UDC 519.21

S. Kuzhel’® (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv),
L. Vavrykovych (Nizhin State Univ.)

ON INFINITE-RANK SINGULAR PERTURBATIONS
OF THE SCHRODINGER OPERATOR

PO CUHI'VJIAPHI 3bYPEHHS OIIEPATOPA HIPEJAIHI'EPA
HECKIHYEHHOI'O PAHI'Y
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Schrédinger operators with infinite-rank singular potentials V' = Z - bij(1j, )1 are studied under
ij=
the condition that singular elements v; are £;(¢)-invariant with respect to scaling transformations in R3.
Busuaetscst omneparop IllpeniHrepa 3 CHHTYISpPHMMM IOTCHIlIQJaMH HECKIHUYEHHOTro panry V =
= Z - bij{(1j,-)%; 3a yMOBH, IO CHHTYJSPHI elleMeHTH 1); € &;(t)-iHBapiaHTHUMH BiJIHOCHO Mac-
i,j=

wrabHUX nepeTBopensb B R3.

1. Introduction. Let —A, D(A) = WZ(R?) be the Schrodinger operator in Lo(R3)
and let 4 = {Uy}1e(0,00) be the collection of unitary operators U, f(z) = t3/2 f(tz)) in
Ly (R3) (so-called scaling transformations).

It is well known [1, 2] that —A is ¢~2-homogeneous with respect to 4{ in the sense
that

UAu=t"2AUmu YVt >0, uc WER3). (1.1)

In other words, the set 3 determines the structure of a symmetry and the property
of —A to be ¢t~2-homogeneous with respect to 4 means that —A possesses a symmetry
with respect to Ll.

Consider the heuristic expression

A+ by, W € W5 A(R®), by =Dy € C (12)

ij=1

We will say that ¢ € Wy~ 2(R3) is &(t)-invariant with respect to {1 if there exists a
real function £(¢) such that

Ui = €(t)y V>0, (1.3)

where U, is the continuation of Uy onto W, %(IR?) (see Section 2 for details).

The aim of the paper is to study self-adjoint operator realizations of (1.2) assuming
that all ¢; are §;(¢)-invariant with respect to the set of scaling transformations 4.

It is well known, see e.g. [1—4] that the Schrodinger operators perturbed by potentials
homogeneous with respect to a certain set of unitary operators play an important role in
applications to quantum mechanics. To a certain extent this generates a steady interests
to the study of self-adjoint extensions with various properties of symmetry [5—11].
In particular, an abstract framework to study finite rank singular perturbations with
symmetries for an arbitrary nonnegative operator was developed in [6].
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488 S. KUZHEL’, L. VAVRYKOVYCH

In the present paper we generalize some results of [6] to the case of infinite rank
perturbations of the Schrddinger operator in Lo (R3). In particular, the description of all
t~2-homogeneous extensions of the symmetric operator —Agym is obtained. Another
interesting property studied here is the possibility to get the Friedrichs and the Krein—
von Neumann extension of —Agyy, as solutions of a system of equations involving the
functions ¢ =2 and £(¢).

Throughout the paper D(A), R(A), and ker A denote the domain, the range, and the
null-space of a linear operator A, respectively, while A | D stands for the restriction of
A to the set D.

2. Auxiliary results. 2.1. Preliminaries. Since the Sobolev space W, *(R?)
coincides with the completion of Ly(IR?) with respect to the norm

1wy 2y = [(=A+ D]V € La(R?), 2.1)

the resolvent operator (—A+1)~! can be continuously extended to an isometric mapping
(A + I)~! from W5 ?(R?) onto Lo(R?) (we preserve the same notation for the
extension). Hence, the relation

(,u) = (A + Du, (A + 1)), ueW;*(R%), 2.2)

enables one to identify the elements 1) € T, %(R?) as linear functionals on T3 (R?).
It follows from (1.1), (2.1) that the operators U; € il can be continuously extended
to bounded operators Uy in W5 %(R?) and for any 1 € W, ?(R?)

