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PERIODIC BOUNDARY-VALUE PROBLEM
FOR THIRD ORDER LINEAR

FUNCTIONAL DIFFERENTIAL EQUATIONS"

IHHEPIOJUYHA IN'PAHUYHA 3AJAYA
JIJIA JTHIMHUX ®YHKIIOHAJBHO-IU®EPEHIIAJTBHUX
PIBHAHB TPETBOI'O ITIOPAIKY

For the linear functional differential equation of the third order
u(t) = L(u)(t) + q(t),
theorems on the existence and uniqueness of a solution satisfying the conditions
u0) =uD(w), i=0,1,2,

are established. Here, £ is a linear continuous operator transforming the space C ([0, w]; R) into the space
L([0,w]; R), and ¢ € L([0,w]; R). The question on the nonnegativity of a solution of the considered
boundary-value problem is also studied.

Jlns ninifiHOTO (yHKIIOHANBHO-TU(PEPEHIIaIBHOTO PIBHSHHS TPETHOTO MOPSAKY
u"' () = £(u)(t) + q(t)
BCTaHOBJICHO TEOPEMH IIPO iCHYBAaHHS Ta €UHICTH PO3B’A3KY, IO 33J0BOJIBHIE YMOBU
u(0) =uD(w), i=0,1,2.

Tyr £ € niniiianm HenepepBHUM onepatopom, mo Tpanchopmye npoctip C ([0, w]; R) y mpocrip L ([0, w]; R),
aqe€ L([O, wl; R). Takok PO3MISHYTO MUTAHHS PO HEBiJ €MHICTh PO3B’SI3Ky PO3INIsLyBaHOI FPaHUYHOT

3a1a4i.
Introduction. Consider the linear functional differential equation

u”(t) = L(u)(t) + q(t), (0.1)

where ¢: C([0,w]; R) — L([0,w]; R) is a linear continuous operator and ¢ € L([0,w]; R).
By a solution of the equation (0.1) we understand a function u: [0,w] — R, which
is absolutely continuous together with its first and second derivatives and satisfies the
equation (0.1) almost everywhere in [0, w].
The following notation will be made use of:

R:]_OO7+OO[a R+:[01+OO[7

1 1
(ol = 5zl +2),  [o]- = (1l - o)
C([0,w]; R) is a Banach space of continuous functions u: [0, w] — R with the norm
|ull ¢ = max {|u(t)|: t € [0,w]};

6’2([0,w]; R) is a set of functions u: [0,w] — R which are absolutely continuous
together with their first and second derivatives;

“The research was supported by the Academy of Sciences of the Czech Republic, Institutional Research
Plan No. AV0Z10190503 and the Grant No. 201/06/0254 of the Grant Agency of the Czech Republic.

© R. HAKL, 2008
ISSN 1027-3190. Vkp. mam. acypH., 2008, m. 60, Ne 3 413



414 R. HAKL

L([0,w]; R) is a Banach space of Lebesgue integrable functions p: [0,w] — R with
the norm

ol = / Ip(s)ds:
0

P is a set of linear nondecreasing operators £: C'([0,w]; R) — L([0,w]; R), i.e.,
such linear operators that ¢(u)(t) > 0 for ¢ € [0, w] whenever u(t) > 0 for t € [0, w].

The equalities and inequalities between functions are understood almost everywhere
in an appropriate interval.

In the present paper, we investigate the question on the existence, uniqueness, and
nonnegativity of a solution of the equation (0.1) satisfying the boundary conditions

uP(0) = (w), i=0,1,2. 0.2)

The periodic boundary-value problem for higher order ordinary differential equations
has been investigated by many authors (see, e.g., [1 - 11] and references therein). Note
that in [5], unlike the earlier known results, there are investigated, among others, the
existence and uniqueness of an w-periodic solution of the nonautonomous ordinary
differential equation

W = 3 put® + g0t
k=1

without the requirement on the function p; to be of constant sign. In this paper we
improve the result of [5] for n = 3 and p;, = 0, £ = 2,3, in a certain way (see
Corollary 1.1). For functional differential equations, one can name only a few papers
devoted to the study of the periodic boundary-value problem (see, e.g., [12—-16]).

