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INTEGRATION OF THE MODIFIED
DOUBLE-INFINITE TODA LATTICE
WITH THE HELP OF INVERSE SPECTRAL PROBLEM*

IHTET'PYBAHHSI 3SMIHEHOI'O
JTBOCTOPOHHbO HECKIHYEHHOTI' O JIAHIIO)KKA TOJIU
3A JOIIOMOTI' OO0 OBEPHEHOI CIIEKTPAJIBHOI 3AJTAUI

The approach to finding the solution of the Cauchy problem for the indicated Toda lattice by means of
inverse spectral problem is given.
BukazeHo Hinxiz 10 3HaXOWKEHHS po3B’ 13Ky 3a1adi Komri mis BKa3aHOTO JIaHIIOXKa TOIH 32 IOIIOMOTOX0

00epHEHOI CIIeKTpabHOT 3a/1a4i.

1. Introduction. The classical method of investigation of the Cauchy problem for
the KdV equation via an application of inverse spectral problem for Sturm - Liouville
equation (I. Gelfand, B. Levitan, V. Marchenko, M. Krein; account see in the book [1])
can be adjusted for the Toda semi-infinite lattice

n(t) = 50 () (B () — u()
Bu(t) =a?(t)—a?_,(t), n=0,1,..., tel0,T]; a_;=0.

Using some results for a finite Toda lattice [2, 3], this approach was proposed in the
articles [4, 5] of author. There the role of the Sturm — Liouville equation was played by
the simpler spectral theory of Jacobi matrices.

But finding solutions of the double-infinite Toda lattice (whenn = ..., —1,0,1,...)
is a more difficult problem. In the periodic case, this equation was integrated in terms of
theta-functions in [6] (see also [7]); the inverse scattering problem method (for difference
equations) was applied in [8 — 10]; the method similar to that of [4, 5] was used in [11—
13] in the case when initial data tend to zero when |n| — oo; new classes of solutions
were found in [14]; see also [15-17].

In [18], Ch. 7, the author proposed to investigate spectral problems for double-infinite
Jacobi matrices by doubling such a matrix and reducing the problem to the case of block
one-sided Jacobi matrices with (2 x 2)-matrix blocks (the spectral theory of such block
Jacobi matrices was proposed in [19] and developed in [18], Ch. 7; in this theory, instead
of ordinary scalar-valued spectral measure the matrix-valued spectral measure appeared).
In [20] author and M. Gekhtman tried to apply the inverse spectral theory of (2 x 2)-
block one-sided Jacobi matrices for integration of double-infinite Toda lattice, but the
corresponding differential equation for (2 x 2)-matrix-spectral measure was impossible
to solve and therefore this approach to solving the Cauchy problem was ineffective.

In this paper, the author applies an analogue of the approach in [20], but instead
of (2 x 2)-block Jacobi matrices here the dimensions of blocks are changed: the first
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diagonal block is 1 x 1, i.e., scalar, and therefore, instead of (2 x 2)-matrix-spectral
measure we have an ordinary scalar spectral measure (such idea has appeared in the
works [21-23]). As a result, we integrate the double-infinite Toda chain as in [4, 5],
but with an additional condition:

ozo(t)a,l(t) =0, te [O,T}

Thus, we can integrate an appropriately modified double-infinite Toda chain when functi-
ons a(t), a—1(t),t € [0,T], are given.

2. The spaces and the corresponding block Jacobi matrix. We will investigate
an operator on the complex Hilbert space

L=Hi®PH1DH>D ..., HOZ(Cl:Z(C, H1=H2=...=(C2. (D

Vectors f from 1y have a form f = (f,)2, where f, € Hy; so fo = foeo, fn =
= fn;oen;o + fn;len;l =: (fn;07fn;l) where ¢g = 1 and ¢,, = <€n;0,6n;1), n €N =
={1,2,...}, form the standard basis in C* and H,, = C? respectively.

By 14, we denote the linear space of finite vectors from 15 and by l5(p) we denote
the corresponding weighted space of vectors for which

2 2
£ = D Ifallfy, pn <000 (£ D) = D (Frs Gn) 1P 2
n=0 n=0

Here p = (pn)5%0, Pn > 0, is a given sequence of weights. In what follows, p, > 1
and Z _oPn ! < o0, therefore the imbedding of the positive space lo(p) C 1(p) is

quasinuclear. The corresponding negative space is ly(p~t), p=t = (p;1)2%,. As a
result, we construct the quasinuclear rigging (see, e.g., [24], Ch. 15)

1= () > (I2(p™")) D 12 O (12(p)) O lan (€)

(1 denotes the space of all sequences f = (f,)%2, fn € H,, are arbitrary).

