x} in (0.2) by a triangular array {, x, &k < n} of independent
random vectors, possibly not identically distributed, having zero mean and identity for
the covariance matrix. Under such a modification, condition (Bf5) should be replaced by
sup,, x E[[&n & |I" < 400, and condition (B3) by

d|pen k
(B4) Ja, r >0, z, € R %

here p,, x denotes the distribution of &, 1, B(x,r) denotes the open ball in R< with the
centrum z and radius r. Also, the phase space for &, ;, may be equal R™ with m > d
(note that the case m < d is excluded by the condition (B1)).

3. Under an appropriate regularity conditions on a,b, Malliavin’s representation,
analogous to (3.25), can be written for the derivatives of the truncated density of an
arbitrary order with respect to both « and y. Thus, after some standard technical steps,

> OZIB(Imr) )\d—a.s.,

one can obtain the following estimate, that generalize statement (ii’) of Theorem 1.1:
for a given k,[ € N,

ak+l

— gkt Yy — |
W{]?(m,y) < Crpgt™ 2 exp (_t

under (By), (BS™), (Bs) and a € C\THFHHDY (Rd Rd e ¢{4HEHID" (Rd Raxd),
4. Theorem 3.1 provides the truncated limit theorem without essential restrictions on
the structure of the functionals. For instance, one can apply this theorem in order to obtain
a truncated local limit theorem for difference approximations of integral functionals, etc.
5. Like the Malliavin calculus for (continuous time) diffusion processes, the partial
Malliavin calcucus, developed in Section 3, can be applied when the diffusion matrix
is not uniformly elliptic, but locally elliptic, only. However, the changes that should
be done in the proof are significant; in particular, Theorem 3.1 is not powerful enough
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to cover this case. Thus we postpone the detailed investigation of this case (and more
generally, the case of coefficients satisfying an analogue of Hormander condition) to
some further research.

6. In the present paper, we concentrate on the individual estimates for the densities
g¢ and do not deal with the convergence rate in the statement (i) of Theorem 1.1. The
(seemingly) possible way to establish such a rate is to write the Malliavin’s representati-
on, analogous to (3.25), for the limiting density p and then construct both the functionals
X, (t) = f, and X (t) = f and the corresponding weights Y¥» and Y/, involved into the
Malliavin’s representation, on the same probability space with a controlled Lo-distance
between (f,, Y/) and (f, /). Since the question about the estimates in the strong
invariance principle for the pair (f,, Y/*) is far from being trivial, we postpone the
detailed investigation of the rate of convergence in Theorem 1.1 to some further research.
We remark that the modification of the parametrix method, developed in [3, 6], provi-
des, under more restrictive conditions on the distribution of {{}, the best possible

o=
converence rate — .
NG

2. Applications. In this section, we formulate two applications of Theorem 1.1.
The proofs are given in Section 4.

2.1. Mixing and convergence rates for difference approximations to stochastic di-
[fferential equations. Under condition (B1) and some recurrence conditions, the process
X is ergodic, i.e., possesses a unique invariant distribution i, (see [8, 9]). Moreover,
an explicit estimates for the (-mixing coefficients and for the rate of convergence of
P, =P(X(t) € -|X(0) = z) to pny in total variation norm are also available.

The processes X,,, restricted to lZJr, are a Markov chains. The following natural
question takes its origins in a numeri&l applications: can the mentioned above estimates
for the mixing and convergence rate be made uniform over the class {X,,n > 1, X}?
This question is studied in the recent paper [4], see more discussion therein.

In this subsection, we use the truncated local limit theorem (Theorem 1.1) in order
to establish the required uniform estimates. Denote, by || - ||var, the total variation norm.
Recall that the S-mixing coefficient for X is defined by

Ba(t) = sup E[P(F5,X(0) = 2) = P(|X(0) = 2) | ar, 50~ tERT,

seER+ t+s

where F° = (X (s), s € [a,b]), P(-|F§, X (0) = z) denotes the conditional distribution
of the process X with X (0) = x w.r.t. F5, and

df
||%||var,9 = sup [%(Bl) - %(32)]
B1NBy=@, BiUB>=C(RT,R™)
Bl,B2€9

1
The B-mixing coefficient {87 (t),t € —Z,} for X, is defined analogously.
n

Theorem 2.1. Let conditions (B1) and (Bs) hold true. Suppose also that
(By4) there exists Ry > 0 and r > 0 such that

(a(z), 2)pa < —rlzfl, ]| = Ro;
(Bs) there exists 3¢ > 0: E exp[s||£]]] < +o0.
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Then, for every process X, X,, n > 1, there exists unique invariant distribution
inv, [y, - Moreover, there exist ng € N, a function C': R — R and a constant ¢ > 0
such that

_ 1
”P:b,t - /’LﬁlvHvaf < C’(m)e Ct’ te EZ-‘rvn E
HPw,t - Minv”var S C(l‘)e_da te R+7

Br(t) < C(z)e™, te lZ+, n>ng, PBe(t) <C(x)e”, teRT.
n

Remarks. 2.1. The statement of Theorem 2.1 is analogous to the one of Theorem 1
[4]. The main improvement is that the conditions (D;)—(D3) of Theorem 1 [4] are
replaced by (seemingly, the mildest possible) condition (B3). In addition, Theorem 2.1,
unlike Theorem 1 [4], admits non-constant diffusion coefficients b.

2.2. The mixing and convergence rates established in Theorem 2.1 are called an
exponential ones. If the recurrence condition (By) is replaced by a weaker ones, then
the subexponential or polynomial rates can be established (see Theorem 1 [4], cases 2
and 3). We do not give an explicit formulation here in order to shorten the exposition.

2.2. Difference approximation for local times of multidimensional diffusions.
Consider a W-measure j on R?, that is, by definition [10] (Chapter 8), a o-finite
measure satisfying the condition

T, d=1,

sup / wa(lly — z|)pu(dy) < 400 with  wge(r) = < max(—Inr, 1), d=2,
z€R™ 2—d

lly—=zll<1 reTe, d> 2.

2.1)

Every such a measure generates a W-functional [10] (Chapter 6) of a Wiener process
W on R¢,

t

ot = " (W) = /%(W(r)) dr, 0<s<t. (2.2)
For singular u, equality (2.2) is a formal notation, that can be substantiated via an
approximative procedure with p approximated by an absolutely continuous measures
[10] (Chapter 8). The functional ¢ is naturally interpreted as the local time for the
Wiener process, correspondent to the measure .

Next, let the process X be defined by (0.1) and satisfy (0.4), that means that the
asymptotic behavior of its transition probability density as ¢ — 0+ is similar to the one of
the transition probability density for the Wiener process. Then the estimates, analogous
to those given in [10] (Chapter 8) provide that the ¥/ -functional of the process X

t

o=t 00 = [ (X 0<s <t 23)

S

is well defined. We interpret this functional as the local time for the diffusion process
X, correspondent to the measure L.
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At last, let the sequence X,,, n € N of difference approximations for X be defined
by (0.2), (0.3). Consider a sequence of the functionals ¢, (X,,) of the processes X,, of
the form

1 k
st ety Y& 2 F, X, — < . 24
oot = ot X,) - Z n|\Xnl o)) 0<s<t (2.4)

. k
k:s<<t

In Theorem 2.2 below, we establish sufficient conditions for the joint distributions of
(¢n, Xn) to converge weakly to the joint distribution of (¢, X). Thus, it is natural to
say that the functionals ,, defined by (2.4) provide the difference approximation for the
local time ¢ defined by (2.3). For the further discussion and references concerning this
problem, we refer the reader to the recent paper [5].

We fix # € R? and suppose that X,,(0) = X (0) = . We denote T = {(s,¢): 0 <
< s < t}. In order to shorten exposition, we suppose p to be finite and to have a
compact support. Together with the functionals ¢, that are discontinuous w.r.t. variables
s, t, we consider the “random broken line” processes

j—1 k—1 j—1

Uit =t T = (s =i+ g

-1 3 k-1 k
Se{ﬂ ,9)7 te[ )
n 'n n 'n

Theorem 2.2. Let conditions (B1), (BS), (Bs) hold true. Suppose also that

k—1
n

4 (nt—k+ Dep™ 0,

|=

3

1
(Bg) Fn(z) >0,z €RY n>1and — sup F,(z) — 0, n — oo;
n zERE

(B7) measures ji,(dx) = F,(x)\%(dx) weakly converge to y;
Bo) tim limsup sup [ wallly ~ ol ady) — 0.
o0 ly—al|<s

n—+0o geRd

Then (X, (X)) = (X, (X)) in a sense of weak convergence in C(RT,R?) x
x C(T,R™).

Remarks. 2.3. The statement of Theorem 2.2 is analogous to the one of Theorem 2.1
[5]. The main improvement is that the condition A3) of Theorem 2.1 [5] is replaced by
(seemingly, the mildest possible) condition (Bs).

2.4. Once Theorem 2.2 is proved, one can use the standard truncation procedure
in order to replace the moment condition (BS) by the Lyapunov type condition “36 >
> 0: E[|&]|>T° < +00” (e.g. [11], Section 5).