<Ut{¢)7u> = <¢a Ut*u> = W» Ul/tu>' (23)

Since the elements U; of 4l have the additional multiplicative property Uy, Uy, =
= U, Uy, = Uy, relation (2.3) means that this relation holds for U, also. But then,
equality (1.3) gives &(t1)&(t2) = &(t1t2) (¢; > 0) that is possible only if () = 0 or
£(t) =t~ (a € R) [12] (Chap. IV). Hence, if an element 1» € Wy %(R3) is £(t)-
invariant with respect to i, then £(t) = t~* (a € R) (the case £(t) = 0 is impossible
because U; has inverse).

2.2. Operator realizations of (2.1) in Lo (R3). Let us consider (1.2) assuming that
all elements 1; are t~“-invariant with respect to 4{. This means that all elements of the
linear span X' of {1;}32, also satisfy (1.3) with {(t) = ¢~. Obviously, the same is true
for the closure X of X in W, %(R3). Hence, if 1) € X, then Uyqp = t~ 1. This implies
Y € Wy 2(R3) \ Ly(R?) (since the operator Uy = U; | La(R?) is unitary in Lo(R?).
Thus X N Ly(R3) = {0}.

In that case, the perturbation V' = ij_l b;; (1, -)1; turns out to be singular and

the formula
_Asym =-A FD(_ASym)v

24)
D(~Auym) = {u € W(R): (,u) =0, jeN}

determines a closed densely defined symmetric operator in Lo(R3).
Following [1] a self-adjoint operator realization —A of (1.2) in Lo(R?) are defined

by
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ON INFINITE-RANK SINGULAR PERTURBATIONS OF THE SCHRODINGER OPERATOR 489

~A=-AgID(-A),  D(-B)={f € D(~Ak): ~Arf € L2(RY)}, 23)

sym

where

—Ap=-A+ Z big (V5 )i (2.6)

i,j=1

is seen as a regularization of (1.2) defined on D(—AJ, ). Here (7%, -) denote extensions
of linear functionals (¢;, -) onto D(—=A, ).

In what follows, the elements {1); 521 in (1.2) are supposed to be a Riesz basis of
the subspace X C W, ?(R3). Then the vectors h; = (—A + I)"'¢;, j € N, form a
Riesz basis of the defect subspace H = ker(—Af 4+ I) C Ly(R?) of the symmetric
operator —Agyr, (see (2.2) and (2.4)).

Let {e;}5° be the canonical basis of the Hilbert space {2 (i.e., e; = (...,0,1,0,...),
where 1 occurs on the j th place only). Putting We; := 1);, j € N, we define an injective
linear mapping ¥: 12 — W, ?(R?) such that R(¥) = X.

Let U*: WZ(R?) — C" be the adjoint operator of ¥ (i.e., (u, Ud) = (V*u,d);
Vu € W3(R3) Vd € [?). It is easy to see that

Uru = ((Y1,u),..., (j,u),...) Yue W3 (R?). (2.7)
It follows from (2.7) that the extended functionals (w;?x, -) in (2.6) are completely

defined by an extension Wp of W™ onto D(—Af,,), i.e.,
nf= (( PN B B ?’Zf),...) Ve D(-Afm) (2.8)
Since D(—A%,,,) = W3 (R*)+H, where H = ker(—AZ , + I) the formula (2.8) can

be rewritten as
f =T (u +) dkhk) =T*u+Rd VfeD(-Aly), (2.9)
k=1

where v € WZ(R?), d = (dy,da,...) € la, and R is an arbitrary bounded operator
acting in (2.
Using the definition of ¥ and W%, the regularization (2.6) takes the form

—Ap = —A+ UBY%, (2.10)

where the self-adjoint operator B is defined in [? by the infinite-dimensional Hermitian
matrix B = |05

2.3. Description in terms of boundary triplets. The formulas (2.5) and (2.10) do
not provide an explicit description of operator realizations —A of (1.2) through the
parameters b;; of the singular perturbation V. To get the required description the method
of boundary triplets is now incorporated.

Definition 2.1 [13]. Let Agym be a closed densely defined symmetric operator in
a Hilbert space ). A triplet (N,Tg,T'1), where N is an auxiliary Hilbert space and
Lo, I'y are linear mappings of D(AZ,,,) into N, is called a boundary triplet of A, if
(Aimf, 9) = (f, Amg) = (U1 f,Tog)n — (Lo f, T1g)w for all f, g € D(ALy,) and the
mapping (To,T'1): D(AL ) — N @ N is surjective.

sym
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490 S. KUZHEL’, L. VAVRYKOVYCH

The next two results (Lemma 2.1 and Theorem 2.3) are some ‘folk-lore’ of the
extension theory (see, e.g., [14—16]). Basically their proofs are the same as in [14],
where the case of finite defect numbers has been considered.

