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ON INFINITE-RANK SINGULAR PERTURBATIONS
OF THE SCHRÖDINGER OPERATOR

ПРО СИНГУЛЯРНI ЗБУРЕННЯ ОПЕРАТОРА ШРЕДIНГЕРА
НЕСКIНЧЕННОГО РАНГУ

Schrödinger operators with infinite-rank singular potentials V =
∑∞

i,j=1
bij〈ψj , ·〉ψi are studied under

the condition that singular elements ψj are ξj(t)-invariant with respect to scaling transformations in R3.

Вивчається оператор Шредiнгера з сингулярними потенцiалами нескiнченного рангу V =

=
∑∞

i,j=1
bij〈ψj , ·〉ψi за умови, що сингулярнi елементи ψj є ξj(t)-iнварiантними вiдносно мас-

штабних перетворень в R3.

1. Introduction. Let −∆, D(∆) = W 2
2 (R3) be the Schrödinger operator in L2(R3)

and let U = {Ut}t∈(0,∞) be the collection of unitary operators Utf(x) = t3/2f(tx)) in
L2(R3) (so-called scaling transformations).

It is well known [1, 2] that −∆ is t−2-homogeneous with respect to U in the sense
that

Ut∆u = t−2∆Utu ∀t > 0, u ∈W 2
2 (R3). (1.1)

In other words, the set U determines the structure of a symmetry and the property
of −∆ to be t−2-homogeneous with respect to U means that −∆ possesses a symmetry
with respect to U.

Consider the heuristic expression

−∆ +
∞∑

i,j=1

bij〈ψj , ·〉ψi, ψj ∈W−2
2 (R3), bij = bji ∈ C. (1.2)

We will say that ψ ∈ W−2
2 (R3) is ξ(t)-invariant with respect to U if there exists a

real function ξ(t) such that

Utψ = ξ(t)ψ ∀t > 0, (1.3)

where Ut is the continuation of Ut onto W−2
2 (R3) (see Section 2 for details).

The aim of the paper is to study self-adjoint operator realizations of (1.2) assuming
that all ψj are ξj(t)-invariant with respect to the set of scaling transformations U.

It is well known, see e.g. [1 – 4] that the Schrödinger operators perturbed by potentials
homogeneous with respect to a certain set of unitary operators play an important role in
applications to quantum mechanics. To a certain extent this generates a steady interests
to the study of self-adjoint extensions with various properties of symmetry [5 – 11].
In particular, an abstract framework to study finite rank singular perturbations with
symmetries for an arbitrary nonnegative operator was developed in [6].
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In the present paper we generalize some results of [6] to the case of infinite rank
perturbations of the Schrödinger operator in L2(R3). In particular, the description of all
t−2-homogeneous extensions of the symmetric operator −∆sym is obtained. Another
interesting property studied here is the possibility to get the Friedrichs and the Krein –
von Neumann extension of −∆sym as solutions of a system of equations involving the
functions t−2 and ξ(t).

Throughout the paper D(A), R(A), and kerA denote the domain, the range, and the
null-space of a linear operator A, respectively, while A � D stands for the restriction of
A to the set D.

2. Auxiliary results. 2.1. Preliminaries. Since the Sobolev space W−2
2 (R3)

coincides with the completion of L2(R3) with respect to the norm

‖f‖W−2
2 (R3) =

∥∥(−∆ + I)−1f
∥∥ ∀f ∈ L2(R3), (2.1)

the resolvent operator (−∆+I)−1 can be continuously extended to an isometric mapping
(−∆ + I)−1 from W−2

2 (R3) onto L2(R3) (we preserve the same notation for the
extension). Hence, the relation

〈ψ, u〉 =
(
(−∆ + I)u, (−∆ + I)−1ψ

)
, u ∈W−2

2 (R3), (2.2)

enables one to identify the elements ψ ∈W−2
2 (R3) as linear functionals on W 2

2 (R3).
It follows from (1.1), (2.1) that the operators Ut ∈ U can be continuously extended

to bounded operators Ut in W−2
2 (R3) and for any ψ ∈W−2

2 (R3)