2.5. For examples and a discussion on the relation between conditions (2.1) and
(Bg), we refer the reader to [5].

3. Partial Malliavin calculus on a space with a product measure. For every
given n € N and ¢t € [0, 1], the value X,,(¢) is a functional of &;,...,&, and thus
can be interpreted as a functional on the space (R?)"™ with the product measure ™.
However, under the conditions of Theorem 1.1, u may contain a singular component and
therefore it may fail to have logarithmic derivative. Thus, in general, one can not write
the integration-by-parts formula on the probability space ((R%)™, (B(R%))®™, ™). We
overcome this difficulty by using the following trick. Under condition (B3), the measure
1 can be decomposed into a sum
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w=ary + (1 —a)v, (3.1)

where 7y is the uniform distribution on U. One can write (on an appropriate probability
space) the representation for {&;} corresponding to (3.1):

§e = e + (1 — &) G, (3.2)

where 7 ~ my, (x ~ v, and the distribution sz of € is equal to Bernoulli distribution
with »{1} = «. This representation allows one to consider the family &1, ..., &, (and,
therefore, the process X,,) as a functional on the following probability space:

Q= RIx{0,1}xRH",  F=(BRH2OUV@BRY)", P = (ryxxxv)"
(3.3)
Now, the measure 7;; has a logarithmic derivative w.r.t. a properly chosen vector field,
and some kind of an integration-by-parts formula can be written on the probability space
(©,F,P) (see Subsection 3.1 below). The Malliavin-type calculus, associated to this
formula, is our main tool in the proof of Theorems 1.1, 1.2. We call this calculus a
partial one because the stochastic derivative, this calculus is based on, is defined w.r.t. a
proper group of variables, while the other variables play the role of interfering terms. In
this section, we give the main constructions of the partial Malliavin calculus, associated
to the representation (3.2).
3.1. Integration-by-parts formula. Derivative and divergence. Sobolev classes.
Denote 2 = Q1 x Qo x Qg,

O =03 = (RY)", Q={0,1}"
We write a point w € Q in the form w = (7, ¢, (), where
n=,...,nn) € (RO, e=(e1,...,en) € {0,1}",
(=i G) € R

and 7 = (M1, .- Mkd)s Ck = (Ck1y---,Cka)- In this notation, the random variables
Nk, €k, Cr are defined just as the coordinate functionals:

(W) =, er(w) =cr, Gw) =G, w=(n¢/() e

Denote by € the set of bounded measurable functions f on 2 such that, for every
(g,¢) € Qg x Q3, the function f(-, ¢, () belongs to the class C>°(R?) and

ess sup H[V,,]jf(n,a,C)H < 400, jEN,
7€,¢
where V,, denotes the gradient w.r.t. variable 7.

For feCandk=1,...,n,r=1,...,d, denote by O, f the derivative of f w.r.t.
the variable 7y,.. Also, denote by H the space R?*"™ considered as a (finite-dimensional)
Hilbert space with the usual Euclid norm, and by {ey.,r = 1,...,d,k = 1,...,n}
the canonical basis in it: all coordinates of the vector ey, are equal to zero except the
coordinate with the index k7 being equal to one. For a given functions ¢»: R* — R and
0,1 (RY)™ — [0, 1], define the stochastic gradient D by the formula
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[Df1(.2,0) = 0a(0) > _ ¥ () [Okr Fl(n.2.Qenr,  fEC. (3.4)

k,r

This definition can be naturally extended to the functionals taking their values in a
finite-dimensional Hilbert space Y (actually, in any separable Hilbert space, but we do
not need such a generality in our further construction). Given an orthonormal basis {y; }
in Y, denote by G the set of the functions of the type

Y= Zflyla {fi} C¢,
!

and put for such a function

Dy =Y [Dfi]@u.

l
It is easy to see that the definitions of the class @¥" and the derivative D do not depend

on the choice of the basis {y;}. By the construction, D satisfies the chain rule: for any
two spaces Y, Z and for any fy,..., fm € CY, F € C®°(Y™,Z), m > 1,

F(f1,....fm) €€ and D[F(f1,...,fm)] = > _[0;F)(f1,. ., fm)Dfj. (3.5
j=1
We denote D°f = f,D'f = Df. The higher derivatives D7, j > 1, are defined
iteratively: D7 = D-...- D (note that the first operator in this product acts on the
DY
J
elements of €Y while the last one acts on the elements of C¥ ®(J_l)@Y).

Everywhere below, we suppose that U is an open ball B(z, ) (this obviously does
not restrict generality). We define the function v in (3.4) by ¥ (z) = r? — ||z — 2.
Due to this choice, ¢ € C*°(R?) and v = 0 on AU. These properties of 1) imply the
following integration by parts formula:

/ 10, F)(a)ib(z) do = — / @) f@)de.  feC Y. r=1.... .d

U U

As a corollary of this formula, we obtain the following statement.
Proposition 3.1. Forevery h € H and every f € C, the following integration-by-
parts formula holds true:

E(Df,h)u = ~E(p,W)uf,  p=0u(C) Y [0:0](mk)enr- (3.6)

k,r

The formula (3.6) allows one to introduce, in a standard way, the divergence operator
corresponding to the derivative D. For g € CH®Y  put

5(9) = = _ [(prex)gkrt + (Dgirts enr) ) yis  Grrt = (g €k @) oy (3.7)
k,rl

By the choice of the function v, §(g) € CY as soon as g € C7®Y | The chain rule (3.5)
and the integration-by-parts formula (3.6) imply that the operators D and § are mutually
adjoint in a sense of the following duality formula:
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E(Df,g)u =Efi(g), feCY, geeVH. (3.8)

Since, for every p > 1 and every Y, CY is dense in L, (2, P, Y), the duality formula (3.8)
provides that, for any p > 1 and any Y, the operators D, § are closable as densely defined
unbounded operators

D:L,(QP,Y) = L,(QP,HRY), 6: L(ALP,HRY)— L,(Q,P,Y).

Definition 3.1. The Sobolev class W' (Y'), p > 1, m € Z, is the completion of
the class CY w.rt. the norm

p

m
I fllpm = ZE||DJf||1;1®.f®y < ~+o00.
j=0

Since D is closable in L, sense, there exists the canonical embedding of W (Y') into
L,(Q,P,Y).

We denote W3S (Y) =, , Wy (Y). If Y = R then we denote the corresponding
Sobolev spaces simply by W ™.

3.2. Algebraic relations for derivative and divergence. Moment estimates. Let us
introduce some notation. We denote by C a constant such that its value can be calculated
explicitly, but this calculation is omitted. The value of C may vary from line to line.
If the value of the constant C depends on some parameters, say m,d, then we write
C(m,d). The latter notation indicates that the value of the constant does not depend on
other parameters (for instance, n). If, in a sequel, the constant C is referred to, then we
endow it with the lower index like Cy, Cq, etc. We use standard notation {J,, j, k € N}
for the Kronecker’s symbol.

For an H ® H ® Y-valued element K, we denote by K* the element such that

(K" h®@9® Y ueney = (K, 9®h®@ Y uguey, hge HyeY.

For an X ® Y-valued element g; and X ® Z-valued element g2, we denote by (g1, g2) x
the Y ® Z-valued element

(91,92)x = Z (91,21, @ Yi,) xev (92, T1, @ 215) x02[Yi, @ 215],

l1,l2,l3

here {x;}, {1}, {#} are orthonormal bases in X, Y and Z, correspondingly. We also
denote for an Y ® X-valued element g; and Z ® X-valued element g

(91,92)x = Z (91,91, @ 21y )y ox (92 215 ® T1,) 2o x [Y1n ® 21,

l1,l2,l3

Although the same notation (-, -)x is used for two slightly different objects, it does not
cause misunderstanding further.

Consider the L(H )-valued random element (i.e., random operator in H) B, defined
by the relations
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(Bekﬂ“l ) ekz?”Q)H = (D(p7 elel)H7 ek27”2> H = _9721(4)6%162 [8?”1 87“2 U’](ﬂkl )1/}(77761)7
(3.9
ki2=1,...,n,r2=1,...,d. We define the action of B on H ® Y -valued element

g by

Bg = Z(Q, ek,r ® Y1) Hoy [[Bek,r] ® yl]~
k,r,l

Using representation (3.7), one can deduce the commutation relations for the operators
D, 4, analogous to those for the stochastic derivative and integral for the Wiener process
(the proof is straightforward and omitted; for the Wiener case, see [12], § 1.2).
Proposition 3.2. 1. If f € C gec CH®Y then f.gec CHSY and

6(f-9)=1-0(9)—(Df.g)n.
II. If g € CH®Y | then
D[s(9)] = Bg +4([Dg]").

L. If 91,92 € CH, then

(DI6(90)]: 92)11 = (Bys, g2)rr +6((Dg, 92)ur ) + ((Dgs]*, Dgn) o

The main result of this subsection is given by the following lemma.
Lemma 3.1. Letm,l € N, g€ WZm = (H). Then there exists 5(g) € W4, and

||6(g)||27n,l < C(m’ l7 d7 ¢) ||g||2m,2m+l—1- (310)

Remarks. 3.1. On the Wiener space, the typical way to prove estimates of the
type (3.10) is to use Meyer’s inequalities for the generator L = 6D of the Ornstein—
Uhlenbeck semigroup (see, for instance, [12], § 2.4). Moreover, on the Wiener space,
(3.10) can be made more precise: the similar inequality holds with 2m + [ — 1 replaced
by [+ 1. In our settings, it is not clear whether the operator é - D provides the analogues
of Meyer’s inequalities, since it does not have the specific structural properties of the
Ornstein— Uhlenbeck generator (such as Mehler’s formula, hypercontractivity of the
associated semigroup, etc.). Thus we prove (3.10) straightforwardly by using an iterative
integration-by-parts procedure.

3.2. Throughout the exposition, the function ¢ is fixed together with the set U =
= B(x, z). However, when the constant C depends on the values of ¢ or its derivatives,
we indicate it explicitly in the notation for C.

In order to prove Lemma 3.1, we need some auxiliary statements and notation. For
g € €Y and m € Z, , we define the random variable |g|,,, by

2

m
9lm = | D ID7gll3055y
=0

Lemma 3.2. Ifg < CH®Y then Bg € CH®Y and, for every m € 7.y,

|Bg|m < C(m, d, 1) |glm-
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Proof. Write Bg in the coordinate form:

Bg = Z (ga €l (24 yl)H@ka,rl,r2 [ek‘l’2 ® yl]a

k,rlr2l

where by, ;1 2 = (Bey,1, ex,2 ) i (recall that (Begai,1, ex2,2) g = 0 as soon as k! # k?).
Write the Leibnitz formula for the higher derivatives:

D™(Bg) =

= Z Z Z (D#@(g76k7.1 ®yl)H®Y,®€kiri> X
H®#©

k,rir2lec2{l, - m} ki, ri,. km,rm €0

m

X Dmi#@bkrlﬂ , ® Ckir; ® Chir; Q Cpr2 QY

l , (3.11)
ige Hom-ge) Li=1

where #0,,, denotes the number of elements in the set ©. We write

S@ = Z <D#@(g76k7.1 ®yl)H®Y7®ekiT‘,;> X
H®#©

kol 2 Lk, K Tm 1€0

m

l@ €kir; & Er2 QY
iZo Ho(m—go) Li=1

and estimate ||Se|| geom+1) gy . The function ¢ belongs to C>° and is bounded together
with all its derivatives on U. Thus, one can deduce from the representation (3.9) and
formula (3.4) that

| DM bjeyrr2 || fyonr < C(M,d,1p), M €N.