In the space (1), consider a Hermitian matrix J = (ijk);?)ok:() with operator (real
matrix) — valued elements J; ;: Hy — H;, Jjp = (ijk:,aﬁ)}yﬁ:m of the following
block Jacobi structure:

bo: R! — R,

bo ap 0 0 0
ag b1 aq 0 0
J = 0 al b2 a9 0

0 as bg as

aqn-
YO0 R L R2, )

. 2 1 *
ao = [ao,0,000,0,1]: R — R*, ag =
a0,0,1
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(n;0,0 Qn;0,1
* [ . R2 N R2,

an;1,0 Gn;1,1

by = b, =

R - R?% neN.

bn;0,0 bn;O,l
bn;l,O bn;l,l

By assumption, all elements of matrix J (4) are real and uniformly bounded.
Therefore the operator J constructed in a usual way from the matrix J is a bounded
self-adjoint operator acting in the space 1,. It is connected with the chain (3) in a standard
way.

3. The spectral theory of the operator J. Basic constructions. Now we will use
the result from [18], Ch. 5, and [24], Ch. 15, on the generalized eigenvector expansion
for a bounded self-adjoint operator standardly connected with the chain (3). For our
operator J we have the representation

Jf = /)\CI)()\)da()\)f, fely, %)
R

where ®(\): 1o(p) — lo(p~1) is a generalized projection operator and do () is a spectral
measure (with a bounded support). For all f, g € lg, we have the Parseval equality

(9 = [(@N.9hdo(N): ©
R
and, after extending by continuity, the equality (6) takes place for all f, g € 1.

Let us denote by 7, the operator of orthogonal projection in 1, on H,, n € Ny =
={0,1,2,...}. Hence for all f = (f,)52, € 15 we have f,, = m, f. This operator acts
analogously in the space lz(p) and la(p~1) but possibly with norm which is not equal
to one.

Let us consider the operator matrix (®;4(\))55,—, where

(I)j’k()\) = Wj‘I)()\)’ﬂ'ki 12 — Hj (OI' Hk — Hj) (7)

The Parseval equality (6) can be rewritten as follows: Vf, g € 15

o0

o= / @\ fo ) do(N) =
j,k:OR
=S / (1, N f, Dado (V) = 3 / (@560 fr g mdo (V). (8)
3 k=0p Jk=0p

In what follows we will assume that all matrices a,, n € N, are invertible and
ap # 0. The difference equation Jp(A) = Ap(A), p(A) = (¢n(X))22 € (1)’ =1 has
the following form: let po(A) = g be independent of A:

bowo + app1(A) = Ao,

1e.,
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bowo + (a0;0,091;0(A) + ao0,101;1(N)) = Ao, @1 =0,
appo + b1p1(A) + arp2(A) = Ap1(A),

a1p1 + bapa(X) + azp3(X) = Apa(N), O]

an—19n—1 + bnon(A) + anpnr1(N) = Apn(A),

Let us explain that above we have assumed that, as in the classical theory of Jacobi
matrices, the initial value o (A) of an eigenvector p(A) = (po(A), p1(A), p2(N),...) €
€ (lﬁn)/ =1is ¢y € R and does not depend on A (we will often assume o = 1).

The expression P, (\) = Zm o N Aj, X € R, where A; are linear operators

j:

acting: R? — R? and A,, is invertible, we will call an operator polynomial of degree
m € Ny w.rt. \. For fixed ) it is an operator, acting: R? — R2. If the coefficients
Ag,...,Ap: C? — C2?, such operator polynomial will be called a complex operator
polynomial.

The system (9) is a system of recurrence relations: starting from some ¢1()\) € R?
we can find, step by step, p2(\), p3(A),...; since the matrices a1, as, ... are invertible
we have (below 1 is the identity operator in R?)

@2(N) = ay (AL = b1)p1(A) — aopo) =t Q2(A)(¢0,0) =: Q2(N)¢o,
w3(\) = @51((A1 —ba)pa(N) — 01901()\)) =: Q3(A\)(0,0) =: Q3(A\)wo,

(10)

I
S
S
—-
—~
—
>
[y
I
=
3
S~—
)
3
—
>
SN~—
I
S
i
—_
)
3
L
—
>
N
~—
I

The first vector 1 (\) € R? cannot be found uniquely from the first equation in (9).
Our way around this is as follows: we fix some 6, w; # 0, then after easy calculations
we get

67 0
@1(A) = (A= bo) [ 0 1] (¢0,0) = Q1(A)(0,0) = Q1(N)wo,  (11)

Wy
where 01, w; are some solutions of one equation with two unknowns
0! =1 12
ap.0,001 ~ + ag,0,1w; T = (12)

(these solutions exist because the matrix ag: R2 — R is nonzero). These 61, wy will be
fixed in Sections 3 -5 of the paper.
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Thus, we start from Q1(\)gg of the form (11) with condition (12) and then fi-
nd Q2(N)po, Q3(N)go, . ... It is easy to understand that every Q,()) is an operator
polynomial of degree n € N. The solution of the difference equation (9) has a form

©(A) = (en(N)pZo,  @n(A) = Qn(N)po, n € Ny;

Qo(N) =1, Qo(AN)wo == o.