〈Utψ, u〉 = 〈ψ,U∗t u〉 = 〈ψ,U1/tu〉. (2.3)

Since the elements Ut of U have the additional multiplicative property Ut1Ut2 =
= Ut2Ut1 = Ut1t2 , relation (2.3) means that this relation holds for Ut also. But then,
equality (1.3) gives ξ(t1)ξ(t2) = ξ(t1t2) (ti > 0) that is possible only if ξ(t) = 0 or
ξ(t) = t−α (α ∈ R) [12] (Chap. IV). Hence, if an element ψ ∈ W−2

2 (R3) is ξ(t)-
invariant with respect to U, then ξ(t) = t−α (α ∈ R) (the case ξ(t) = 0 is impossible
because Ut has inverse).

2.2. Operator realizations of (2.1) in L2(R3). Let us consider (1.2) assuming that
all elements ψj are t−α-invariant with respect to U. This means that all elements of the
linear span X of {ψj}∞j=1 also satisfy (1.3) with ξ(t) = t−α. Obviously, the same is true
for the closure X of X in W−2

2 (R3). Hence, if ψ ∈ X , then Utψ = t−αψ. This implies
ψ ∈ W−2

2 (R3) \ L2(R3) (since the operator Ut = Ut � L2(R3) is unitary in L2(R3).
Thus X ∩ L2(R3) = {0}.

In that case, the perturbation V =
∑n

i,j=1
bij〈ψj , ·〉ψi turns out to be singular and

the formula

−∆sym = −∆ � D(−∆sym),

D(−∆sym) =
{
u ∈W−2

2 (R3) : 〈ψj , u〉 = 0, j ∈ N
} (2.4)

determines a closed densely defined symmetric operator in L2(R3).
Following [1] a self-adjoint operator realization −∆̃ of (1.2) in L2(R3) are defined

by
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ON INFINITE-RANK SINGULAR PERTURBATIONS OF THE SCHRÖDINGER OPERATOR 489

−∆̃ = −∆R � D(−∆̃), D(−∆̃) =
{
f ∈ D(−∆∗

sym) : −∆Rf ∈ L2(R3)
}
, (2.5)

where

−∆R = −∆ +
∞∑

i,j=1

bij〈ψex
j , ·〉ψi (2.6)

is seen as a regularization of (1.2) defined onD(−∆∗
sym). Here 〈ψex

j , ·〉 denote extensions
of linear functionals 〈ψj , ·〉 onto D(−∆∗

sym).
In what follows, the elements {ψj}∞j=1 in (1.2) are supposed to be a Riesz basis of

the subspace X ⊂ W−2
2 (R3). Then the vectors hj = (−∆ + I)−1ψj , j ∈ N, form a

Riesz basis of the defect subspace H = ker(−∆∗
sym + I) ⊂ L2(R3) of the symmetric

operator −∆sym (see (2.2) and (2.4)).
Let {ej}∞1 be the canonical basis of the Hilbert space l2 (i.e., ej = (. . . , 0, 1, 0, . . .),

where 1 occurs on the j th place only). Putting Ψej := ψj , j ∈ N, we define an injective
linear mapping Ψ: l2 →W−2

2 (R3) such that R(Ψ) = X .
Let Ψ∗ : W 2

2 (R3) → Cn be the adjoint operator of Ψ (i.e., 〈u,Ψd〉 = (Ψ∗u, d)l2

∀u ∈W 2
2 (R3) ∀d ∈ l2). It is easy to see that

Ψ∗u =
(
〈ψ1, u〉, . . . , 〈ψj , u〉, . . .

)
∀u ∈W 2

2 (R3). (2.7)

It follows from (2.7) that the extended functionals 〈ψex
j , ·〉 in (2.6) are completely

defined by an extension Ψ∗
R of Ψ∗ onto D(−∆∗

sym), i.e.,

Ψ∗
Rf =

(
〈ψex

1 , f〉, . . . , 〈ψex
j , f〉, . . .