The paper is organized as follows. In Section 1, theorems on the existence and
uniqueness, as well as on the nonnegativity, of a solution of (0.1), (0.2) are established.
Sections 2 and 3 are devoted to the proofs of the main results and examples showing
their optimality, respectively.

All the results will be concretized for the differential equation with deviating argument
of the form

u(t) = p(t)u(r(t)) + q(t), (0.3)

where p,q € L([0,w]; R) and 7: [0,w] — [0,w] is a measurable function.
Together with the equation (0.1) we will consider the corresponding homogeneous
equation

u"(t) = C(w)(t). (0.4)

From the general theory of boundary-value problems for linear functional differential
equations, the following theorem is well-known (see [17], for equations with regular
operators see, e.g., [18, 19]).

Theorem 0.1. The problem (0.1), (0.2) is uniquely solvable if and only if the
corresponding homogeneous problem (0.4), (0.2) has only a trivial solution.

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 3



PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL ... 415

1. Main results.

Theorem 1.1. Let the operator ¢ admit the representation { = £y — {1, where {y,
0y € P. Let, moreover, i € {0,1}, and

w w

/z0(1)(s)ds+/el(1)(s)ds 20, (1)
0 0
/fi(l)(s)ds < %, (1.2)
0
w&(l)(s)ds w
R < /glfi(l)(s)ds, (13)
1- 2/, (D) (s)ds o
/El_i(l)(s)ds < % 1+ |1- (;—; L;(1)(s)ds |- (1.4)
0 0

Then the problem (0.1), (0.2) has a unique solution.

The following two assertions immediately follow from Theorem 1.1.
Corollary 1.1. Let p # 0, and either

w

[t < 2.
0
plolds o
LI < [ien-ds < 55 |1 1= [Ip(e)ds |
1*3*2 o [p(s)]+ds o 0

or

Jiots)-as < .
0

[weneas

h < [ilas < 5 |1+ 1-5 [i)-as
1= [ belds b g

Then the problem (0.3), (0.2) has a unique solution.
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Corollary 1.2. Let op(t) > 0 for t € [0,w], where o € {—1,1}, and

w

128
0< / |p(s)|ds < 2

0

Then the problem (0.3), (0.2) has a unique solution.
Remark 1.1. The inequality

/ Ip(s)|ds < 122

w
0

in Corollary 1.2 is optimal and it cannot be weakened (see Example 3.1 in Section 3).

Theorem 1.2. Let ¢(t) > 0 for t € [0,w] and let the operator { admit the
representation { = by — {1, where {y,l1 € P. Let, moreover, i € {0,1}, the conditi-
ons (1.1)—(1.3) be fulfilled, and

/ foi)(s)ds < 22 (1.5)
0

Then the problem (0.1), (0.2) has a unique solution u, and
(=1)'u(t) >0 for te[o,w). (1.6)

Theorem 1.2 implies the following three assertions.
Corollary 1.3. Let q(t) > 0 fort € [0,w], p £ 0, and

Then the problem (0.3), (0.2) has a unique solution, and this solution is nonnegative.
Corollary 1.4. Let q(t) > 0 fort € [0,w], p £ 0, and

[t -ds < .
0
“pe)ds @
!32 . < [its)aas < %
1= e ds b
0

Then the problem (0.3), (0.2) has a unique solution, and this solution is nonpositive.
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Corollary 1.5. Let q(t) > 0, op(t) > 0 for t € [0,w], where o € {—1,1}, and

w

32
0< /|p(s)\ds <2
0

Then the problem (0.3), (0.2) has a unique solution wu, and the function cu is nonpositive.
Remark 1.2. The inequality

w

/ Ip(s)|ds < 2

w
0

in Corollary 1.5 is optimal and it cannot be weakened (see Example 3.2 in Section 3).
2. Proofs. To prove Theorems 1.1 and 1.2, we will need the following two lemmas.
Lemma 2.1 can be found in [20] in more general form.
Lemma 2.1. Let u € 62([0,w]; R) be a nonconstant function satisfying (0.2).
Then

2

w
My —mg < ﬁ(M2—m2)7 (2.1)

where
M; = max {u(i)(t): te [O,w]}, m; = min {u(i)(t): te [O,w]}, 1=0,2.
Proof. 1t is obvious that
My > 0, meo < 0, My —mg > 0.