(13)

It is possible to find the representation of elements (7) of matrix (‘I’j,k()‘))fho by
operator polynomials Qg (M), @1(}), ... (compare with [18], Ch. 7, and [21, 22]).

Lemma 1. For every fixed j, k € Nqy the operator (7) ®; 1.(\) has the following
representation:

Pjk(A) = Q;(N)Po,o(A)(Qr(N)" (14)

where @ o(N\) > 0 is understood as an operator of multiplication by the scalar ®g o(X).
Proof. For a fixed k € Ny, the vector (with a fixed A € R and f € lg,) ¢()\) =
= (¢;(A)jZ0), where

(pj(/\) = (I)]Jﬁ(/\)f = Wj‘b()\)ﬂ'kf S Hj, A€ R, (15)

is a generalized solution, in 1 = (lg,)’, of the equation Jp(A) = Ap(A), since P(A)
is a projector onto a generalized eigenvector of the self-adjoint operator J with the
corresponding generalized eigenvalue \. Therefore for all g € 15, we have (¢(\), Jg)1, =
= A¢(A),9)h,. Transferring the finite difference Hermitian expression J to ¢()\)
we get (Jp(N),9)1, = A(p()),9)1,. Hence, it follows that ¢(A\) € lo(p~!) exists
as a usual solution of the difference equation Jy = A¢ with the initial condition
@o(A) = me@(N)mif € Ho.

The uniqueness of the solution of the Cauchy problem for the difference equation (9)
(with a condition ¢_;(A) = 0 and finding 67, w1, according to (12)), i.e., for Jo = Ay,
ensures that the solution (15) (¢o(A), ¢1(A), ... ) and the solution (13) with the initial
condition g(A) = me®(\)my f are the same. Vector f € lg, is arbitrary, therefore we
obtain

P k(A = Q;(N)(mo®(N)mi) = Qj(\)Pok(}), J € No. (16)

The operator ®(\): Ix(p) — La(p~1) is formally self-adjoint on 15 (since it is equal
to the derivative of the resolution of identity of the operator J in 1, with respect to the
spectral measure). Hence, according to (7), we get

(®,6(N)" = (m;@(N)78)* = me@ (N7 = @5 (N), 4, k € No. (17)
For a fixed j € Ny, it follows from (16) and the previous discussion that the vector
P(A) = (We(N)iZo: ¥e(A) = @ ;(A)f, k€No,  f € lin,
is the usual solution of the difference equation Ji» = Ay with the initial condition

Yo(A) = @ j(A) f = (@50(N)" f.

Again as above, we obtain the representation of the type (16)
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D 1(A) = Qe(N)(mo®(N)m;) = Qe(MN)Po,;(A), K € No. (18)

Taking into an account (16) with j (k) replaced by 0 (k), we get

Dop(A) = (Pr0(N)" = (Qr(N)(m@(M)70))" = Ro,o(M(Qr(N)"  (19)

(here we used the fact that the scalar g o(A\) > 0; this inequality follows from (6) and
(8)). Substituting (19) into (16), we get for all j, k € Ngo: @, (X)) = Q;(XN) P r(N) =
= Q;(N) 20,0 (A)(Qr(N)"

The lemma is proved.

It will be essential for us to rewrite the Parseval equality (6), (8) in the form that
involves the operator polynomials Qg (A), Q1()), ... introduced above.

Using Parseval equality (8) and representation (14) we get: Vf, g € lg,

Z/ k(M) frs g do(A) =

Jk=g

A)@o,0(N)Q%(A) frs gj)1,do(N) =

%\

= / QL) s @ Mg adp(N) =
7,k= O]R

= / (ZQZ(M) Y QWNgi || de(N). (20)
k=0 =0

R C2

Here dp(\) = @ 0(A)do()) is the spectral measure of our operator J, it is a probability
Borel measure on R with a bounded support.

Remark 1. The operator polynomials Q1(A), Q2(A), ... form a solution of equati-
ons (9)—(11) with real coefficients. Therefore they are real and the star * means
transposed matrix.