In addition, due to (3.9),

Dm_#@bkrl’r27®eki” =0
s H®(m—#6)

as soon as k; # k for some i ¢ ©. Using these facts, we deduce that

2

Z Dmi#@bkrlr%@ek‘im < C(m7d7w)

kie{l,...,n},ri€{1,...,d},ig© iZO H®(m—#6)

Thus

HSQH%{@(mH)@y < C(m, d,)x

2
% Z (D#@(g7 ekrt @Y HRY, ® €km> <

ko2 Lk, e{l,...,n},r;e{l,...,d},ic© €0 HO#©
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< C(mvde”g@#@ < C(m,d>¢)|g|%@

Taking the sum over © € 2{1:-»™} and using the Cauchy inequality, we obtain the
required statement.

The lemma is proved.

Proposition 3.3. 1. Let g; € CX®Y g, € CX®Z then (g1,92)x € CY®Z and

|(91792)X|m < C(m)|gl|m|g2|m; m 2> 0.

1. Let g € @Y and A € L(Y, Z), then Ag € C% and |Ag|m < ||All|g|m, m > 0.

The second statement is a straightforward corollary of the chain rule (3.5). The first
one can be proved using the Leibnitz formula; the proof is totally analogous to the one
of Lemma 3.2, and thus we omit the detailed exposition.

Remark 3.3. Taking X = R, we obtain that, for g; € €Y, g5 € C%, g1 g € CY®Z
with |g1 ® g2|m < C(m)|g1|m|g2]m, m > 0.

Using iteratively statement II of Proposition 3.2, we obtain that, for g € C* and
m > 1, the derivative D™[§(g)] can be expressed in the form

D™[6(9)] = Fn(g) +6(Gm(9)),

H®(m+1)

where F,,,(g) € G2 G,.(g) € C are defined via the iterative procedure

Fo(g) =0,  Golg)=9g, Giti(g) = [DGi(9)]",
Fiy1(9) = DFi(g) + BGi(g), i>0.

The mapping K — K™ is an isometry in H ® H ® Y, thus statement I of Proposition 3.3
provides that

Gm(9); < l9lmrj, m, § = 0. (3.12)

Using Lemma 3.2, we deduce that
|Fn(9)], < COm, 3, d, $)|glmj,  m, § > 0. (3.13)
Thus, in order to prove inequality (3.10) for g € CH, it is sufficient to prove that
E|s(9)||y" < Clm, d, v)Elgl3 (3.14)

forany m > 1, g € CH®Y and arbitrary Hilbert space Y. In order to prove estimate (3.14)
we embed it into a larger family of estimates. Consider the following objects.

1. Numbers kg,...,k, € Zy, v < 2m, such that kg + ... + k, = 2m. Denote
Li=lko+...+kji1+Lko+...+ kNN, j=1,...,v,Ip = [1,ko] "N (if kg = 0
then Iy = @).

2. Function o: {1,...,2m} — {1,...,m} such that #0~1({i}) = 2 and #|I; N

No~t({i})| <1foreveryi=1,...,mand j =0,...,v.

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 3



354 A. M. KULIK

Lemma 33. Let fo € €Y ko, g, c @HEY™Y Thep

IN

E Z <907 ® yl‘,(,;)> H 0 9j» ® Yio iy

l1yeeislm i€ly y®ko J=1 icl; y©k;

v

< C(v,d,¥)E |lgolo [ ] lgslv-1|- (3.15)

j=1

Remark 3.4. The left-hand side of (3.14) can be rewritten to the form

E Y 0((g,9)v)8((9:9)v)0((g,y1)v)0 (9. 91)v) - - -
l1yeeislm
(959, )v) 8 (9591, )v) - (3.16)
Ifv=2m,ky=0k =... = ko =1, g =19 =...=¢gsm =9 € GH®Y,

then the left-hand side of (3.15) coincides with the expression written in (3.16). Thus
Lemma 3.3 implies estimate (3.14).

Proof of the lemma. We use induction by v. For v = 0, conditions imposed on ¢
can be satisfied if m = 0, only (i.e., if go is a function valued in R). Thus, for v = 0,
(3.15) is trivial since go < |go| = |golo- For v = 1, conditions imposed on ¢ imply that
In={1,...,m}, I = {m+1,...,2m} and the function o, restricted to either I or
I, is bijective. Thus the left-hand side of (3.15) can be rewritten to the form

m m
E Z <go7®yli> d ((gj’®yl7r(i)> )’
Il i=1 yom i=1 yom

where 7 is some permutation of {1,...,m}. Using duality formula (3.8), we rewrite
this as

E(D907 A‘n'g) HQYy®m?

where the operator A, € L(H ® Y®™) is defined by

Ah@y, @ ...0u, ] =h®y,, ®...0y

m w(m)*

(3.17)

One can easily see that A is an isometry operator, and thus Proposition 3.3 provides
that (3.15) holds true for v = 1 with C(1,d, ) = 1.

Suppose that, for some V' > 2, (3.15) holds true for all v < V' — 1. Let us prove that
(3.15) holds for v = V, also. For every Iy, ..., 1, take

g = <gla ®yla(i)> 3
i€l L

v
f= (go, 0% yla(w) [Te( |9 Qu.c,

i€ly y®kg J=2 i€l Yy Ok

and apply duality formula (3.8). Then the left-hand side of (3.15) transforms to the form
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E ) D<90,®yza(i)> ; (gu@@/za(i)) X
m Y ®ko Y ®k1

l1,...,1 i€l i€l H
1%
S I CAN A ® Yio i +
j=2 iGI]‘ Y®kj
1%
+ E E E 90, ® Yoo X
=2 ly,..,lm i€ly Y ®kg

x|Dfé (gr7®yl(,(i)> 7<gl,®yzo<i)> X
i€l Y ®kr i€l Y®k1 ) g

x I {9 Qv : (3.18)

je{2,....VI\{r} i€l y®k;

Let us estimate every summand in (3.18) separately. The idea is that every such summand
can be written as

E DY g0 Qv I {3 @ u., (3.19)
5

ool iely y ok =1 icl; y®F;

withv =V — 1 or v =V — 2 and some new m, I%O, ...y kmv, 9o, v, 0, and thus the
inductive supposition can be applied.

Consider the first summand. Denote by J the set of indices r € {1,...,m} such that
o' ({r}) C Iy U I1. In order to shorten notation, we suppose that J = {1,...,#J}
(this does not restrict generality since one can make an appropriate permutation of the
set {1,...,m} in order to provide such a property). Take permutations mg: Iy — I
and 7y : I; — Iy such that

[oomo)(i) =14, te€{l,...,#J},

[O’O’/’Tl](i):i—ko, ZE{k0+1,,k0+#J}

Then the first summand in (3.18) can be rewritten to the form

ko
E Z Z <D (A“0907®yla<«om>> ,
i—1

lgpgitsenlm | lyenlgpg Y ®ko

ko+k1 174
Arigr, @ Wi IIo{ {9 & v ’
Y ®k1 H Jj=2

i=ko+1 i€l v Ok
where the operators A, and A, are defined analogously to (3.17). Denote
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go = (DAxy90, Ar, 91) Hey & (#0) ,

then

ko ko+k1
Z D | Arogo; ®yl“(ﬂo(i)) | Amgr, ® LG =
=1 Y ®ko Y ®Fk1 "

ll,...,l#J i=ko+1
ko kl
=\ 90 ® Yiompin | ® ® Ylo (xy (i)
=41 i=ko AT +1 Vot 24

Put m = m — #J, ko = ko + k1 — 2#J, k1 = ka, ..., kv_1 = ky and let {Ip, I, ...
..., Iy _1} be the partition of {1,...,2m} corresponding to the family {ko,..., ky_1}.
Put g1 = g2,...gv—1 = gv (go is already defined). At last, define function & by

O—(WO(Z+#J))ﬂ i=1,...,ko — #J,
G(i) = { o(m(i +240)), i =ho—H#J+1,... ko + k1 — 24,

o(i + 2#J), i =ko+ki,...,2m.

Under such a notation, the first summand in (3.18) has exactly the form (3.19) with
v = V — 1, and the inductive supposition provides that this summand is dominated by
the term

V-1
C(V = 1,d,)E [|golv—1 [ 1glv—2]-

j=1

Since A,,, Ar, are isometric operators, we can apply Proposition 3.3 and obtain that

<

1Golv—1 = |(DAx90, Ar, 91) oy oD v

< CV = DIDAx golv 1Az, g1lv—1 < CV = Dlgolv|g1]v—1-

For every j = 1,...,V — 1, |gjlv—2 = |gj4+1lv—2 < |gj+1lv—1. Thus, under the
inductive supposition, the first summand in (3.18) is dominated by the expression given
in the right-hand side of (3.15).