Put
u(t) for t € [0,w],

v(t) =

u(t —w) for t €w,2w].
Then, obviously, there exist a € [0,w[ and ¢ € |a,a + w][ such that
v(a) = mo, v(c) = M.

The integration by parts on [a, c] yields

My —mgy = %/ [(c—s)(s— a)]/v”(s)ds,

a

whence, in view of the continuity of v/, we get

My —mg < % Mo / [(c—8)(s—a)]'ds +mq / [(c—s)(s—a)ds| =
_ (e - D My — ). (22)
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Analogously, on the interval [c, a + w] we obtain

(a+w—c)?
8

Therefore, multiplying the corresponding sides of the inequalities (2.2) and (2.3), on
account of the fact that 4AB < (A + B)?2, we have that (2.1) holds.

The lemma is proved.

Lemma 2.2. Let the operator { admit the representation { = {y — {1, where {y,
0y € P. Let, moreover, i € {0,1} and (1.1)—(1.3) be fulfilled. Then every nontrivial
function u € 52([0, wl; R) satisfying (0.2) and

My —mg < (MQ - mg). 2.3)

(=D (t) > (=1)%(u)(t) for te]0,uw], 2.4

assumes positive values.

Proof- Assume on the contrary that there exists a nontrivial nonpositive function
u € C*([0,w]; R) satisfying (0.2) and (2.4).

First we will show that u is not a constant function. Indeed, supposing u(t) =
= const < 0 for ¢ € [0,w], the integration of (2.4) from 0 to w yields

/Kl_i(l)(s)ds < /éi(l)(s)ds,
0 0
which contradicts (1.1) and (1.3).
Now put
My = max {|u(t)|: t € [0,w]}, mo = min {|u(t)|: ¢ € [0,w]}, (2.5)
My =max {u"(t): t € [0,w]}, mo = —min {u”(t): t € [0,w]}, (2.6)

and choose 1, t2 € [0,w] such that

u’(t1) = Mo, u” (tg) = —ma. 2.7
Obviously,
My > 0, mg > 0, My > 0, mo > 0, (2.8)
and either
t) <t (2.9)
or
t1 > to. (2.10)

Let (2.9) hold. Then the integration of (2.4) from 0 to ¢y, from ¢; to ¢35, and from
to to w, respectively, on account of (2.5), (2.7), (2.8), and the assumption ¢y, ¢ € P,
results in

(1) (My —u”(0)) > (=1)" [ £(u)(s)ds > —My /&(1)(5)d5, (2.11)
0 0
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(=1)%(—maq /e s)ds > MO/E s, (2.12)
(=) (u" (w) +mg) > (fl)i/é(u)(s)ds > 7M0/€i(1)(5)d8. (2.13)

If ¢ = 0, then from (2.12) we get
M2 + mo S MO /éo(l)(s)ds

If ¢ = 1, then from (2.11) and (2.13), in view of (0.2), we obtain

t1 w w
0 ta 0
Consequently, we have
My +my < MO/Ei(l)(s)ds. (2.14)

Analogously one can show that (2.14) is satisfied also in the case when (2.10) holds.
Thus, in both cases (2.9) and (2.10), the inequality (2.14) holds and, according to
Lemma 2.1, from (2.14) we get

2 w
My —mqg < %Mo/&(l)(s)ds. (2.15)
0

On the other hand, the integration of (2.4) from 0 to w, by virtue of (0.2), (2.5), and
the assumption ¢y, ¢1 € P, yields

m0/€1 Z dS<M0/€ (2.16)
From (1.1) and (1.3) it follows that / £1—-;(1)(s)ds # 0, and thus (2.15) results in
0

M() m() /81 z dS < M()/g )dS/glfz(].)(S)dS (217)
0

Now, using (2.16) in (2.17), on account of (2.8), we have

/we“( /w& s)ds < ‘;; /wéi(l)(s)dsjfli(l)(s)ds
0 0 0 0

which, in view of (1.2), contradicts (1.3).
The lemma is proved.
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Proof of Theorem 1.1. According to Theorem 0.1 it is sufficient to show that the
problem (0.4), (0.2) has only a trivial solution.