Introduce the Fourier transform ~ induced by self-adjoint bounded operators J in the
space lgy, :

IZDlﬁnaf (fn)n O'_)f fO+ZQ

oo

=Y Qi(Nfn € L*(R,dp(N)). 2D

n=0

Hence, (20) gives the Parseval equality in the final form: Vf, g € lg,

- / FOVEVaP(N)- 22)
R

Extending (22) by continuity, it becomes valid for all f, g € ls.
We find now the orthogonal properties of operator polynomials Q?,(\), n € Ny.
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Remind, that the zeroth polynomial Qf()) is equal to 1. The orthonormal properties
of these polynomials (which are some operators: R? — R2, polynomially depending
on A € R) are easy to find. Namely, recall that every C? 3 fi, k € N, has a 2-vector
form: fi = (fr;0€k:0, fr;1€k1) Where e, = (ex;0,€x;1) is a fixed standard basis in the
space C2. In the case k = 0 we can view the value fo € C as vector (fo,0) € C2.
Therefore, taking in (21) the vectors f, g of the form f = (0,...,0, fx.3,0,...),

= (0,...,0,gj:0,0,...), we conclude that f(\) = (Qe(N) friperp), =
(QiMN)asfess = (Qe(N)g.afrs, GA) = (QF(N)gjiatjia)s = (Q5(A))a,895:a
= (Q;(N)3,a9j:o and than the Parseval equality (22) gives

<=

[ (@050 QN30T 0l @) = fisyas o BENay a0 5=0, 1
R
or in a more symmetric form

/ (Q5(\)as(Qe(N)5.adpl@) = 85 4(caren)cz, o k€No, a, f=0,1, (23)
R

where dp(\) is a probability Borel measure on R.

It is easy enough to find the elements of matrix J in terms of operator polynomials
Qo(A\), Q1(N\),. ... For this, we take f, g € la,. The representation (5) and (8), (20)
give

(I£.90 = (U1.9),, = [ NOOS.9hdo(3) =

R
/ M@,V fing do () = 3 [ AQi) 5@ g o).

],k:OR 7,k= ORr

Setting in this equality fx) = (fn)pZo € lan for which f,, = 0 except for fi = e and,
similarly, g(;) = (gn)5o € lan composed from zeros except for g; = e; (j, k € Ny are
fixed) we find: Vj, k € Ny

ik = (Jf)> 96 />\ Qr(Nex, Q5 (Nej)czdp(A) =

- / AQ;(NQE(News ¢ czdp(N). (24)

R

Taking into an account that .J; ; is a matrix (Jj’k;a’ﬁ)}L 5—o» We can rewrite (24) in
the form

(ko) h g = / AQ(NVQEA)L soodp(X). s k€N 25)

R
<in particular, by = / )\dp()\)).
R
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4. The inverse spectral problem for operator J. Basic constructions. Our goal
now is to prove that the spectral measure dp(\) of operator J (a probability Borel measure
on R, with a bounded support supp dp(\)), allows one to reconstruct the matrix J (4).

We first recall some constructions (more general results can be found in [18], Ch. 7).
Consider the space F of all matrix-valued (i.e., operator valued of the type: CZ — C?)
continuous functions R > X — F()\): C2 — C? and introduce for such functions the
operator-valued scalar product {-, -} putting for all F, G € F

{F,G} = / Adp(\): C% — C2. (26)

Some examples of functions F'(\) were introduced earlier: the operator polynomials
Qm(N). Of course, it is possible to perform some procedure of completion, but for
our purposes it is not essential. We only note that for an arbitrary operator “scalar”
C': C? — C? we have

(FC,G} = C{F,G}, {CF,G}={F,C"G}, {FGC}={FG)C,
(27)
(F,.GY ={G*,F}, {FF}>0, F, GeF.

Let z, y € C?, than forall F, G € F

({F.CYa.y) o = / (FO))* GV, y) ado(N) / ), F(\)) e dp(M).

R R
(28)

For us will be essential the procedure of normalization of vectors F' from F. If for
F € F the operator {F, F}~1: C? — C? exists, than we have from (27)

{FC,FC}=C*{F,F}C =1 for C={F F} 2 (29)

i.e., F'C is “normalized” F.

Lemma 2. Assume additionally, that supp dp(\) contains infinitely many different
points. Then every complex operator polynomial P,,(\) € F, m € Ny, can be norma-
lized.

Proof. According to (29), it is only necessary to prove that { P, (\), P () }
C? — C? exists. Taking into an account that {P,,(A), P,,(\)} is an operator on

71.

finite dimensional space C?, the existence of { Py, (M), Pm(/\)}_1 is equivalent to the
following assertion: if for some z € C? ({Pn()), Pn(A)}, z) =0, then z = 0.
Using (28), we assume that

0= ({Pa(V), Pu(N)}2,2) oo / 1P (N2 dp(N).