All the V' — 1 summands in the second sum in (3.18) have the same form and can
be estimated similarly; let us make such an estimation for » = 2. Using Proposition 3.2,

we rewrite this summand to the form

E Z <90’®ylo<z‘>> X
Y ®Fko

llv--wlm, i€lo

x| B (92’®yla<i>> ’ (91’®yla<i>> x
i€l Y ®kr i€l Y ®k1

H
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v
x H5 gj’®ylcr<i> +
j=3

iEIj Y®kj

+E Z <g07®ylg‘(i)) 0 D <g2’®yla(i)> ’
Y®Fko Y ®Fkr

Uiyl i€l iel,

(91, ® yzﬂ(i)>
i€l Yy ®k1

*
+ E Z (go, & yl(,(,i)> D <92, X yla(i)> ;
lyyeoslm Y ®ko Y ®Fkr

, i€lp iel,

%
H o |9 ® Yt iy +
j=3

H i€l y®kj

v
<D917 ® yzgm) H of |9 ® Yip ~ (3.20)

i€l Y ®k1 HQH 7j=3 iEIj Y®k]~

Let us show that, after an appropriate rearrangement of the indices 7, every summand
in (3.20) can be rewritten to the form (3.19). Such a rearrangement can be organized
in the way, totally analogous to the one used before while the first summand in (3.18)
was estimated. Therefore, in order to shorten exposition, we do not write here an
explicit form for the permutations of the indices, used in such a rearrangement. The first
summand in (3.20) has the form 3.19) withv =V =2, §; = gj42, 5 =1,...,V =2,

9o = (Am [Bga]; Ars g1 @ gO])H®Y®#"1’

where J! is the set of such i € {1,...,m} that o =1 ({i}) C IoUI; UI5 (we do not write
here an explicit expressions neither for the permutations 7y, 7o nor for kg, ..., ky_o,
0). Under inductive supposition, this summand is estimated by

.
C(V = 2,d,¥) Elgolv—2 [ ] lglv-s <
j=3
v
< C(V,d,¥) E|Bgalv—alg1lv—algolv—2 [ ] lg;lv—s <
J=3

v v
< C(V,d,¥)Elgalv—2|g1lv-2lgolv—2 [ ] lgjlv-s < C(V.d,¥)Elgolv [ ] lg;lv-1.

Jj=3 j=1

here we used Proposition 3.3 and Lemma 3.2. The second summand in (3.20) has the
form 3.19) withv =V —1,g; = gj+1,7=2,...,V =1, §o = go,
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g1 = (D[Aﬂ1g2]a A7\'291>H®Y®#J2 )

where J? is the set of such i € {1,...,m} that c=*({i}) C I U I5. This summand
again is estimated by

v
C(V = 1,d,9) Elgolv1lgilv—2 [ ] lgjlv -2 <
j=3
v
< C(V,d, ) Elgolv-1l|Dg2lv —2lg1lv—2lgolv -2 H lgjlv—3 <
=3
v
< C(V.d,v¥) Elgolv H lgjlv—1.
j=1

At last, the third summand in (3.20) has the form (3.19) with v =V — 2, g; = g;42,
j=1,...,V -2,

Jo = (AMQOa ([DAx,g2]", DAW392)H®H)Y

@#J1’
and again is estimated by

\4

C(V - 27d71/)) E‘go‘V—Q H ‘gj‘V—?) <
j=3

v
< C(V,d,¢) Elgolv—2|Dgalv—2|Dgilv—2 [ ] lgjlv—s <

=3

%
< C(V,d, ) Elgo|v H lgjlv—1.

j=1

The estimates given above show that (3.15) holds for v = V as soon as it holds for
v=V —2and v =V — 1. We have already proved that (3.15) holds for v = 0, 1. Thus,
(3.15) holds for every v.

The lemma is proved.

Proof of Lemma 3.1. We have already proved (3.10) to hold for every g € G,
Now, let g € WZ™H=1(H). Consider {g,} C C such that g, — g in W2""'~1(H)
(recall that CF is dense in any WI’f (H) by definition). By (3.10), for any k =0, ...,

||Dk6(gn) - Dké(gN)HL2m(Q7p7H®k) <
S C(ma lv dv’l/))”gn - gN||2m,27n+l—1 - 07 n, N - —|—OO

Thus there exist Fj, € Lo, (2, P, H®¥) k =0,...,1, such that
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k
HD 5(gn) — FkHL2m(97P’H®k) — 0, n— +oo, k=0,...,L

Since operator ¢ is closed, Fy = d(g). Using that operator D is closed, one can veri-
fy inductively that Fy, = DFy_1, k = 1,...,l. This means that 5(g) € Wl  with
D*§(g) = Fy, k=0,...,1. At last, using (3.10) we get

l l
163, =S [ Flzme <limsupE S || D*a(g,) ||, =
k=0 " k=0

2m

= lim sup ||5(gn)||2m,,l S C(mv la da 1/’) lim sup ||gn|‘gm,3m—l =
n n

= C(m, d,¥)||glI3m 2mii-1-

The lemma is proved.

3.3. Malliavin’s representation for the densities of the truncated distributions of
smooth functionals. The typical result in the Malliavin calculus on the Wiener space is
that, when the components fi,..., f4 of a random vector f = (f1,..., f4) are smooth
enough and the Malliavin matrix o/ = {(D fi, Df;) H}ijl is non-degenerate in a
sense that

[det /] € () L(Q,F,P), (3.21)

p>1

the distribution of f has a smooth density (see, for instance, [12], § 3.2). Such kind of
a result is useless in the framework, introduced in Subsection 3.1, since there does not
exist any functional f satisfying (3.21): ife; = ... = ¢, = 0 then Df = 0 for every
f € C. In order to overcome this difficulty we use the following truncation procedure:
we consider, instead of P, a new (non-probability) measure P=(-) = P(- N E) with some
set 2 € o(e, (). If this set is chosen in such a way that (3.21) holds true with P replaced
by P= then the Malliavin’s calculus can be applied in order to investigate the law of f
w.r.t. P=. In this subsection, we give the Malliavin’s representation for the density of
this law. All principal steps in our consideration are analogous to those in the standard
Malliavin calculus on the Wiener space (see, for instance, [12], Chapter 3). Therefore,
we sketch the proofs only.

Let fi,..., fq € @ be fixed, consider the Malliavin matrix o = (Jlfj)f{j:l,

ol = (Dfi, Dfi)r =Y ¥(ne) [Okr fi(n,€.0)] [Ohr f(n,2. Q)]

k,r
Consider a set Z € o(g, () such that = C {det o/ > 0} and
Elz[deto/] ™ <00, p>1. (3.22)

Then 1= € € and D1= = 0. Put

"= (w) =

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 3



360 A. M. KULIK
Proposition 3.4. o= € W (R¥*Y) and
(D= s = ~"Z(Dal Wuol=, he R 62

Sketch of the proof. It is enough to prove that o/= € (N 5, W (R?*%) and (3.23)
holds true. Suppose that o/ > cIza with some ¢ > 0. Then one can easily see that
o= € € and (3.23) follows from the well known formula for the derivative of the
inverse matrix,

G0 =~ [aw] | Fa0)| [a0] .

In the general case, consider the matrix-valued functions 0/¢ = o/ 4 cIga and o/'=° =
= Iz - [05¢]7!, ¢ > 0. Condition (3.22) provides that o/=¢ — o/ ¢ — 0+ in any
L,. It is already proved that (3.23) holds true for the functionals indexed by c. Thus,
passing to the limit as ¢ — 0+, we obtain the required statement.

Denote 19{’5 = ZZ ) ka ka, 1 =1,...,d. Also denote, by Ez=, the expectation
w.rt. P=.

Proposition 3.5. Foreveryi=1,...,d,v € W and every F € C°(R?),

E=[0:F)(f1,.... fa)v = B=F(f1,..., fa)d (v0] ). (3.24)

Sketch of the proof. 1t follows from Propositions 3.3, 3.4 and Lemma 3.1 that
v- 19{ € Dom(d). Since = € o (e, ¢), the function Iz belongs to € and has its stochastic
derivative equal to 0. Proposition 3.2 provides that §(Izg) = I=0(g), g € Dom(J).
Therefore

d
E[0;F](f1,..., fa)lzv = ZE[ajF](fl, ooy fa)Izv]of of =y =

d d
=SS EOFI - S evel o), -

j=1 k=1

<.

d

I=v Qif Z[ajF](f17-~7fd)ijank =

1 j=1

M=

=E
k

— E(DIF(fi,. o J) 100fF) =

—EF(f1,.... f2)d (Iguﬁ{) =EF(f1,..., f4)I=6 (Uﬁ{) ,

that provides (3.24).
Put

U{’EZI, Ulf;l 5(Uf’519{’5>, l=1,...,d,
THE=uff, rfE s (1E00F), i1
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Write Pé for the distribution of f w.r.t. P=. For ay,..., a4 € {0,1}, denote
Ia1~~ad(x) = I(—l)("l1120,...,(—1)0"1Id207 T e R%

Proposition 3.6. The distribution Pf has a density p , bounded together with all
its derivatives 8Zp~ i=1,...,d. Forany ay,...,aq4 € {0, 1},

pé(y) = (_1)a1+m+adEIa1...ad(f - y)’rf)Ev (325)
OipL(y) = (—1)ttaateaitlgy,  (f —y)TH=, (3.26)
y € R4,

Sketch of the proof. Applying iteratively (3.24) one can deduce that, for every
F € C°(RY),

Ez[01...04F)(f1,..., fa) = EF(f1,..., f2) Y=, (3.27)
Ez[0: ... 040 F(f1,. .., fa) = BF(f1,..., f0Y/ =, i=1,....d (3.28)
Now, the informal way to get representation (3.25) is to apply (3.27) to F' = 1, .. .ay:
pLy) = (—1)rtteatdy 9Ty, o, (f —y) =
= (=) E[0r .. Oalay.aul (f — ) =
= (1) ttapL,  (f —y)YHE (3.29)

In order to justify (3.29) one should consider smooth approximations F,, for the function
F =1,, ., and use Fubini theorem (we omit detailed exposition here, referring the
reader, for instance, to [12], § 3.1, 3.2). Similarly, (3.26) is provided by (3.28) and the
formula

OipL(y) = ()t B [0) L 040 ay . aa) (f — ).