Lemma 2.1. Let R in (2.9) be a bounded self-adjoint operator in 1>. Then the
triplet (1?,To,T'1), where the linear operators T;: D(—A% ) — I* are defined by the
formulas

Tof =Vhf, Tif =—V "' (=A+1)h, (2.11)

(where f =u+ h, u € WZ(R3), h € H) is a boundary triplet of —A?

. sym*
Theorem 2.1. The operator realization —A of (1.2) defined by (2.5) and (2.10)
is a self-adjoint extension of —Agym Which coincides with the operator
—Ap =-Ag,, | D(Ap), D(Ap) = {f € D(AY,,): Blof = I‘lf}, (2.12)

where T'; are defined by (2.11) and a self-adjoint operator B is defined in 1* by the
Hermitian matrix B = [|b;;([75_; .

3. t*-Invariant singular perturbations of —A. 3.1. Description of all t*-
invariant elements. An additional study of U; allows one to restrict the variation of the
parameter « for ¢~ “-invariant elements.

Theorem 3.1 [6]. ¢~ “-Invariant elements ) € W, 2(R:‘) with respect to scaling
transformations exist if and only if 0 < a < 2.

Proof. For the convenience of the reader we briefly outline the principal stages of
the proof. Consider a family of self-adjoint operators on Lo (R?)

Gy=(—t2A+D(-A+D)7, t>0. (3.1
It follows from (1.1), (2.2), and (2.3) that for all u € W2(R?)
(Uph, u) = ((=A + 1)Uy jpu, h) = (U o (—t2A+ Du, h) =
= ((=t7A+ Du,Uh) = (Gi(=A + Du,Ush) = ((-A + I)u,GUsh),  (3.2)
where h = (—A + I)~!4. On the other hand, if 1 is t~®-invariant, then
(Ueh,u) =t *(¥,u) = (A + Iu,t”*h).

Combining the obtained relation with (2.3) one gets that an element v is t~*-invariant
with respect to scaling transformations if and only if

GUsh =t~ *h, t>0, h=(Ao+1)"1e. (3.3)
The formula for G; in (3.1) with an evident reasoning leads to the estimates
a(t)|[hll = a@®[|UR]| < |G.Un| < B@)|UA] = B@E)[A],
where a(t) = min{1,¢t72} and 3(t) = max{1,¢~2}. Therefore a(t) <t~ < () for

all ¢ > 0. This estimation can be satisfied for 0 < a < 2 only.
To complete the proof it suffices to construct ¢ ~*-invariant elements ¢ for 0 < av < 2.
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ON INFINITE-RANK SINGULAR PERTURBATIONS OF THE SCHRODINGER OPERATOR 491

Fix m(w) € L2(S?%), where Ly(S?) is the Hilbert space of square-integrable functi-
ons on the unit sphere S? in R?, and determine the functional 4 (m, o) € Wy 2(R?) by
the formula

w)

( 2 P~ 3
((m, @), u) = / gy (W DAy (o= e € BY). G

1 ,
where u(y) = oEE /]R3 e"*"Yu(z)dzx is the Fourier transformation of u(-) € W3 (R3).

It is easy to verify that

— 1

o)) = mgrars [ € ule/t)de = Vi) = 2. G.5)

(27t)
R3

Using (3.4) and (3.5), one obtains (¢(m,a), Uy pu) = t=*(p(m,a),u) for all u €
€ WZ(R3). By (1.3) and (2.3) this means that )(m, «) is t~“-invariant with respect
to 4L
Theorem 3.1 is proved.
The next statement describes all ¢~ “-invariant elements for a fixed o € (0, 2).
Proposition 3.1. An element ) € Wy *(R3) is t~®-invariant with respect to
scaling transformations if and only if 1 = 1 (m, o) where 1 (m, «) is defined by (3.4).
Proof. Let ) € Wy ?(R®) be t~*-invariant with respect to £ = {U;}+¢(0,o0)- This
means that (3.3) holds for h = (Ag + I)~14. Using (3.5) one can rewrite (3.3) as

t_2 Yy 2 + 1 — ~(Y —a7
|y||2|+1t 3/2], (2) =t"%h(y), t>0, (3.6)

where the equality is understood in the sense of Lo(R?). Setting t = |y|, (w = y/|y|)
one derives that (3.6) holds if and only if

=)

(y)

where m(w)€Lo(S?) (because ﬁ(w) € Ly(R?)). Combining (3.7) with (2.2) and (3.4)
one concludes that ¥ = 1(m, «).