The expression ||Pm()\)x|\(2cz is an ordinary polynomial of degree 2m, therefore the last
equality gives || Py, ()\):cHéz = 0. But this equality shows that = 0 because the higher
coefficient of P,,(\) is an invertible operator.

The lemma is proved.
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INTEGRATION OF THE MODIFIED DOUBLE-INFINITE TODA LATTICE ... 461

In what follows, the following special generalization of the usual Schmidt orthogonali-
zation procedure will be very essential (see, e.g., [18], Ch. 7).

Lemma 3. Let suppdp(\) contains infinitely many different points. Denote by
P,,(\) some complex operator polynomial of degree m € Ny. Assume that we have a
system Py(N), ..., Py(N), n €N, of such polynomials with properties:

{Pl()‘ }* *{P ) PHO‘)}:L
{Pj(A%Pk(A)}ZO, j#k jk=1,...,n

(30)

Then one can be construct a complex operator polynomial P, 1()\) of degree n+ 1 for
which

{Pn+1()‘)7P7L+1(/\)}:17 {Pn-i-l(/\)’Pj(/\)}:O? J=1...,n (€2))

Proof. Let D,,1(\) be some fixed arbitrary complex operator polynomial of degree
n + 1. We will find polynomial P, ;1 () at first in a non-normalized form (denote it by

Qm—H (A)) Put

Qur1(N) = D1 (A) = > Bi(NC; (32)

j=1

where Cj: C? — C? are some unknown operator coefficients.
Multiply (32) on P;()), k =1,...,n, and using (27), (30) obtain

0={Qu+1(N), PN} = {Dn1(N), Pe(N) } — Z{P )Cj, P(\)} =

= {Dn+1(N) ZC*{P ,Pr(N)} = {Dns1(N), PN} = C, (33)

ie., Cp = {(P.(\)", Dn+1()\)}7 k=1,....n
Last equalities and (32) show that the following operator polynomial of degree n+1:

Qn-i-l(/\) = n+1 ZPJ )*7Dn+1(/\)} (34)

j=1

is orthogonal (w.r.t. {-,-}) to all P(\),..., P,(A).

According to Lemma 2, this polynomial can be normalized. We get as a result the
normalized polynomial P,;1(A) which is equal to Qy,11(A\)C where C' = {Qn11()),
Qnﬂ()\)}*l/ ®. The conditions (33) of orthogonality are not violated because for all
k:17...,n{Pn+1 } {Qn+1 CPk )}:C*{Qn+1()\),P]€()\)}:O

The lemma is proved.

A few simple remarks are in order.

Remark 2. The results of Lemma 3 are true for (real) operator polynomials.

Remark 3. Introduce a vector-valued polynomial of degree m € Ny as a function
on R such that:
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R3>A— > Naj,
j=0
where a; € R? are real coefficients; a,,, 7 0. It is obvious that the set { P,,,(A\)z | z €
€ R2}7 where P,,()\) is an operator polynomial of degree m, is a subset of a set of such
polynomials with the highest coefficient a,,, = A,,z.

Remark 4. Consider a fixed system {P;(\)},...,{Pn(\)}, m € N, of operator
polynomials with orthogonality properties (30) for which every polynomial P, (\), n =
= 2,...,m — 1, is constructed according to the rules of Lemma 3; where polynomial
D, 1()\) from (32) has a form D, 1(\) = A"T1A, 1, A € R, A,41: R?2 — R? s
a fixed invertible operator. Operator polynomial Pj()) is fixed of the form Py (\) =
= MA; + Ag, where A;, Ag: R? — R? are invertible; Py()\) = 1.

Introduce a set of vector-valued polynomials

R3 A Y P\, (35)
j=0

where z; € R? are arbitrary. Then this set coincides with the set of all vector-valued
polynomials R 3 A — P(X) of degree < m.

This assertion immediately follows from the proof of Lemma 3 and Remark 2.

Remark 5. The union of all the sets (35) (m = 0,1,...) is equal to the set P(R)
of all vector-valued polynomials on R.

Remark 6. In Section 7, in the study of Toda lattices, it will be essential to use in

Remarks 3 -5 the invertible operators Ay, Az, ...: R? — R? with matrices
6, O
y Opy, wy, >0, n=2,3,.... (36)
0 wy

Let dp(\) be the spectral measure of our operator J; assume that its supp dp(\)
contains infinitely many different points. Consider the linear space P(R) of all vector-
valued (real) polynomials on R. Every vector p(A) from P(R) can be viewed as a

function of A\ € R with values in R? for which / ||p(/\)||]2R2 dp(\) < oo. If we introduce
R
the real Hilbert space L?(R,R?;dp())) of functions R 5 A — f(A) € R? with a

scalar product (f()\),g()\))L2(R’R2;dp(A)) = /]R (f(A),9(N))gadp(X), then we can say

that P(R) C L*(R,R% dp(\)) is dense in the latter space. Similarly, it is possible to
introduce the complex Hilbert space L? (R, C%;dp())).