3.4. Estimates for the densities of the truncated distributions of smooth functionals.
Proposition 3.6 immediately provides the following family of estimates for the density
pé of the truncated distribution of f.

Corollary 3.1. Forany y € R?,

[T~

5 < ||rfE min P
pL) < IT/%,  min

((—1)a1f1 > (=), ...

LD yd) 152 .,
aipl(y) < ||YI= Pz ((— —1)™
L) <IIT/5)z,  min P2 IRETI
ay,...,aqg€{0,1}
L) yd) (el
i=1,...,d.
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d =
In particular, pé satisfies Lipschitz condition with the constant L = E - ITFE L,
i=

In this subsection we give explicit estimates for || Y= 1, ||T{’E||L2, i=1,...,d
Our estimates somewhat differ from the standard Malliavin-type ones. In our consi-
derations, we operate with the matrix [o/]~! straightforwardly and do not use (unlike in
the standard Malliavin’s approach) representation of this matrix via the Cramer’s formula
[07]7! = [det 0] 7'%7 (27 denotes the cofactor matrix for o). This is caused by our
goal to prove, together with existence of the density, an explicit estimates for it like the
estimate (ii) of Theorem 1.1.

Let us give an iterative description of the family {Ulf ’E} involved into construction
of T/=, Tlf *=. We introduce two families of operators acting on W

IlgOHé((PDfl), Jl]kSOHw(DUJJCkanl)Hv Za]vkzlavd

We call any operator I, ..., I an operator of the type I, and any operator from the set
{Jijk, i,j,k = 1,...,d} an operator of the type J. We denote by K(m, M) the class
of all functions that can be obtained from ¢ = 1 by applying, in arbitrary order, of m
operators of the type I and M operators of the type .J.

Proposition 3.7. Foranyl=1,...,d+ 1, there exist constant C(d,1) € N such
that vj = is a sum of at most C(d,1) summands of the type

T
o] e5. (3.30)
k=1
where iy, ji = 1,...,d are arbitrary and p belongs to some class K(m, M) with
m+M=I1—1andr=M+1-1.
Proof. We use induction by [. For [ = 1, the statement is trivial since v{ ==1le

€ X(0,0). Suppose the statement of the Lemma to hold true for some I < d. Let us
prove this statement for [ + 1. Due to the inductive supposition, v; = is a sum of at most
C(d,1) summands of the type

o(¢ IT ef5.007).
k=1
peX(m,M),m+M=1, M +1=r. Wehave
r _ _ d r _ _
s(efatzore) =32 (o 1] teon)
k=1 q=1 k=1
Thus, v; = is a sum of at most dC(d, ) summands of the type
r+1 _
i+ Ttz )
k=1

peX(m,M), m+ M =1, M+ 1 =r. Due to Propositions 3.2 and 3.4,
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r4+1 r+1 r+1
5 (go 1T g{,;;*kDfl) =0(eDf) [ of5. - (D 1145, ¢Dfl> =
k=1 k=1 k=1 H

r+1 +1

=seop) [[ ol -2 e | II o] (5o’ . Dpe’=) . 33

k=1 =1 |k<r+1, kg tada

Since ¢ € K(m, M), é(¢D f;) € K(m + 1, M). Thus, the first term in the right-hand
side of (3.31) has the form (3.30). Every summand in the sum in the right-hand side of
(3.31) is a sum of d? terms of the type

tkik
k=1

r+2
SD(DU{;» Df)u lH o= ] .

Every such a term has the form (3.30), since @(Da%,Dfl)H € KX(m,M +1) for ¢ €
€ K(m,M). Therefore, the statement of the Lemma holds true for [ + 1, also, with
C(d,l+1)=C(d,))[1+d*(1+1)].

The proposition is proved.

Recall that Y/:% = ¢//Za+1_and thus Proposition 3.7 provides that Y= is a sum of
not more than C(d) summands of the type (3.30) with ¢ € KX(d—M, M) andr = M +d
(M may vary from 0 to d). For every such a summand,

M+d
f.E
¥ H Qirjn
k=1

where ||A||p = max; j—1,._q|Aij|, A € R¥4. Thus, in order to estimate | Y/Z| 1,, it
is sufficient to estimate max,csc(a—nr,a) ||@llL,. Denote o; = Dfi, Bij
= (Do, Dfi)n.

Proposition 3.8. Forevery ¢ € X(d — M, M),

1
A(M+d)] % (3.32)

< llellz, [Ble 2150

Ly

d—M
l¢lle, < €, ) (maxlaillagasnaaaenz1)  x

x (I%E}CX Hﬁijk\\2(d+1)(d+2),(d+1)2—1)M~ (3.33)
Proof. By Lemma 3.1 and Proposition 3.3, forany i =1,...,d,p e WX, m >0
16000 921 < Clm,dy ) 005 | 2mt 2, (m1y2 -1 <
< C(m, d,¥)[ellam+a,(m+1)2—1ll2ill2em+1) (mt2),(m+1)2-1- (3.34)
By Proposition 3.3, for any 4,5,k =1,...,d, p € WL, m >0
lBijkll2mt2,m2—1 < C(m)||0ll2m+a,m2—1Bisk ll2(m+1) (m+2),m2—1 <
< Clm, d, Y)[[oll2ma,(m+1)2 =111 Bijk ll2(m+1) (m+2), (m41)2—1- (3.35)

Recall that || - ||z, = || - ||4,0 and ¢ € K(d — M, M) is obtained from 1 by applying (in
some order) of d — M operators of the type I and M operators of the type J. Thus, in
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order to obtain (3.33), one should consequently put m = d,d—1, ..., 1 and apply either
inequality (3.34) or inequality (3.35) depending on what type of the operator (I or .J)
was applied at this position in the construction of the function ¢.

The proposition is proved.

Recall that afk = (Df;, Dfi)nu. By Proposition 3.3,

Biilm < Cm)|D film| Doyl < Cm)| D filn| D flm 1 |D fielm1-

Thus, Proposition 3.8 provides the following estimate for ||Tf,E |1, Denote
m m I S
N, = |:E D™ f Q(d—yﬁ-nl)(d+2):| PICESSICES)) .

a(f) i:l?.).(,dm:h”%ﬂ)fz I1D™ fil gem

Corollary 3.2. There exists a constant Ly, dependent on d and ) only, such that

d

1722, < La Y [Nalh)]

M=0

d+2M = 1
(Bl =3 (3.36)

For HT{ =l L., the following estimate holds true (we omit the proof since it is totally
analogous to the proof of (3.36) given above).
Proposition 3.9. Foranyi=1,...,d,

- d+1 d+2M+1 _ 1
5= < Lasr Y [Nasa ()] Bl F ] 63
M=0

At the end of this section, we formulate a general local limit theorem. This theorem
is a straightforward corollary of the representation given by Proposition 3.6 and the esti-
mates (3.36) and (3.37). Consider the sequence of probability spaces { (2", F"*, P"),n >
> 1} of the type (3.3) with the given measures 7y, 5, v. Let the function ¢ and the functi-
ons 8,, be fixed. Denote H,, = R%*™ and consider the derivative, gradient and Sobolev
spaces constructed in Subsection 3.1. For a sequence of random vectors f™: Q" — R?
and a sequence of sets {Z,, € o(¢, ()} denote by P™f" the distribution of f™ w.r.t. P"
and by P’El’nf " the distribution of f™"wrt. Pg, =P"(-NE,). Denote

d d+2M H 1
Kal£,Z)=La Y [Na(h] [BIl =]
M=0
Theorem 3.1. Suppose that {f"} and {=,} satisfy condition
2
(Cy) fre Wz((djfz))(dJr:j) (RY) and sup,, Kq41(f", Zn) < +o0.

n,fm .. n
Then P27 possess a densities pé . Moreover,
n =

n

n 1

@ pL, (v) < Ka(F"Z0)P2, (1] > 1w

(b) péi satisfy Lipschitz condition with the common constant equal to
dsup, Ka1(f", Ep).
If, additionally,

(Ca) f™ converge in distribution to some random vector f;

(C3) P*(E,) — 1,n — 4o
then the distribution of the vector f possess a density p! and
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(©) supycga [P (y) = p’ (y)| — 0, n — +o0.

=n

Proof. Although the statements of Corollaries 3.1 and 3.2 are formulated for f €

€ C®’ they can be extended to f € WQ((def;;( i+3) (RY) by a standard approximation

procedure. For any y € R, there exist a choice of the signs a1, . .., ag such that

P, (D™ > (1) (1R > (<)) < P, (172 o)
Therefore, statements (a) and (b) follow immediately from Corollaries 3.1 and 3.2.
Statement (b) provides that the sequence {pén} has a compact closure in the space
C(R?) with the topology of uniform convergence on a compacts. This together with the
conditions (C5), (C3) provides (c).

The theorem is proved.

4. Proofs of Theorems 1.1-2.2. 4.1. Proof of Theorem 1.1. We reduce the proof of
Theorem 1.1 to the verification of the conditions of Theorem 3.1 and explicit estimation
of the expression in the right-hand side of (a). We use, without additional discussion,
notation introduced in Section 3.

Denote f;', = X, (t) — =, where the processes X, are defined by (0.2), (0.3) with
the initial value X,,(0) = x € R%. When it does not cause misunderstanding, we omit
the indices x,t and write f" for f7,.

We conduct the proof in several steps. First, we give explicit expressions for the
derivatives of the functionals f™. Next, we estimate the moments of these derivatives
(this allows us to estimate Ng11(f™)). Then, on the properly chosen =Z,,, we estimate the
inverse matrix for the Malliavin matrix o/" (this allows us to estimate Kqq1(f™,Z,)).
At last, we estimate the tail probabilities Pz, (||f™]| > |ly||) in order to provide the
estimates given in the statement (ii) of Theorem 1.1.