Suppose on the contrary that there exists a nontrivial solution u of (0.4), (0.2). Then,
according to Lemma 2.2, u assumes both positive and negative values. Put

My = max {u(t): t € [0,w]}, mo = —min {u(t): t € [0,w]}, (2.18)

and define numbers My and mq by (2.6). Choose ¢1,t2 € [0,w] such that (2.7) holds.
Obviously,

My > 0, mg > 0, My > 0, mo > 0, (2.19)

and without loss of generality we can assume that (2.9) hold.
The integration of (0.4) from 0 to ¢1, from ¢; to ¢2, and from ¢5 to w, respectively,
in view of (2.7), (2.18), (2.19), and the assumption ¢, ¢1 € P, yields

ty t1
M2 - U//(O) < MO /60(1)(8)(18 + my /61(1)(8)618, (220)
0 0
ty to
t1 (31
v (w) +ma < My /50(1)(s)d5 + my /Eﬂl)(s)ds. (2.22)
to 2

If we sum the corresponding sides of (2.20) and (2.22), on account of (0.2), we get

Ms +my < Mo/z0(1)(s)ds+m0/el(1)(s)ds, (2.23)
I I

where I = [0,¢;] U [t2, w]. According to Lemma 2.1, from (2.21) and (2.23) we obtain

2

My +mo < ‘;—2 (moAo + MyAy), (2.24)
w2
Mo+ mg < 372 (moBl + MQB()), (2.25)
where
to ta
Ay = / L)(s)ds, Ay = / (1)(s)ds, (2.26)
t1 t1
Bo = /50(1)(3)615, By = /51(1)(3)@. (227)
I I

If ¢ = 0, then from (2.24) and (2.25), in view of (1.2) and (2.19), we get
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w2 w2
w2 w2
0 < My (1 — 3230> < mo (3231 — 1), (229)

whence we obtain

w2 w2 w2 w2

If i = 1, then from (2.24) and (2.25), in view of (1.2) and (2.19), we get

(.()2 w2
w2 w2

whence we obtain

w2 w2 (AJ2 w2
(1 — 32A1) (1 — 3231> < (3214() — ].) (32B0 — ].)

Consequently, we have

w2 w2 w2 w2

On the other hand, on account of (2.26) and (2.27), using the inequality 4AB <
< (A + B)?, we find

w? w? w? I
1——A ) |(1—-=B;)]>1—— (1 2.
(1- 550 (1-58) =1 - 55 [ tepas. .33)
0
w 2
w? w? 1 [ w?
il L z o < | = ) — . .
(32141_1 1) (32B1—z 1) =7 39 /61_1(1)(8)118 2 (2 34)
0
Now, using (2.33) and (2.34) in (2.32), we get
w w 2
w? 1| w?
1- 39 /Zi(l)(s)ds <ils: /61_1(1)(s)d5 -2]. (2.39)
0 0

Moreover, from (2.28)—(2.31), by virtue of (2.19), (2.26), and (2.27), we have

W [ w?

- . >

33 i (1)(s)ds > 33
0

(Al—i + Bl—i) > 2. (236)

Therefore, the inequality (2.35), on account of (1.2) and (2.36), contradicts (1.4).
The theorem is proved.
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Proof of Theorem 1.2. According to Theorem 1.1, the problem (0.1), (0.2) has a
unique solution w. It is sufficient to show that (1.6) holds.

Suppose the contrary, that there exists ¢y € [0,w] such that (—1)%u(tg) < 0. Then,
according to Lemma 2.2, the function u assumes both positive and negative values.
Define numbers My, mg, M>, and mo by (2.18) and (2.6), respectively, and choose
t1,t2 € [0,w] such that (2.7) is fulfilled. Obviously, (2.19) holds.