We will fix some normalized operator polynomial P;(\) € L?(R,R? dp())) of
degree one and after this we apply the Lemma 3 (see Remark 2) and construct by
orthogonalization the normalized operator polynomials Pa(X), P3(M),...; {P;(}),
Pk(/\)} = 1%, j, k = 1,2,.... The form of this polynomials depend on initial
operator polynomials Da2(\), D3(A),. ... We will take, in agreement with Remark 6:

0, 0

Dy (\) = A" [o N

], On, wp >0, n=2,3,.... 37

Lemma 4. Assume that matrices a,, in (4) have a form
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0 wt

o
an = , Op, wy, >0, neN. (38)
For j = 2,3, ... the polynomials (Qj()\))*7 constructed as solutions of equations (9),
(10) (see (13)), are equal to operator polynomials Pj(\) constructed via the procedure
of orthogonalization with fixed Py (\) equal to Q1(X\) from (13), (11), and D,,(X\) of the
form (37).

Thus, these (Qj()\))* can be found via a procedure of orthogonalization, described
in Lemma 3.

Proof. According to Remark 5, the set of all vectors (35) coincides with P(R) and
is dense in the space L? (IR, R?;dp()\)) (we first fixed an operator polynomial Py(\) =
= AA; + Ag, where A;: R? — R? is invertible, Py()\) = 1).

Thus, we have, in the real Hilbert space L? (R, R2; dp()x)) e { set F; of all vector-
valued polynomials of degree < 1}, the orthogonal systems {Pn()\)xn € RQ}, n €
€ 2,3,..., constructed by means of polynomials (37).

On the other hand from formulas (10) and (38) we see, that the operator polynomials
Q2(N), Q3(X),. .. (and, therefore the polynomials Q3()\), Q%(X),...) have the leading
coefficients, i.e., the coefficients near A%, A3, ... that coincide with those for Py(\),
P5(A),. .. (their corresponding leading terms are (37)). As we proved in Section 3
(see (23)) the system of vectors Q3 (A)wo, Q5(N)go, . .. from L2 (R, R?;dp(N)) © {F1}
is also orthogonal and gives the basis in the latter space. Since the coefficients of highest
degree \ of these two systems are equal, these systems must coincide: Q3(\) = Pa(A),
Qi) = PV, ...

The lemma is proved.

5. The direct and inverse spectral problem for the Jacobi matrix considered.
Formulation of results. We can now collect constructions of last two sections and
formulate the main results. Thus, we consider on the Hilbert space 15 (1) the operator
J generated by Jacobi matrix J of the form (4) with the following additional condition:
the matrices a,, n € N, are diagonal of the form (38):

0,1 0
an = , Op, wp >0, neN. (39)
0 wt

Recall that all elements of matrix J are real and uniformly bounded. The matrices ag
and a(; will be denoted now by

Qo
a_1

ap = [ag a_1] #0, ag = { }7 ag, a_1 €R. (40)

This matrix J generates (starting from its action on finite sequence lg,) a bounded
self-adjoint operator J in the space lp. Its spectral measure dp()) is a bounded Borel
measure with a bounded supp dp(\), that, we assume in addition, contains infinitely
many different points.

Theorem 1. The full system of generalized eigenvectors p(\) of the operator J
has the following form: for all X from the generalized spectrum of J
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e(A) = (9o =1,01(1),02(N),...) €La(p™ ), (41)

where ¢, (X),n € N, are the solutions (10), (11) of difference equations (9).

The corresponding Fourier transform f(X\) of a vector f = ()52 € lan is defined
by the formula

lin 3 f = (f)iZo = FON) =Y Qa(N)fa € LA(R,C2% dp(N)) (42)
n=0

and maps 1y, onto right-hand side in (42) isometrically. The closure of (42) by
continuity gives the unitary operator between lo and the right-hand side of (42).

The inverse spectral problem consist in the following. Assume that we know an
element ay = [ao 04_1] # 0 of the matrix J and the spectral measure dp(\) of
the corresponding operator J. Then we can find all elements of the matrix J in the
Jollowing manner. Construct by (11) the normalized operator polynomial Q1(\) with

fixed 01,w1 # 0 and by = / Ap(A). Then apply the procedure of orthogonalization
R

described in Lemma 3 and Remark 2 with initial operator polynomials D, (\), n =
=2,3,..., given by (37). As a result, we obtain the orthonormal sequence of operator
polynomials Q1(\), Q2(N),. ... The elements of the matrix J (with a,,, n € N, of the
form (39)) are reconstructed by formulas (25).