)
∀f ∈ D(−∆∗

sym). (2.8)

Since D(−∆∗
sym) = W 2

2 (R3)+̇H, where H = ker(−∆∗
sym + I) the formula (2.8) can

be rewritten as

Ψ∗
Rf = Ψ∗

R

(
u+

∞∑
k=1

dkhk

)
= Ψ∗u+Rd ∀f ∈ D(−∆∗

sym), (2.9)

where u ∈ W 2
2 (R3), d = (d1, d2, . . .) ∈ l2, and R is an arbitrary bounded operator

acting in l2.
Using the definition of Ψ and Ψ∗

R, the regularization (2.6) takes the form

−∆R = −∆ + ΨBΨ∗
R, (2.10)

where the self-adjoint operator B is defined in l2 by the infinite-dimensional Hermitian
matrix B = ‖bij‖∞i,j=1.

2.3. Description in terms of boundary triplets. The formulas (2.5) and (2.10) do
not provide an explicit description of operator realizations −∆̃ of (1.2) through the
parameters bij of the singular perturbation V. To get the required description the method
of boundary triplets is now incorporated.

Definition 2.1 [13]. Let Asym be a closed densely defined symmetric operator in
a Hilbert space H. A triplet (N,Γ0,Γ1), where N is an auxiliary Hilbert space and
Γ0, Γ1 are linear mappings of D(A∗sym) into N, is called a boundary triplet of A∗sym if
(A∗symf, g)− (f,A∗symg) = (Γ1f,Γ0g)N − (Γ0f,Γ1g)N for all f, g ∈ D(A∗sym) and the
mapping (Γ0,Γ1) : D(A∗sym) → N ⊕N is surjective.
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The next two results (Lemma 2.1 and Theorem 2.3) are some ‘folk-lore’ of the
extension theory (see, e.g., [14 – 16]). Basically their proofs are the same as in [14],
where the case of finite defect numbers has been considered.

Lemma 2.1. Let R in (2.9) be a bounded self-adjoint operator in l2. Then the
triplet (l2,Γ0,Γ1), where the linear operators Γi : D(−∆∗

sym) → l2 are defined by the
formulas

Γ0f = Ψ∗
Rf, Γ1f = −Ψ−1(−∆ + I)h, (2.11)

(where f = u+ h, u ∈W 2
2 (R3), h ∈ H) is a boundary triplet of −∆∗

sym.

Theorem 2.1. The operator realization −∆̃ of (1.2) defined by (2.5) and (2.10)
is a self-adjoint extension of −∆sym which coincides with the operator

−∆B = −∆∗
sym � D(∆B), D(∆B) =

{
f ∈ D(∆∗

sym) : BΓ0f = Γ1f
}
, (2.12)

where Γi are defined by (2.11) and a self-adjoint operator B is defined in l2 by the
Hermitian matrix B = ‖bij‖∞i,j=1.

3. tα-Invariant singular perturbations of −∆. 3.1. Description of all tα-
invariant elements. An additional study of Ut allows one to restrict the variation of the
parameter α for t−α-invariant elements.

Theorem 3.1 [6]. t−α-Invariant elements ψ ∈ W−2
2 (R3) with respect to scaling

transformations exist if and only if 0 < α < 2.
Proof. For the convenience of the reader we briefly outline the principal stages of

the proof. Consider a family of self-adjoint operators on L2(R3)

Gt = (−t−2∆ + I)(−∆ + I)−1, t > 0. (3.1)

It follows from (1.1), (2.2), and (2.3) that for all u ∈W 2
2 (R3)

〈Utψ, u〉 =
(
(−∆ + I)U1/tu, h

)
=
(
U1/t(−t−2∆ + I)u, h

)
=

=
(
(−t−2∆ + I)u, Uth

)
=
(
Gt(−∆ + I)u, Uth

)
=
(
(−∆ + I)u,GtUth

)
, (3.2)

where h = (−∆ + I)−1ψ. On the other hand, if ψ is t−α-invariant, then

〈Utψ, u〉 = t−α〈ψ, u〉 =
(
(−∆ + I)u, t−αh

)
.