Everywhere below we suppose conditions (B;), (B%), (Bs) of Theorem 1.1 to hold
true. We prove (i)— (iii) in details and give a brief sketch of changes that should be made
in order to prove (ii’), (iii’). We put

_ k—1
T 2%+ 2

0n(C) = Imaxkgn ICklI<ns s S 4.1

In order to make notation more convenient, we rewrite (0.2) to the form

k k-1 E—-1\\1 <& E—1\\ &

%) =20 (50 +e (e (557) a - o (= (5))

4.2)

here &1, ..., Ekq are the components of the vector & and by, . .., by are the columns of
the matrix b.

Lemma 4.1. For every t € [0,1], Xy(t) € (5, Wéd+2)2(Rd). Derivatives
Y, (t) = DX, (t),t € [0, 1], satisfy relations

(5 () o () ()
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(e (5 ()

r=1
PO, ( (1)) g, ] @)
Y,(t) =Y, (knl> +(nt—k+1) {Yn (i) -Y, <knlﬂ (4.4)

—1
te[k k), k=1,....,n.

)
n n

Sketch of the proof. The proof is quite standard, and thus we just outline its main
steps. Using induction by k, one can easily verify that, for every j, k, r, there exists
k k
0jr Xn () = (Yn () ,ej,«> with Y;, defined by (4.3). One can see that Y,, =0
n H

n

n

k
as soon as maxg<p ||Cx]| > n° and, therefore, ess sup‘ Y. () H < 400 for every
- n
k < n. Iterating these considerations, one can verify that esssup | V' X, () H < 400
n

for every k < n, m < (d + 2)?, that means that X, (k> € ﬂ ng“)Z(Rd) with

n
p>1

k k k
DX, (> =Y, <>, that gives the statement of the Lemma for ¢ = —. For arbitrary
n n n

t € [0, 1], this statement holds by linearity.

Denote 4u,5(§) = E[|&1 ]|
Lemma 4.2. For every p > 1, m € N, there exist constant C(a,b,d,U, u,(§),
m, p) such that

P 1
BID" X, Olfmggs < Clobd. Une(@mopit, te [1a). @9

k
Proof. Consider first the case m = 1. It is enough to prove (4.5) for t = —,
n
k=1,...,nand p = 2q, ¢ € N. We have

(- ()

205 s () (),

0 (5w (e () (),
o () ()
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d k—1 k—1
Xn - Yn N B
(e (57)) (5)
o o () (), .
n n H®RI n2
d
= 2 (7 (e (50) (57)
’I“1,’I”2:1
o (% (57)) (k ) o
n n H@R
2
> [ (= (557))

) (o (5) (57)

+9 (O 1, = 1¢ M)

here we have used the fact that Y, (k

-1
oo (e (5 ) ) (7).
n
d - kE—1
the vectors of the type v ® ej, v € R?, j <k, r=1,...,d,and b, | X, | —— ®
n
® egr, r =1,...,d, are orthogonal to this subspace.
ANE:
(i)
N/l HgRrd
as there exist j = 1,...,d such that ||(;|| > n°. Since coefficients a, b are bounded
together with their derivatives, we can rewrite (4.6) as

3

Rd
, belong to the subspace generated by

Denote

k
= Y. Recall that Y,, <> =0,k=1,...,n, as soon
n

d
1 fkr
Y= | oot +Op1— VRS ORI
, =Y bt i<+

gkr gkr
D DAV o A< | Tnaxyx g li<nss K= 1o0m,

r1,m2=1

with F,_1 = o(n1,€1,81, - -+ s Me—1, €k—1,Ck—1) — measurable Ox_y1, Ag_1 ,, », such
that

|@k‘—1| < C(Cl, ba d) [1 + Tk‘—l] ) |Ak—1,7“1,7‘2| < C(aa ba d)'rk—l- (47)

Since T; > 0, we have

1 q q—1 q| 1 i
EY! <E|( Y)_ Op_1— ——E | Ty Op_1—
k= ( k—1+ k1n> +;i!(q—z’)! ( k—1 T k1n> X

d =
&k §k
ZAk 1 T IHCkH<n< + Z Ar_q - r1Gkrs I|\Ck\|<"< . (4.8)

T1,T2= 1
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We have & = exnir + (1 — €;)Ckr and the set U of the possible values of n, =

= (M1, .-, Mka) is bounded. In addition, |Crr|Ijc, j<ns < n°. Therefore,
Er | (CU)ns)! N E(%)
E vn Licu<ns < — = CHuynlt=2) < — lze+l (49)
Since E[|&||® < +o0,
l l K
kr E|&kr E(][&]" Vv 1
E Jn Lig<ns < |n% L Ed yl ), 1=2,... kK (4.10)
Similarly,
o Epr 1 E(||&]]5 Vv 1
‘Ef‘c;’f’”lugw < Lpjg 2 < BUSITVD) @.11)
At last,

r—1

[PUlGrll = )] © <

=

x

gkr
‘Elmugm

NG

gkr
= ‘EIICMM‘

NG

<n"z {Efkrﬂ

= _ QU ()

< CUpn(e)nE ] T < ==2E (4.12)

(recall that EE,. = 0). The triple (1, ek, (k) is independent of Fy_1. Thus, taking in
(4.8) conditional expectation w.r.t. F,_; and taking into account inequalities (4.7), we
obtain an estimate

. 1\ 1+EY]_
EY, <E{Ti_1+ ek—lﬁ + C(a,b,d, U, Hn(f)#J)T <
S (1 + Cl(a‘abv d7 U) Mﬁ(§)7q)> ETZ,1+
n
q—1 1 l 1
1
+ Cg(d,b, d7 U?/J“R(S)vq)lzz: (1+ TL) FETk—l' (413)
Let us show that (4.13) provide the family of estimates
k q
ET? < C(a,b,d, U, s (€), q) (n) , k=1,....,n, ¢g€N (4.14)

(note that (4.14) is exactly (4.5) with m = 1 and p = 2¢). We use induction by ¢. For
q =1, (4.13) implies that

C2 (Cl7 ba da U7 /’Lﬁ(g)’ 1)

n

+ CQ(a,b,d,U,,U%(f),].) <1+ Cl(aabad7Unu’H(£)71)> 4.

n n

ETY; < +

+ CQ(a7b7 d7 U7 ,UJK(S), 1) (1 " Cl(a,b, d7 U7 ‘un(é*% 1)>k—1 S

n n
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k
< ~Cola,b,d, U, pug(€), 1) (#0400,
n
Similarly, if (4.14) holds true for all ¢ < @ — 1, then (4.13) implies that
EYY < Co(a,b,d, U, 1, (€), Q) (@ UVmin(€).Q) 5

Q-1

=0

k Q
< Cla,b.d, U 1 (6). Q) () ,

that proves (4.14) for ¢ = Q. This proves the statement of the lemma for m = 1. For
arbitrary m, the proof is analogous: one should write difference relations for the higher
derivatives of X,,, analogous to (4.3), and then again use the moment estimates of the
same type with the given above. This step does not differ principally from the one for
SDE’s driven by a Wiener process (see, for instance [13], Chapter V, § 8), and thus we
omit its detailed exposition here.

The lemma is proved.

Corollary 4.1. The following estimate holds:

N0 < Clabd U@V e |11], jen

Let us proceed with the investigation of the Malliavin’s matrix o/" for f* = X, (t).

Denote by £7';, 0 < i < j < n, the difference analogue of the stochastic exponent for
(4.3), i.e., the family of R?*?-valued variables satisfying the relations
8?1 == I]Rd,
j—1 1
((::L = Sn 1 +Va ]7 8?_1*"‘
I n T n (4.15)

d .
.7_1 gjr . .
@[W(Xn())gg,l}
—1 n J \/ﬁ

Then one can easily obtain the representation for Y,,(-),

() iy zk:z“: Igj—lw (%) |:8?,ka (Xn (J—nl)ﬂ Qe (4.16)

j=1r=1

Denote f™F = X <

3|

) and o, | = ol By (4.16), we have

k d
L 3 SN

j:l r—=

e (2 (452 o e (Xn (j )k
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=2 St e (5 (52))] [ (o (52)] -

gnr(f i:dﬁ () T, ] €7 [B°] (X <j;1>)[5?,k}*.

Jj=1

Together with the family {€}',}, we consider the family {éf ;1 defined by

~ ~ _ i—1 1
&1, = Iya, &, =& +Va (Xn <J>) er,_ 1

n
d ,] 1 n
B on JT sz
+; [Vbr (Xn (n>> 8i,j_1\/ﬁ}, j=i,...,n, (4.17)
where &' = §1j¢,<ns, © = 1,...,n. By the construction, éﬁj = Eﬁj on the set

{60,(¢) = 1}, therefore

e = 29 S 21, enal] (6, (1) ) il

We have -
é;fj:ﬁ IRd+Va<Xn(l )) +sz)< ( ))f/lﬁ]

Since Va, Vb are bounded and [¢7,.|Tj¢,j<ns < max(maxgey ||z, n°), there exists
ng = no(a, b,d,U,<) such that

o (S b (e (5)

Then 8” is invertible and

e (na () o S (n(5) ]

Thus, on the set {6,,(¢) = 1}\{e1 = ... =&, = 0}, the matrix o, is invertible and

1
Tigl<ns < 55 n 270

J

=11

l=i+1

-1
ol = [ i (oms)] <

llvll=

2 [ * -1
71 -
<37 1(b) Lglﬂxnu[ ] EZ: : (4.18)
Lemma 4.3. Foreveryp > 1,

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 3



MALLIAVIN CALCULUS FOR DIFFERENCE APPROXIMATIONS OF MULTIDIMENSIONAL ... 371

E

max ||[€} ]‘1H] < C(a,b,d, U, jue(€),p), neN.

i<j<n

Proof. Since [éfj] o é&i [égyj] ~' it is enough to prove that

Emax |[€ [P < C(a,b,d, U, px(€), p), (4.19)
Em<aX]det8 T < Cla,b,d, U, pn(€),p).- (4.20)
sn

Let us prove inequality

P
B max 5| < Cla.b.d.Uupn(€).0) @21)

with ||All2 = 4/ Z A? ; this will provide inequality (4.19). We deduce from (4.17)
that Z* = ||c§6‘l||2 satisfy relations analogous to (4.6), i.e.,

1 n n
R AR T ED T i=1.n, (422)
T 71,72
with an {J; }-adapted sequences V;"" V o Vf” such that
VM| < Clab,d, UYL+ 20),  |VE"] < Cla,b,d,U)ZY,
(4.23)

v2r | < Cla,b,d,U) 20

1,71,T2

Then the moment estimates analogous to those made in the proof of Lemma 4.2 provide
that

max(EZ")2 < C(a,b,d, U, p(€),p). (4.24)

i<n

n n ] n n __ J n 3
Denote A7 = Z + Zi:l AAY, M} = Zi:l AM;" with

n o ¢n n o ¢n
2 :V2n£zr z :V3n iry zrg_Eirl irg
n
T1,T2
and
n
AAn:Zn_an_Mn_ 177, + V2nE§zr 27”1 7/)“2
i % i— % E E .
T1,T2

Then Z; = A; + M;. By (4.12) and (4.23),

aay < LB E) g, g

and therefore (4.24) provides that
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EmaX‘A;-L|% S C(a7ba U?MN(§)7P)
Jj<n

Similarly, Burkholder inequality together with (4.23) and (4.9)—(4.12) provides that
Emth\M}LI% < C(a,b,U, ps (), p),
i<n
that proves (4.21), and therefore (4.19).