Remark 7. The conditions (39) on the blocks a,, are not essential: using in the
Lemma 3 instead D,, () of the form (37) more complicated expressions (connected with
matrices a,, from (4)), we can treat the case of general matrix J of type (4).

6. The Lax equation corresponding to Jacobi matrices of our type. Assume
that elements ay.q,8, bn;a,3, 7 € No, o, § = 0, 1, of matrix (4) are once continuously
differentiable uniformly bounded real functions of ¢ € [0,T], T' < co. Denote this matrix
by J(t). Let A(t), t € [0,T], be some other matrix of the same type as J(¢). The Lax
equation connected with these two matrices J(¢) and A(t), has a form

(&)o

When elements of matrix A(¢) do not depend on elements of J(t) the equation

Il
<
—~
~
~—
I
—
<
—~
~
~—
N
—
~
~—
—
I

JOAR) — A J@), te[0,T].  (43)

J(t)=[J(t),A(t)] =0, tel0,T], (44)

is a linear differential equation w.r.t. matrix J(¢). But if these elements depend on
elements of J(¢), the system (44) is a system of nonlinear differential-difference equation
for the elements of matrix J(¢). As in [1, 25, 4] and in an extensive list of other works,
we will discuss precisely this situation.

We will use for elements of matrix A(t) the same notations as for elements of J(t),
but with tildes: ay, (t), by (t), n € No.

For every t € [0,T], we construct a bounded self-adjoint operator J(t) using the
matrix J(t). The spectrum of J(t), t € [0,T7, is located in a bounded segment [a,b] C R
and therefore we can apply to our case the scheme of [23], § 3. Thus, in our case the
essential role will be played by the Weyl function
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b
m(z;t)z/%, te[0,7], zeC\la,b], (45)

a

where dp(\;t) is the spectral probability measure of the bounded self-adjoint operator
J(t). This operator is weekly continuously differentiable w.r.t. ¢ € [0, T].

We will use a matrix A(t) similar to the matrix used in the article [23], § 2'. Namely,
we assume that analogically to (29), [23],

(@) () =0 and () = —aot), t€[0,T]. (46)

Then mimicking calculations from [23], § 3, we can prove an analogue of Theorem 3
from [23], which gives the following differential equation for the Weyl function (45):

m(z;t) = (z — bo(t))m(z;t) + 1, 2z € C\[a,b], 47)
and the representation of spectral measure dp(A;t) of the following form:
dp(\;t) = C(t)eMdp(N;0), A€ [a,b], te€]0,T]. (48)

Here dp(\;0) is the spectral measure of initial operator J(0) and C'(t) > 0 is a factor
normalizing the measure (48) to a probability measure, i.e., the equality p([a, b];t) = 1,
t € [0, 7] must hold.

For the particular case of conditions (46), namely, if
— 1 —
an(t) = 07 bn(t) = _gbn(t)7 an(t) = _an(t)a ne N07 te [OvT}v (49)

it is easy to write analogously to § 2,3 from [23] (see [23], (33)) the following form of
Lax equations: V¢ € [0, 7]

in(6) = 3 (@ (bt ()~ bu(D)an (), 7 € N,

bu(t) = a2(t) —a2_,(t), n=2,3,.. ., (50)

bi(t) = af(t) — (ao(t))*ao(t), bo(t) = ao(t)(ao(t))*.

Thus, we have the system (50) of nonlinear differential-difference equation with
respect to matrix unknowns ag(t), ai(t),...; bo(t), bi(t),..., t € [0,T]. For this
system we formulate the Cauchy problem: for given ag(0), a1(0), .. .; bo(0), b1(0),. ..,
find the solution ag(t), a1(t),...; bo(t), b1(t),. .. for an arbitrary ¢ € [0, 7.

By using the inverse spectral problem we can formulate the following result:

Theorem 2. Assume that the matrices a,(t) from (4) have the following form:
vt € [0,¢]

1 When comparing these formulas with those of [23], it is necessary take into an account that the role
of matrices ao, a1, ... was played by matrices cg, c1, ... in [23].
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0, 1(t) 0

n

0 wl

an(t) = [
(51)

ao(t) = [awo(t) a—1(t)] #0.

Consider the Cauchy problem for (50) formulated above.

Suppose that for this problem, we know the part of its solutions: ag(t), a—_1(t) for
every t € 0,t]. Then the full solution can be reconstructed through following procedure.