Combining the obtained relation with (2.3) one gets that an element ψ is t−α-invariant
with respect to scaling transformations if and only if

GtUth = t−αh, t > 0, h = (A0 + I)−1ψ. (3.3)

The formula for Gt in (3.1) with an evident reasoning leads to the estimates

α(t)‖h‖ = α(t)‖Uth‖ < ‖GtUth‖ < β(t)‖Uth‖ = β(t)‖h‖,

where α(t) = min{1, t−2} and β(t) = max{1, t−2}. Therefore α(t) < t−α < β(t) for
all t > 0. This estimation can be satisfied for 0 < α < 2 only.

To complete the proof it suffices to construct t−α-invariant elements ψ for 0 < α < 2.
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Fix m(w) ∈ L2(S2), where L2(S2) is the Hilbert space of square-integrable functi-
ons on the unit sphere S2 in R3, and determine the functional ψ(m,α) ∈W−2

2 (R3) by
the formula

〈ψ(m,α), u〉 =
∫
R3

m(w)
|y|3/2−α(|y|2 + 1)

(
|y|2 + 1

)
û(y)dy

(
y = |y|w ∈ R3

)
, (3.4)

where û(y) =
1

(2π)3/2

∫
R3
eix·yu(x)dx is the Fourier transformation of u(·) ∈W 2

2 (R3).

It is easy to verify that

̂(U1/tu)(y) =
1

(2πt)3/2

∫
R3

eiy·xu(x/t)dx = Utû(y) = t3/2û(ty). (3.5)

Using (3.4) and (3.5), one obtains 〈ψ(m,α), U1/tu〉 = t−α〈ψ(m,α), u〉 for all u ∈
∈ W 2

2 (R3). By (1.3) and (2.3) this means that ψ(m,α) is t−α-invariant with respect
to U.

Theorem 3.1 is proved.

The next statement describes all t−α-invariant elements for a fixed α ∈ (0, 2).
Proposition 3.1. An element ψ ∈ W−2

2 (R3) is t−α-invariant with respect to
scaling transformations if and only if ψ = ψ(m,α) where ψ(m,α) is defined by (3.4).

Proof. Let ψ ∈ W−2
2 (R3) be t−α-invariant with respect to U = {Ut}t∈(0,∞). This

means that (3.3) holds for h = (A0 + I)−1ψ. Using (3.5) one can rewrite (3.3) as

t−2|y|2 + 1
|y|2 + 1

t−3/2ĥ
(y
t

)
= t−αĥ(y), t > 0, (3.6)

where the equality is understood in the sense of L2(R3). Setting t = |y|, (w = y/|y|)
one derives that (3.6) holds if and only if

ĥ(y) =
m(w)

|y|3/2−α(|y|2 + 1)
, m(w) = 2ĥ(w), (3.7)

where m(w)∈L2(S2) (because ĥ(w) ∈ L2(R3)). Combining (3.7) with (2.2) and (3.4)
one concludes that ψ = ψ(m,α).

Proposition 3.1 is proved.
Remark 3.1. Proposition 3.1 generalizes Proposition 3.1 in [9] where the case

α = 3/2 was considered.

3.2. t−2-Homogeneous extensions of −∆sym transversal to −∆. Denote
−∆R = −∆∗

sym � ker Γ0, where Γ0 is defined by (2.11). Since (l2,Γ0,Γ1) is a
boundary triplet of −∆∗

sym and the initial operator −∆ coincides with −∆∗
sym � ker Γ1,

one concludes that −∆R and −∆ are transversal self-adjoint extensions of −∆sym, i.e.,
D(−∆R) ∩ D(−∆) = D(−∆sym) and D(−∆R) +D(−∆) = D(−∆∗

sym) [13].

In view of (1.3) and (2.3) the t−αj -invariance of an element ψj in (1.2) is equivalent
to the relation
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t−αj 〈ψj , u〉 = 〈ψj , U1/tu〉 ∀u ∈W 2
2 (R3), t > 0. (3.8)

It turns out that the preservation of (3.8) for the extended functionals 〈ψex
j , ·〉 is equivalent

to the t−2-homogeneity of −∆R.