Proposition 3.1 is proved.

Remark 3.1. Proposition 3.1 generalizes Proposition 3.1 in [9] where the case
o = 3/2 was considered.

3.2. t=2-Homogeneous extensions of —Agym transversal to —A. Denote
—Ap = —A},, [ kerT'g, where I'g is defined by (2.11). Since (12,Ty,Ty) is a
boundary triplet of —Af,, and the initial operator —A coincides with —AZ [ kerI'y,
one concludes that —Ag and —A are transversal self-adjoint extensions of —Agym, i.€.,
D(-Ag) ND(-A) = D(~Agym) and D(=Ag) + D(-A) = D(-AZ,,) [13].

In view of (1.3) and (2.3) the ¢~ -invariance of an element 1); in (1.2) is equivalent
to the relation
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492 S. KUZHEL’, L. VAVRYKOVYCH
£ (hy,u) = (¥, Uy u) Yu € WH(R?), t>0. (3.8)

It turns out that the preservation of (3.8) for the extended functionals ( a -) is equivalent
to the ¢~2-homogeneity of —Ap.
Proposition 3.2. Let ¢;* be defined by (2.8). Then the relations

W f) = W5 Uref) VjEN VE>0 (3.9)

hold for all f € D(—AL,,) if and only if the operator —ARp is t~2-homogeneous with

respect to 4 = {U; }1e(0,00)-
Proof. 1t follows from (2.2) and (2.3) that

(g, Upu) = Uy ppj, u) =t (j,u) = 0

for every u € D(—Agym). Thus Uy D(—Agym) — D(—Agym) and, by (1.1) and (2.4),
the symmetric operator —Agyp, is t~2-homogeneous: UiAgym = t_QAsmet. But then
the adjoint —AZ | of —Agyy, is also t~2-homogeneous. This means that a self-adjoint

extension —A of —Agym is t‘z-homogeneous with respect to U = {Ut}te(om) if and

only if U;D(—-A) = D(—A) for all t > 0. Since U;U,; = I the last equality is
equivalent to the inclusion

U, D(—A) c D(-A) Vit > 0. (3.10)
Using (2.8) one can rewrite relations (3.9) as follows:

B WS = WUy uf Vf € D(—AL,) Vi>0, (.11

sym

where a bounded invertible operator Z(t) in [? is defined by the formulas
E(t)ej = tiajej, jeN. (3.12)

Since D(—A¢) = kerI'g = ker U}, (3.11) implies that D(—Apg) satisfies (3.10).
Thus —Ap is t~2-homogeneous with respect to Ll.

Conversely, assume that —Ap is t~2-homogeneous. According to (2.9) and (3.10)
this is equivalent to the relation

VUi f =0 Vf=u+Y djh; € D(~Ag) Vt>0. (3.13)
j=1
Let us study (3.13) more detail. Using (3.1) and (3.3) it is seen that
Ul/thj = t_2G1/tU1/th]‘ + (I - t_2G1/t)U1/thj =

2 _ _
= (-t )(=A+ 1) Uy by,

where h; = (—A + I)~14;. Therefore,
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ON INFINITE-RANK SINGULAR PERTURBATIONS OF THE SCHRODINGER OPERATOR 493

Urpf =v+ Yt 2d;hy, (3.14)

J=1

where the element v = Uy jpu + (1 — t72)(=A + 1)Uy Zoil d;h; belongs to
D(—A). Substituting the obtained expression for U/, f into (3.13) and using (2.9) one
gets