1 -
On the set {||A||2 < 2} C R**4, the function ®: A — (det[Iga + A]) ' can be

represented in the form
O(A) =1+ Q(A) +9(4),

where @ is a polynomial of A with deg @ < « and [9(A)| < C||A|5H". We have

+1
l gl C(CL, b7 d7 U)
X L < -1
o () e S () G =
Therefore,
on \—1 __ on n
(det €G ;)" = (det 80’j71) [1 + Q7 (\f \f) + 9] ]
where |97] < M, U} is Fj-measurable, Q7 is a polynomial with deg Q7 <

< k and its coefficients are J;_;-measurable and bounded by some constant depen-
ding on the coefficients a,b. Repeating the arguments used in the proof of (4.19) we
obtain (4.20).

The lemma is proved.

Lemma 4.4. Foreveryp e N, c> 0,

—-Pp

k
Z¢2(77j)16j=1 125:1 Ejzck S C(C7w7p)k7pa k Z

2p+1
P

Remark 4.1. For arbitrary ¢ € C(RY) with 1 = 0 on U, the given above
statement may fail. It is crucial for ¢ to have non-zero normal derivative at (some part
of) the boundary in order to provide (4.25) below to hold true.

Proof. Since n and ¢ are independent,

k - Jek[ P
Zdﬂ(ﬂj)lsj:l IZJ 1€52¢ck = <E ZwQ 7]] ’
j=1 j=1
where ]x[d:f min{n € Z | n > x}. By the construction of the function %,
P(y?(1) < 2) ~ C(Y)Vz, 2= 0+. (4.25)

Therefore
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P4 (m) + ... 0% (m) < 2) ~ C(, 1)z, 2 — O+,
and
E(?(m) + ... +4%(m)) 7P < +o0 (4.26)
Jck[ .
assoonas! >2p. Weputq=2p+1, N = v and divide the set {1,...,]ck[} on
the blocks

{1,...,qh {g+1,...,2¢}, .. ..{(N=1)g+1,...,Nq}, {Ng+1,...,]ck[}
(the last block may be empty). We denote
iq
di= Y. (), i=1,...,N.
j=(-1)g+1
We have
]ck:[ -p N -p 1 N -p
E 2(n; <E 9 =NPE| = 9, .
Sy <e(xe) —vm(i2e)

The function = +— =P is convex on RT, and therefore

1NN\ 1 &
E|— |l O <E[= “P | =Ry P
(N;m) < (N;@) 9P < 400

2 1 k
(the last inequality follows from (4.26)). If k > ﬁ, then M > 1 and therefore
c q
Jek[ Jek| c
N=|"—|>—> k. Th
{q S T2

ekl -

E ;wz(m) < C(¢,p) <4pi2>_pk—p.

The lemma is proved.
Inequality (4.18), Lemmas 4.3 and 4.4 provide the following estimate. For a given

c¢>0andt € [0,1], we put =, = {6,,(¢) = 1} N {Zitj]l €5 > c[tn}} .

2 1
Corollary 4.2. Forp € N and [tn] > p: ,

Ello" =%, < Cla,b,d, U, v, 11:(€), p)t "

At last, let us give an estimates for the tail probabilities for . The following lemma
is completely analogous to Lemma 4.2; the proof is omitted.
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Lemma 4.5. For every p > 1, there exist constant C(a, b, d, U, p,;(£), p) such that
P 1
EHXn(t) 7X(O)||f{d1{9n(4):1} S C(a, b,d, U, uﬁ(f),p)t2, te |:n,1:|

Corollary 4.3. For every p > 1, there exists constant Cy,, dependent on a, b, d, U,
11x(€), p, such that

2\"P
PR - X1 2 30 00 =1) <6, (1415 T e ve | 2]

2
Remark 4.2. For M

ly]1*

Lemma 4.6. There exist constants C1, Co, C3, dependent on a, b, U, d, u.(§),
1
such that, for every A\ € R with ||\|| < Cyn#+1,

small, the latter inequality is trivial since P(-) < 1. For

large, it comes from Chebyshev’s inequality.

1
EeMXnO=Xa O, 0 1y < CeCstAF ¢ e [ 1}, n €N, (4.27)
n

Proof. For a given ), denote Z,(t) = ¢Xn()=Xn(0) We have Z,,(0) = 1. On
the other hand,

Sor | maxyeu flyll | o 1 maxyeullyl

N NG Vvn
on the set {6,,(¢) = 1}. Thus there exists a constant C4 such that, for ||\|| < Cinw,

o (n (5))) 3 (o (v (551))

r=1

< Cy

on the set {6,,({) = 1}. Using the elementary inequality e® < 1 + x + Ca?, |x| < Cy4,
we obtain that, on the same set,

(1) (5o s on (1))
E e (e ()]

r=1

B

AL IAP 5 (AL + A2
14 o AL AT z:/\,g_MMJr
n

< Z, <kl>
n

r=1 \/ﬁ
d gk’flgkﬂ‘z H)‘HQ
D (4.28)
r1,T2=

with an JFj_;-measurable coefficients Oy_1, Ag_1,, Ag_1,r, r,, bounded by some
constant C. An arguments, analogous to those used in the proof of Lemma 4.2, provide
that (4.28) implies the estimate
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2 k
EZ, (k) < <]_ 4 C”)\”—i_”)\”) < exp |:2Ck(]_ + )\2) , k,neN. (429
n n

n

k k+1

n n

k
This is exactly (4.27) fort = —. For ¢t € < ) , Zn(t) is a linear combination of
n

k k+1 k+1
Zn <) and 7, ( + > . Therefore, (4.27) follows from (4.29) and relation + <
n

n
< 2E < 2t (recall that t > 1 and thus & > 1).
n

The lemma is proved.
Corollary 4.4. There exist constants Cs, Cg, Cy, dependent on a, b, U, d, (),
such that

P (X0 (6) = Xu(0)]| > 9,00(¢) = 1) < Coe 77,
1 1
yE(O,CE)tTL"Jrl)? ’]’LEN, te |:71:|’
n

and

1
P (11X (t) = X () 2 9,62(¢) = 1) < Coe™ O™,
1 1
y>Cstn=t1, neN, te [,1}.
n

Proof. 1t is enough to verify that, for any coordinate (X,); of the process X,,,
j=1,...,d, there exist constants Cs, Cg, C7, Cg such that

P(( (X5 (0) = (Xa);(0)) = 3 0n(Q) = 1) < Coe™CF, (430)
y € (0,Cstn7i1), neN, te [7111]
and
P (X)) ~ (X)5(0)) 2 9.6,() = 1) < Coe ST @3
y>Cstne1, neN, te Hl} .

Inequality (4.30) with C5 = 2C;C; and C; = [2C3] 7! follows from (4.27) with \ =

= i2é/t> e;, where e; is the j-th coordinate vector in R?. Inequality (4.31) with the
3

~ ~ C . 1
same C; and Cg = ?1 follows from (4.27) with A\ = ( + Clnwlrl )ej.

Proof of Theorem 1.1. We take p = 8(d + 1) and fix some ¢ € (0, @) (« is given in
condition (B3)). We write n. = ng(a,b,U, <) (see the notation before Lemma 4.3) and
put
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[tn]
L e =0n{> gzl Y, n>n., fm) > 2L

= - c

a, otherwise,

:,t(dy) = P(Xn($,t) € dva'iz) - PE;( artl,t €dy— 1’),
R} y(dy) = P(Xu(,t) € dy, Q\Z7).