Proposition 3.2. Let ψex
j be defined by (2.8). Then the relations

t−αj 〈ψex
j , f〉 = 〈ψex

j , U1/tf〉 ∀j ∈ N ∀t > 0 (3.9)

hold for all f ∈ D(−∆∗
sym) if and only if the operator −∆R is t−2-homogeneous with

respect to U = {Ut}t∈(0,∞).

Proof. It follows from (2.2) and (2.3) that

〈ψj , Utu〉 = 〈U1/tψj , u〉 = tαj 〈ψj , u〉 = 0

for every u ∈ D(−∆sym). Thus Ut : D(−∆sym) → D(−∆sym) and, by (1.1) and (2.4),
the symmetric operator −∆sym is t−2-homogeneous: Ut∆sym = t−2∆symUt. But then
the adjoint −∆∗

sym of −∆sym is also t−2-homogeneous. This means that a self-adjoint

extension −∆̃ of −∆sym is t−2-homogeneous with respect to U = {Ut}t∈(0,∞) if and

only if UtD(−∆̃) = D(−∆̃) for all t > 0. Since UtU1/t = I the last equality is
equivalent to the inclusion

UtD(−∆̃) ⊂ D(−∆̃) ∀t > 0. (3.10)

Using (2.8) one can rewrite relations (3.9) as follows:

Ξ(t)Ψ∗
Rf = Ψ∗

RU1/tf ∀f ∈ D(−∆∗
sym) ∀t > 0, (3.11)

where a bounded invertible operator Ξ(t) in l2 is defined by the formulas

Ξ(t)ej = t−αjej , j ∈ N. (3.12)

Since D(−∆0) = ker Γ0 = kerΨ∗
R, (3.11) implies that D(−∆R) satisfies (3.10).

Thus −∆R is t−2-homogeneous with respect to U.

Conversely, assume that −∆R is t−2-homogeneous. According to (2.9) and (3.10)
this is equivalent to the relation

Ψ∗
RU1/tf = 0 ∀f = u+

∞∑
j=1

djhj ∈ D(−∆R) ∀t > 0. (3.13)

Let us study (3.13) more detail. Using (3.1) and (3.3) it is seen that

U1/thj = t−2G1/tU1/thj + (I − t−2G1/t)U1/thj =

=
t−2

t−αj
hj + (1− t−2)(−∆ + I)−1U1/thj ,

where hj = (−∆ + I)−1ψj . Therefore,
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U1/tf = v +
∞∑

j=1

tαj−2djhj , (3.14)

where the element v = U1/tu + (1 − t−2)(−∆ + I)−1U1/t

∑∞

i=1
djhj belongs to

D(−∆). Substituting the obtained expression for U1/tf into (3.13) and using (2.9) one
gets

Ψ∗U1/tu+ (1− t−2)Ψ∗(−∆ + I)−1U1/t

∞∑
j=1

djhj + t−2RΞ−1(t)d = 0. (3.15)

Here Ψ∗U1/tu = Ξ(t)Ψ∗u by (2.3) and (2.7). Moreover Ψ∗u = −Rd since the vector

f = u+
∑∞

j=1
djhj belongs to D(−∆R) = kerΨ∗

R. Thus Ψ∗U1/tu = −Ξ(t)Rd.
On the other hand, employing (2.2) and (2.7), one gets

Ψ∗(−∆ + I)−1U1/t

∞∑
j=1

djhj = Ktd,

where Kt is a bounded operator in l2 that is defined by the infinite-dimensional matrix
K = ‖kij‖∞i,j=1, kij = (hj , Uthi) with respect to the canonical basis {ej}∞1 (see
Subsection 2.2). The obtained relations allow one to rewrite (3.15) as follows:[

− Ξ(t)R+ t−2RΞ−1(t) + (1− t−2)Kt

]
d = 0 ∀t > 0,

where d is an arbitrary element from l2 (it follows from the presentation f ∈ D(−∆R)
in (3.13) and the transversality −∆ and −∆R with respect to −∆sym). Therefore, the
t−2-homogeneity of −∆R is equivalent to the operator equality in l2:

Ξ(t)R− t−2RΞ−1(t) = (1− t−2)Kt ∀t > 0. (3.16)

Finally, employing (2.9) and (3.15) it is easy to see that equality (3.16) is equivalent
to (3.11). Therefore, the extended functionals 〈ψex

j , ·〉 satisfy (3.9).
Proposition 3.2 is proved.
Remark 3.2. The result similar to Proposition 3.2 was proved in [6] for the case of

finite rank perturbations of a self-adjoint operator acting in an abstract Hilbert space H.