U U+ (1= t2) 8 (=A+ 1)Uy »_dih; +t*REN(t)d =0.  (3.15)

j=1

Here U*U, ;yu = Z(t)¥*u by (2.3) and (2.7). Moreover ¥*u = —Rd since the vector
f=u+ Z?O _djh; belongs to D(~Ap) = ker Wy Thus W*U ju = ~Z(t)Rd.
j=
On the other hand, employing (2.2) and (2.7), one gets

U (=A+ 1)Uy Y djhy = Kqd,

Jj=1

where K; is a bounded operator in [? that is defined by the infinite-dimensional matrix
K = |kijl[§5=1, kij = (h;,Uth;) with respect to the canonical basis {e;}5° (see
Subsection 2.2). The obtained relations allow one to rewrite (3.15) as follows:

[—E@R+t2REI )+ (1 -t K ]d=0 ¥t >0,

where d is an arbitrary element from 2 (it follows from the presentation f € D(—Ag)
in (3.13) and the transversality —A and —Apr with respect to —Agyr,). Therefore, the
t~2-homogeneity of —Ap is equivalent to the operator equality in [2:

E@)R—-t2RE'(t) = (1 -t ?)K; Vt>0. (3.16)

Finally, employing (2.9) and (3.15) it is easy to see that equality (3.16) is equivalent
to (3.11). Therefore, the extended functionals (5%, -) satisfy (3.9).

Proposition 3.2 is proved.

Remark 3.2. The result similar to Proposition 3.2 was proved in [6] for the case of
finite rank perturbations of a self-adjoint operator acting in an abstract Hilbert space $).

Theorem 3.2. Let o € (1,2) for any t~%i-invariant element 1; in the definiti-
on (2.4) of —Asym. Then there exists a unique t=2-homogeneous self-adjoint extension
of —Agym transversal to —A.

Proof. 1t follows from the general theory of boundary triplets [13, 17] that an
arbitrary self-adjoint extension A of —Agym transversal to —A coincides with —Apg
for a certain choice of a bounded self-adjoint operator R in [?. As was shown in the proof
of Proposition 3.2, —Ap is t~2-homogeneous with respect to scaling transformations if
and only if the operator R is a solution of (3.16) that does not depend on ¢ > 0. Using
(3.12) and the definition of K; one can rewrite (3.16) componentwise as follows:

(= =% )y = (L—=t72)(hy, Uphi), R=[ryll55-, (3.17)

where the infinite-dimensional matrix R is the matrix presentation of R with respect to
the canonical basis {e; }$°.
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Let us calculate (hj, Uih;) in (3.17). According to Proposition 3.1, ¢t~ -invariant
elements 1; in (1.2) have the form v; = 1 (m;,«a;), where m;(-) € Ly(S?) and
elements h; = (—A + I)~*4(m;, ;) are defined by (3.7).

It follows from (3.5) that

) = 37 (V) =o)L
thi(y) £ ly[3/2= (|y|2 + ¢2)
Hence,
mj(w)m;(w)
(hj,Ushi) = t*~ at/ dy =
7 [y[3=(e 7o (I + ) (lyl> + 1)

t2—0¢,‘,
= (m.j?mi>L2/ 17(04-+a ) 2 2 2 d‘yl =
/ T CF (g + 2) (P + 1)

to4 — t2_0”'

TEoT (MM

= Cij

ee} 3—(aitay)
where ¢;; = / |y||2+11d|y| and (m;, m;)r, = / m;(w)m; (w)dw is the scalar
0 4 52

product in Ly(S?). Substituting the obtained expression for (hj, Uth;) into (3.17) one
finds r;; = —c;j(m;, m;)r,. The matrix R = |[r;;[|75_, determined in such a way is
the matrix representation of a unique solution R of (3.16) that does not depend on ¢ > 0.

Theorem 3.2 is proved.

3.3. The Friedrichs and Krein—von Neumann extensions. As was shown in the
proof of Proposition 3.2, the symmetric operator —Agyy, is ¢~ 2-homogeneous with
respect to scaling transformations. According to general results obtained in [6, 10],
the Friedrichs —Ar and the Krein—von Neumann —A y extensions of —Agy,, are also
t~2-homogeneous.

Theorem 3.3. Let o € (1,2) for any t~%i-invariant element 1; in the definiti-
on (2.4) of —Asym and let the spectrum of —Apr, where R is a unique solution of (3.16)
does not cover real line R. Then the Krein—von Neumann extension —/A N coincides
with — AR and the Friedrichs extension —Afp coincides with the initial operator —A.