Corollaries 4.1 and 4.2 provide condition (C;) of the Theorem 3.1. By the statement (a)
of this theorem,

ndy) =Ly dy with g, < Ka(f"Z0)P2 (1] = [lyll, 0a(C) = 1).
(4.32)
Moreover, Corollaries 4.1 and 4.2 provide an explicit estimate for K4(f", Z,,). Namely,
for some constant C dependent on a, b, ¢, d, pu(€), U, ¥,

d
a(f",En) < C D VATRMm DS = (44 1)Ct 5, (4.33)
M=0

Thus the statement (a) of Theorem 3.1 and Corollaries 4.4, 4.3 provide statement (ii) of
Theorem 1.1.
By Chebyshev inequality,

P(6,(¢) = 0) < nn~"s =n<),

1—
Take A = In (“) > 0. By Chebyshev inequality, we get, after some simple
c(l—a

calculations,

Zs cok| < B B 16]—[@(04 O, keN (4.34)
J oAk - A J ‘

1—c

1— c

with ¥(q, c) = (1 a) (8) . One can verify that U(o,¢) < 1for0 < c< a <
— C C

1
< 1. Thus, we can conclude that, for p = —3 In ¥(a,c) > 0,

2 1
P(O\E) <n <™ 4¢P when n>n., [tn]> Pt
c
nt 1
(we have used here that [nt] > 5 for t > n) Thus, for all t > 0,
P(Q\E!) < D[n=) 4 e=rnt] (4.35)

with the constant D dependent on n,, p, ¢, p. This provides statement (iii) of Theorem 1.1.
We have shown that if € R% ¢ > 0 are fixed then the functions f" = ot
and the sets =, = =! satisfy all the conditions of Theorem 3.1. This means that
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a7 (y) — pz(y) uniformly wrt y € R?. In order to show that this convergence
holds uniformly w.r.t. t € [6,1], z, y € R%, we need to show that, for every sequences

{t.} € [6,1], {2a}, {yn} CRY,
Qe 1, (Yn) = DPapt, (Yn) — 0, m — oo, (4.36)

We can suppose that {¢,,} converges to some ¢ € [, 1]. The functions a, b are bounded
together with their derivatives up to the second order, and therefore the sequences of the
functions

an(') = a(- + xy), bn() =0b(-+ xn)

are pre-compact in C'(R¢ R9) and C'(R? R4*?), correspondingly. We can suppose
that

an — ain CYR%LRY), b, —b in CYR?R¥*9),

Consider the processes Z,, defined by the relations of the type (0.2), (0.3) with Z,,(0) = 0
and the coefficients a, b replaced by a,,, b,. Also, consider the processes Z" defined by
the stochastic differential equations of the type (0.1) with Z™(0) = 0 and the coefficients
a, b replaced by a,, b,. At last, consider the process Z defined by the stochastic
differential equations of the type (0.1) with Z(0) = 0 and the coefficients a, b replaced
by a, b. Denote fn = Zu(tn), En = Eln. It is easy to verify that Z,, converge weakly
in C([0,1],R%) to Z (see, for instance, Proposition 5.1 [14]). Thus, for the sequences
fn, Zn, all the conditions of Theorem 3.1 hold true with f = Z(t). This means that f
possesses a distribution density p/ and

sup [pL" (y) — p’ (y)| — 0. (4.37)
Yy

Similarly, one can show that, for f* = Z"(t,), the distribution density p/" exists and
sup [p'" (y) — p’ (y)| — 0. (4.38)
Y

Now, (4.36) is provided by the relations (4.37), (4.38) and

Az, t, (Yn) = pén (Yn — Tn), Pz, ty, (yn) = pfn (Yn — Tn)-

n

This proves statement (i) of Theorem 1.1.

The proof of (ii’) and (iii’) can be conducted analogously, with an appropriate changes

of the truncation procedure and corresponding estimates. Under (B5™”), we put, instead

of (4.2),

0n(C) = Imangn ISkl <év/n-

By the Chebyshev’s inequality,
P(6,(¢)=0) < ne=*(0Vm?* < g=in

with an appropriate p > 0. This and the estimate (4.34) provide statement (iii’).
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Under (B5™) and the truncation level given above, the estimates (4.10)—(4.12) have
their (simpler) analogues, and thus the statement of Lemma 4.2 holds. The constant &
in the definition of the truncation level can be made small enough to provide inequality

(s (S ()

nZHOa

1
Ligi<svm < 5

to hold with some ny dependent on a, b, U. Then the statement of Lemma 4.3 holds true,
also. Lemma 4.4 does not depend on the truncation procedure. Thus the Corollaries 4.1,
4.2 hold true and provide the principal estimate (4.33).

Under condition (B5™),

e[ (v (0 (7)) +
(e ()

r=1

<

‘Stkl

n

B

= Gy 22
< Cye n a.s.

for every A € R? with some constants Ch, Co dependent on a, b, d, s, E el&I”,
Then the arguments analogous to those made in the proof of Lemma 4.2 provide that
the estimate (4.27) holds true for every A € RY. Consequently, the first inequality
in Corollary 4.4 holds true for every y > 0. This inequality, the estimate (4.33) and
Theorem 3.1 provide (iii’).

This completes the proof of Theorem 1.1.

4.2. Proof of Theorem 1.2. The implication 2 = 1 is obvious. Let us first prove
2 under additional supposition (B3). We put, in the notation of Section 3, 6,,(¢) = 1,

n _ 1 "
fr= ﬁzkzlfm

n

- E €j ZCN oy N2 Ny,
J=1

a, otherwise,

with n., c that will be defined later. Then

n d
D) DULCN: ML

k=1r=1

where b, stands for the r-th coordinate vector in R? (the proof is straightforward and
omitted). Since ) is bounded on U together with all its derivatives, this provides the
estimates analogous to those given in Lemma 4.2. The statement of Lemma 4.3 is trivial
now, since &; ; = Ipa (the identity matrix in R%) for every 4, j. Now, take p = 8(d + 1),

2 1
c € (0,a), n. > P

. Using Lemma 4.4, we obtain the estimate (4.33) with the
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constant C dependent on ¢, d, 1. The estimate (4.34) provides that P(=,,) < De™*" for
an appropriate D, p > 0. Now the statement 2 follows from Theorem 3.1.

Let us replace the additional supposition (B3) by the condition 1. It is enough to
prove the statement 2 for n € mN with some given m € N. We take m = 2ny with ng
given in the statement 1 and have

AP _ d[Pay]* | d[Pa]"
dxd T d)\d dxd -

AP )" | d[Poy)*
d\? d\d
Lebesgue points (i.e., a points of A?-almost continuity) for any function g € L;(R%). In
[Py )™ [Py )
d\? d\?
exist @ > 0 and an open set U C R such that

is continuous since A%-almost all points of R¢ are a

The function

is not an identical zero due to the statement 1. Thus there

dPn ac dPn ac ~
[ [;] * [d/\(;] > aly. Therefore

the distribution of £; + ... + &, satisfies (B3). Using what we have proved before, we
deduce that the statement 2 holds for n € mN, and therefore for n € N.

This completes the proof of Theorem 1.2.

4.3. Sketch of the proof of Theorem 2.1. We will show that, under conditions
of Theorem 2.1, the following uniform local Doeblin condition holds true. For two
measures [i1, (2, denote

addition,

dp W) dpi2
d(pa + p2) 777 d(pn + p2)

o A al(dy) =i | )] 1+ 122) ().
Proposition 4.1. For every ball B there exists ng € N, T,vp > 0 such that

{Pm,TB A sz,TB} (R?) > vp, =, 2’ €B, (4.39)
. 1
and, for every n > np, there exists Ty € —Z, Tp < Tg such that
n

[P;Tg A P;‘,,Tg} (RY) >~p, « o' €B, n>ng. (4.40)

Once Proposition 4.1 is proved, one can finish the proof of Theorem 2.1 following
the proof of Theorem 1 in [4] literally. We omit this part of the discussion and prove
Proposition 4.1, only.

Proof of Proposition 4.1. Since (Bs) implies (B5) for any k, we can apply
Theorem 1.1. One can easily see that

[Pz npp )@Y 2 [ minlel, ). g2 ()] o,
Rd

Thus, for any sequence ¢,, — t > 0 we have, by the statement (i),

n—-+oo x,x’€B z,x’ €

lim inf inf [P;t A Pg,t} (Rd) > infB/min [pw,t(y),pw/,t(y)] dy.
Rd

On the other hand (see [2]), under condition (B1) the function
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R x (0, +00) x RY 5 (z,t,y) = pat(y)

is continuous and strictly positive at every point. Therefore, for a given B,

ar 1

B = 5 m,imr’léB/min [p$7t(y)apm’,t(y)] dy > 0,

R4
and (4.39), (4.40) hold true for T = T5 = 1 and sufficiently large np.

The proposition is proved.

4.4. Sketch of the proof of Theorem 2.2. 1t was already mentioned in Subsecti-
on 2.1 that Theorem 2.2 is analogous to Theorem 2.1 [5]. We refer the reader to the
paper [5] for the detailed proof. Here, we expose a principal estimate only, demonstrati-
ng that, in this proof, the truncated local limit theorem can be used efficiently instead of
the usual one, that was used in [5].

Theorem 2.1 [5] is derived from the general theorem on convergence in distribution of
a sequence of additive functionals of Markov chains, given in the paper [11] (Theorem 1).
The characteristics of the functionals ¢(X), ¢, (X,,) are defined by the relations

df

fH(2) S E[p™(Xn) | X(0) = 2],

fS’t(x)d:fE[cpfl’t(Xn)|Xn(s):x], s:l, 1 €2y, t>s, xr e RY.
n

The first relation is due to [10], Chapter 6. The second relation was introduced in [11]
by an analogy with the first one.
The key condition of Theorem 1 [11] is

sup |f;jt(1:) - ftfs(x)| — 0, n— oo. (4.41)
z€R, s=21 tc(s,T)

n

Here, we need to verify this condition only, since, for all the other conditions, the proof
from [5] can be used literally. We have

1 1
fl@=ch@ss Y[R = 0@, s<t ek
keN, E<t—sgm "

We use the decomposition P* = Q™ 4+ R™ from Theorem 1.1 and write

1 1 1
ft(z) = an(x) T Z /Fn(y)RZ7%(dy) T Z /Fn(y)qg
keN, & <tgm keN, £ <tgm

= (y)dy.

s

The statement (ii) of Theorem 1.1 and the estimates, analogous to the estimates (4.2)—
(4.10) from [5], imply that

1
sw |2 [ R@L G- @] -0 n— o
z€R?t<T nkeN,§<tRm "

8
On the other hand, e(k) = - > 1 for kK = 6. Thus, by condition (Bg) and the

statement (iii) of Theorem 1.1,
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1 1
B | Fa(z) + > Fa(y) Ry x (dy) | <
keN, E<tpm

<nlsupFu(e) |1+ 30 R L (RY)| <

k<tn

<n"tsup F,(2) |1+ Dn~int+ D Z e 50, n— o,
o keN

uniformly for z € R?, ¢ < T for any T € R*. This proves (4.41).
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