Theorem 3.2. Let αj ∈ (1, 2) for any t−αj -invariant element ψj in the definiti-
on (2.4) of −∆sym. Then there exists a unique t−2-homogeneous self-adjoint extension
of −∆sym transversal to −∆.

Proof. It follows from the general theory of boundary triplets [13, 17] that an
arbitrary self-adjoint extension −∆̃ of −∆sym transversal to −∆ coincides with −∆R

for a certain choice of a bounded self-adjoint operator R in l2. As was shown in the proof
of Proposition 3.2, −∆R is t−2-homogeneous with respect to scaling transformations if
and only if the operator R is a solution of (3.16) that does not depend on t > 0. Using
(3.12) and the definition of Kt one can rewrite (3.16) componentwise as follows:

(t−αi − tαj−2)rij = (1− t−2)(hj , Uthi), R = ‖rij‖∞i,j=1 (3.17)

where the infinite-dimensional matrix R is the matrix presentation of R with respect to
the canonical basis {ej}∞1 .
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Let us calculate (hj , Uthi) in (3.17). According to Proposition 3.1, t−αj -invariant
elements ψj in (1.2) have the form ψj = ψ(mj , αj), where mj(·) ∈ L2(S2) and
elements hj = (−∆ + I)−1ψ(mj , αj) are defined by (3.7).

It follows from (3.5) that

Ûthi(y) = t−3/2ĥ
(y
t

)
= t2−αi

mi(w)
|y|3/2−αi(|y|2 + t2)

.

Hence,

(hj , Uthi) = t2−αi

∫
R3

mj(w)mi(w)
|y|3−(αj+αi)(|y|2 + t2)(|y|2 + 1)

dy =

= (mj ,mi)L2

∞∫
0

t2−αi

|y|1−(αi+αj)(|y|2 + t2)(|y|2 + 1)
d|y| =

= cij
tαj − t2−αi

t2 − 1
(mj ,mi)L2 ,

where cij =
∫ ∞

0

|y|3−(αi+αj)

|y|2 + 1
d|y| and (mi,mj)L2 =

∫
S2
mi(w)mj(w)dw is the scalar

product in L2(S2). Substituting the obtained expression for (hj , Uthi) into (3.17) one
finds rij = −cij(mj ,mi)L2 . The matrix R = ‖rij‖∞i,j=1 determined in such a way is
the matrix representation of a unique solution R of (3.16) that does not depend on t > 0.

Theorem 3.2 is proved.
3.3. The Friedrichs and Krein – von Neumann extensions. As was shown in the

proof of Proposition 3.2, the symmetric operator −∆sym is t−2-homogeneous with
respect to scaling transformations. According to general results obtained in [6, 10],
the Friedrichs −∆F and the Krein – von Neumann −∆N extensions of −∆sym are also
t−2-homogeneous.

Theorem 3.3. Let αj ∈ (1, 2) for any t−αj -invariant element ψj in the definiti-
on (2.4) of −∆sym and let the spectrum of −∆R, where R is a unique solution of (3.16)
does not cover real line R. Then the Krein – von Neumann extension −∆N coincides
with −∆R and the Friedrichs extension −∆F coincides with the initial operator −∆.

Proof. A simple analysis of (3.7) shows that hj ∈ L2(R3)\W 1
2 (R3) for 1 ≤ α < 2,

i.e., singular elements ψj in (2.4) form a W−1
2 (R3)-independent system. This means

that the initial operator −∆ coincides with the Friedrichs extension −∆F .