Let (2.9) be satisfied. Then the integration of (0.1) from ¢; to t5, in view of (2.7),
(2.18), and the assumptions ¢y, ¢1 € P and ¢(t) > 0 for ¢ € [0, w], results in

to

mww@:f/ww@+«mms

w

< mo/fo(l)(s)ds—f—Mo/w&(l)(s)ds.

0

Let (2.10) be satisfied. Then the integration of (0.1) from O to ¢5 and from ¢; to w,
respectively, in view of (2.7), (2.18), and the assumptions ¢y, ¢; € P and ¢(t) > 0 for
t € [0,w], yields

ma +"(0) = — [ (£(u)(5) + q(s))ds <
0
<mo [ to(1)(s)ds+ My [ 60,
0 0

MrﬂWw:*/Wm@+dW@§

ty

< mO/EO(l)(s)ds—i—Mo/ﬁl(l)(s)ds.

If we sum the corresponding sides of the last two inequalities, on account of (0.2) we
obtain

ma + My < mo /Zo(l)(s)ds + Mo/elu)(s)ds. 2.37)
0 0

Thus, in both cases (2.9) and (2.10) we have (2.37).
Now, according to Lemma 2.1, the inequality (2.37) results in

w w
2

Mo +mg < %2 mo/eo(n(s)ds+Mo/el(1)(s)ds ,
0 0

whence, on account of (1.2) and (1.5), we get a contradiction My + mo < My + my.
The theorem is proved.
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3. Examples.
Example 3.1. Let 0 € {—1,1}, € > 0 be arbitrary, and choose k¥ €]0,1] and
d €]0,1/4[ such that 384/((3 — 16d2)k) = 128 + e. Put

96
mt for ¢t € [O,d[,
96
G- 16k for t € [d,1/2 —d],
96
96

96

and

ult 1—t!§x @—t/ﬂ—sﬂ@ﬂ&

t

Then the function w satisfies the conditions (0.2) with w = 1, and u(3/4) = —u(1/4) =
= 1/k. Therefore we can choose ¢y, t1 € [0,1] such that u(ty) = o, u(t;) = —o.
Obviously, u is a nontrivial solution of the problem

() = pu(r(®),  u®(0) =uD(1), i=0,1.2,
with

pt) Lola'(t)] for te[0,w],

4 | o for t €[0,1/4]U[3/4,1],
(1) =
ty for t€[1/4,3/4].

On the other hand, op(t) > 0 for ¢t € [0,w] and

1
96
0

Example 3.2. Let 0 € {—1,1}, ¢ > 0 be arbitrary, and choose k£ €]0, 1] and
d €]0,1/4[ such that 96/((3 — 16d?)k) = 32 + ¢. Put
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and
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48
S " for ¢ € [0,d
(3 — 1642)kd or ¢ € [0,d],
48
0 f 1/2 -
160 or teld1/2—d]
5= 1B oty for tell/2—d1/2+d]
*) =3 G- 16)kd ’ ’
48
. B for t€[1/2+d,1—d
(3 — 16d2)k or ¢t € [1/2+d,1-d],
48

for t € [1—4d,1]

(3 - 16d2)kd(t -

1
g

u)) =2 (1 —t)/sx(s)ds —t/(l ~ $)a(s)ds.

t

Then the function u satisfies the conditions (0.2) with w = 1, and u(1/4) = —¢/2 —
—1/(2k) < —=(0 +1)/2, u(3/4) = —0/2 +1/(2k) > (1 — 0)/2. Therefore we can
choose tg € [0,1] such that u(ty) = —o. Obviously, u assumes both positive and
negative values and w is a solution of the problem

u" (t) = p(t)ulty) + q(t), u(0) =uP(1), i=0,1,2,

with

p(t) Lole' (D], qt) E (@) for te0,w].

On the other hand, ¢(t) > 0, op(t) > 0 for t € [0,w], and

1
48

/|p(s)|ds G160k 324¢
0
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