Proof. A simple analysis of (3.7) shows that h; € Lo(R3)\ W3 (R3) for 1 < a < 2,
i.e., singular elements ; in (2.4) form a WQ_l(R3)—independent system. This means
that the initial operator —A coincides with the Friedrichs extension —Ap.

Since —Ap is t~2-homogeneous and o(—Agr) # R, the equality

Ul(—Ar — M) =t 2(=Ag — t2AXI)U;, t >0,

means that the spectrum of —Apg is nonnegative. Therefore, —Ap is a nonnegative
extension of —Agyy, transversal to the Friedrichs extension —A. But then the Krein—von
Neumann extension —A y is also transversal to —A. Since —A y is t~2-homogeneous,
Theorem 3.2 gives —Ay = —Apg that completes the proof.

3.4. t~2-Homogeneous extensions of —Agym. Let us consider the heuristic ex-
pression (1.2), where all elements 1); are assumed to be ¢~ “-invariant with respect to
scaling transformations, i.e., ¥; = ¥(m;, @), where a € (1, 2) is fixed.
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o0

It follows from (1.3) and (2.3) that the singular potential V' = Z bij (¥, )i

in (1.2) is t~2“-homogeneous in the sense that

i,j=1

U Vu=t"2VUu Vuc WE(R?).

Hence, the initial operator —A and its singular perturbation V' possess the homogenei-
ty property with different index of homogeneity: =2 and ¢~2¢, respectively. In view
of this, it is natural to expect that any self-adjoint extension —A of —Agym having the
t~2-homogeneity property (as well as —A and —AR) is closely related to —A and —Ag.

Let (I?,19,T'1) be a boundary triplet of —AZ = defined by (2.11), where R is a
unique solution of (3.16).

Theorem 3.4. Let all elements 1p; be t~“-invariant with respect to scaling trans-
Jormations, where o € (1,2) is fixed. Then an arbitrary t~2-homogeneous self-adjoint

extension —A of —Agym, coincides with the restriction of —A}

<ym onto the domain

D(-A) = {f € D(~Aly): (I—V)Tof =i(I+V)I1f}, (3.18)

where V is taken from the set of unitary and self-adjoint operators in 1.
Proof. 1f Ty is a boundary operator defined by (2.11), where R is a unique solution
of (3.16), then formulas (3.11) and (3.12) give
DoUipf =t “Tof VfeD(-AL,) VE>0. (3.19)

sym
On the other hand, using (3.14), one derives

DUy f =t*7°Tof Vf € D(-AL,,) VE>0. (3.20)
It is known [13] that an arbitrary self-adjoint extension —A of —Agym is the restri-
ction of —AZ , onto the domain (3.18) where V' is a unitary operator in I2. By (3.19),
(3.20),
UpD(-A) = {f € D(—A%Ly): t9(I = V)Tof =it> (I +V)I'1f}.  (3.21)
The operator —Ais t~2-homogeneous if and only if its domain D(fﬁ) satisfies
(3.10). Comparing (3.18) and (3.21) ang taking into account that « > 1, one concludes
that (3.10) holds if and only if T'¢D(—A) = ker(I — V) and I'1D(—A) = ker(I + V).
These relations give

ker(I — V)@ ker(I +V) =1? (3.22)

since —A is a self-adjoint operator and (12, T, T';) is a boundary triplet of —Af,- The
obtained identity implies that the unitary operator V also is self-adjoint.

Conversely, if V' is unitary and self-adjoint, then (3.22) is satisfied. Hence, (3.10)
holds and —A is t~2-homogeneous.

Theorem 3.4 is proved.

Corollary 3.1. There are not~>2-homogeneous operators among nontrivial (# —A)
self-adjoint operator realizations of (1.2).
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496 S. KUZHEL’, L. VAVRYKOVYCH

Proof. According to Theorem 2.1 an operator realization —A g of (1.2) is defined by
(2.12). It follows from (2.12) and (3.18) that B = —i(I — V)(I + V')~ L. If the operator
V has the additional property (3.22) (the condition of ¢t ~2-homogeneity of —Ap), then
B = 0. Hence —Ap is t~2-homogeneous if and only if —Ap = —A.
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