Since −∆R is t−2-homogeneous and σ(−∆R) 6= R, the equality

Ut(−∆R − λI) = t−2(−∆R − t2λI)Ut, t > 0,

means that the spectrum of −∆R is nonnegative. Therefore, −∆R is a nonnegative
extension of−∆sym transversal to the Friedrichs extension−∆. But then the Krein – von
Neumann extension −∆N is also transversal to −∆. Since −∆N is t−2-homogeneous,
Theorem 3.2 gives −∆N = −∆R that completes the proof.

3.4. t−2-Homogeneous extensions of −∆sym. Let us consider the heuristic ex-
pression (1.2), where all elements ψj are assumed to be t−α-invariant with respect to
scaling transformations, i.e., ψj = ψ(mj , α), where α ∈ (1, 2) is fixed.
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It follows from (1.3) and (2.3) that the singular potential V =
∑∞

i,j=1
bij〈ψj , ·〉ψi

in (1.2) is t−2α-homogeneous in the sense that

UtV u = t−2αV Utu ∀u ∈W 2
2 (R3).

Hence, the initial operator−∆ and its singular perturbation V possess the homogenei-
ty property with different index of homogeneity: t−2 and t−2α, respectively. In view
of this, it is natural to expect that any self-adjoint extension −∆̃ of −∆sym having the
t−2-homogeneity property (as well as−∆ and−∆R) is closely related to−∆ and−∆R.

Let (l2,Γ0,Γ1) be a boundary triplet of −∆∗
sym defined by (2.11), where R is a

unique solution of (3.16).
Theorem 3.4. Let all elements ψj be t−α-invariant with respect to scaling trans-

formations, where α ∈ (1, 2) is fixed. Then an arbitrary t−2-homogeneous self-adjoint
extension −∆̃ of −∆sym coincides with the restriction of −∆∗

sym onto the domain

D(−∆̃) = {f ∈ D(−∆∗
sym) : (I − V )Γ0f = i(I + V )Γ1f}, (3.18)

where V is taken from the set of unitary and self-adjoint operators in l2.
Proof. If Γ0 is a boundary operator defined by (2.11), where R is a unique solution

of (3.16), then formulas (3.11) and (3.12) give

Γ0U1/tf = t−αΓ0f ∀f ∈ D(−∆∗
sym) ∀t > 0. (3.19)

On the other hand, using (3.14), one derives

Γ1U1/tf = tα−2Γ1f ∀f ∈ D(−∆∗
sym) ∀t > 0. (3.20)

It is known [13] that an arbitrary self-adjoint extension −∆̃ of −∆sym is the restri-
ction of −∆∗

sym onto the domain (3.18) where V is a unitary operator in l2. By (3.19),
(3.20),

U1/tD(−∆̃) = {f ∈ D(−∆∗
sym) : tα(I − V )Γ0f = it2−α(I + V )Γ1f}. (3.21)

The operator −∆̃ is t−2-homogeneous if and only if its domain D(−∆̃) satisfies
(3.10). Comparing (3.18) and (3.21) and taking into account that α > 1, one concludes
that (3.10) holds if and only if Γ0D(−∆̃) = ker(I − V ) and Γ1D(−∆̃) = ker(I + V ).
These relations give

ker(I − V )⊕ ker(I + V ) = l2 (3.22)

since −∆̃ is a self-adjoint operator and (l2,Γ0,Γ1) is a boundary triplet of −∆∗
sym. The

obtained identity implies that the unitary operator V also is self-adjoint.
Conversely, if V is unitary and self-adjoint, then (3.22) is satisfied. Hence, (3.10)

holds and −∆̃ is t−2-homogeneous.
Theorem 3.4 is proved.
Corollary 3.1. There are no t−2-homogeneous operators among nontrivial (6= −∆)

self-adjoint operator realizations of (1.2).

ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 4



496 S. KUZHEL’, L. VAVRYKOVYCH

Proof. According to Theorem 2.1 an operator realization −∆B of (1.2) is defined by
(2.12). It follows from (2.12) and (3.18) that B = −i(I − V )(I + V )−1. If the operator
V has the additional property (3.22) (the condition of t−2-homogeneity of −∆B), then
B = 0. Hence −∆B is t−2-homogeneous if and only if −∆B = −∆.
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