Find the spectral measure dp(X;0) of the initial operator J(0) and then construct,
by formula (48), the spectral measure dp(A;t) for J(t), t € (0,T]. Using the second
part of Theorem 1, find the sequence of orthonormal operator polynomials Q1(\;t),
Qa(N;t),...;Q1(N;t) is constructed by rules (11), (12), where ag(t) has the
Sform (51) and 01 (t),w1(t) # 0 depend on t € [0,T) in a continuously differentiable
manner. Using these polynomial find, according to formula (25), all the elements of the
Jacobi matrix J(t),t € |0, T], whose elements constitute the full solution of our Cauchy
problem.

Proof. 1t is only necessary to check that the formulas (25) give the matrices a,(t),
by (t), t € [0, T], which are the solution of our Cauchy problem for the system (50). But
this assertion is a partial case of a more general Theorem 4 from [23].

The theorem is proved.

7. The integration of the modified double-infinite Toda lattice. The double-
infinite Toda lattice has the form

1 .
dn: ian(ﬂnqtlfﬁn)’ n:aiiai—h nGZ:{...,fl,O,l,...}, (52)

where a,, = a,,(t), 8, = Bn(t) are real once continuously differentiable functions of

t € [0,T]. (52) is a differential-difference nonlinear equation and for (52) it is possible
to consider the Cauchy problem: we know initial data «,,(0),5,(0),n € Z, and it is
necessary to find the solution v, (¢), 5,,(t), n € Z, for ¢ > 0.

The equation (52) is connected with the special case of the equation (50). Namely,
we take in (50) matrices

lan(t) 0 ] () = lﬁn(t) 0
0 a—n—l(t) 0 _ﬂ—n(t)

an (t) =

ao(t) = [ao(t) a—1(t)],  bo(t)=[Bo(t)], te[0,T],

with positive uniformly bounded once continuously differentiable functions o, (t),

Bm(t), m € Z. Then equations (50) transform into a system:

[an(t) 0 ] _ 1<[ﬂn+1(t) 0 ‘| [an(t) 0 ‘| _
0 da_,q(t)] 2 0 —B_p_1(t) 0 a1t
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[co(t) a_1(t)] =

1 Bui(t) 0
= 5 ([Oéo(t) Oz_l(t)] [ 0 —ﬁl(t)] — [ﬂo(t)] [Oéo(t) Oé_l(t)]), n e N,
Bn(t) 0
. = 54
o *

[Bo(t)] = [ao(t) a—1(?)] l

Oz_l(t

From (54) we conclude: V¢ € [0, 7]

Gon() = 5o (8) (B 2(4) — (1),

1

d—n—l(t) = §a—n—1(t)(_ﬂ—n—1(t) - ﬁ—n(t))a n e N;

Golt) = 5aot) (r(6) ~ o),

ﬁn(t) = ai(t) - aifl(t)’ (55)

— /671<t) = Q%Q(t) — 0&2,1(1‘;),
Bo(t) = a(t) + a2 ().

Above mentioned results give the possibility to present, instead of the Cauchy
problem for (52), the solution of the following problem. Consider the “modified”
double-infinite Toda lattice: we take the equation (55) and denote oy = p,a_1 = .
Then for all ¢ € [0, 7]

Gn(t) = 300 (O(Fuia (1)~ Bult)), 1€ Z\ {1}
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(56)

9(0) = J0@(-Bolt) A (0). Fi(0) = k() — $(0),

Bo(t) = @*(8) +0°(1),  Foa(t) = D7 (t) — a2,(1).
Here o(t), ©(t) are given real continuously differentiable functions for which
POV =0, te0,T], and VEE[0,T] ¢(t)£0 or () £0. (57)

For system (56) with condition (57) and unknowns «,(t), 8,(t), n € Z, we state
the Cauchy problem: for known initial data v, (0), n € Z \ {—1}; 5,(0), n € Z, find
the solution of (56).

Theorem 3. The Cauchy problem formulated above has the solution that can be
found as follows.

Find the initial spectral measure dp(\;0) of the operator J(0) which is constructed
Sfrom the initial matrix J(0) in the space ly (1), where a,,(0), b,(0), n € N, are given
by (53) and ay(0) = [¢(0) ¥(0)], bo(0) = Bo(0). By formula (48), construct the spectral
measure dp(\;t), t € (0,T)]. Using the second part of Theorem 1 and Theorem 2, find
the sequence of orthonormal operator polynomials Q1(\;t), Q2(\;t),...; Q1(A;t) has
the form (11), (12) where ag(t) = [o(t) ¥(t)] and 01 (t), w1 (t) # 0 depend on t € [0, T
in a continuously differentiable manner. Then elements of matrix J(t), i.e., the solution
of our Cauchy problem, can be found according to formula (25).

The proof of this theorem follows from Theorem 2.
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