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1O MOB’A3AHI 31 CTPYKTYPAMMU KJII®P®OPJA. BCTYII

Using the central extension of the Cuntz C*-algebra, we study the periodicity for corresponding fractals.

3 IONOMOTOI0 IIEHTPAILHOTO po3mupenHs C*-anredpn KyHIla BUB4a€ThCS MEPiOIUYHICTD ISl BiIIOBIA-
HHX (hpaKTais.

1. Introductory: dynamics of binary and ternary alloys. The idea of fractal modelling

of crystals comes back to Bethe [1] who observed its convenience when coming to first,
second, third nearest neighbours of an atom. Taking into account that it is a neighbour of
two or more other atoms, even in the case of one layer with a lattice formed by squares,
one naturally comes to the notion ofuster[2, 3]. It is then natural to cut the plane

of lattice correspondingly to the cluster involved and construct a Riemann surface or a
Bethe lattice — a fractal set of the branch tyjde5]. The construction is parallel to that
related to the holomorphic functiofi(z) = exp 22 in C (Fig.1). The example shows
already the importance of the corresponding grbugf cover symmetry transformations
(Decktransformationengruppépoculation(of the branch corresponding to no. 1 on the
branch corresponding to no. 4), agwhidation related to the pointll; e, [, o.

The next important step was done by Kikuchi [6], who — within his theory of cooper-
ative phenomena — developed a method of approximation for order-disorder phenomena.

In this context, Sukiennicki, Wojtczak, Zasada, and Castillo Alvarado [7] investigated
an infinite thin film of anA B3 alloy. As examples we may take {ffie or C4Au. They as-
sumed the (111) orientation of the alloy. L€%) denote the concentration of tieatoms
in the layer; = 0,1,...; 7 = 0 corresponding to the surface. Then the concentration of
the B-atoms in that layer is — z(j). If U is the energy of interaction of the syste,

— the absolute temperature, and- the number of configurations possible, the entropy
S and the free energ¥' of the system are given by

S=klng and F=U-TS5,
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Fig. 1. Scheme showing the way of constructing the inoculated graded fractal Z(f : ¢)
of the branch type, where f(z) = exp 22, with gradation related to the points B, e, [J, o
corresponding to the Riemann surface of T".

respectively, wheré is the Boltzmann constant, and the conditions for thermodynamic
equilibrium at a given temperatutfeare
=0 ateach j, A =const.
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Theauthors of [7] have calculated that

<z+3>(1 z+1 >
=T — =T
ﬁ—ikzln 4 4 f

or 16 1 L3
z 47' z 47'

andthus, finally,

Thus

or z=2z(j) and 7=r7(j),

or

—kT

1 3
2(1—2)+ -~ (3—22) + —72
136 <8>U— 4 16 for z=2(j) and 7=7(j).

1 3
2(1—2) — 1(1 +22) + —1672
Let us take the pseudometric

ds? = Pdt* — dr? — dy? — dz% — da% — dy% — dz% — nycodo® — nrc.dr?, (1)

wheren, = 1or -1, n, = 1 or —1, ¢, andc, are positive constants, anrdis the
stochastic parameter (e.gr, = S or ¢ = oy, the short-range order parameter), and
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considera Lorentz-like deformation of the nine-dimensional system of the degrees of
freedom:

{(an Ya, 2A, TB, YB, ZB; tv g, T)}

propagating itself as a wave-like perturbation. We assume, for the sake of simplicity, that

dra = dz'y, drp = dr'y, dya = dy'y, dyp = dy’g, dt =dt’,

)71/2

dzy = (1 +c? c.dz, dzp = (1 + 05)71/2 dz,

¢, being a positive constant. Then, thanks to [8], in that deformation:
dz = p, (dz' + vido' + vidr'),
do = p, (vIdz' + do’ +vZdr'), )
dr = p; (vVIdz' +vldo’ +dr'),

wherep., p,, pr are positive constants ang, vz, vZ, vZ, vI, v7 are real constantsye
already know the coefficient§ and v. Indeed,

S =S8 (00,7), 0o=00(S(00,7),7); (GCZO)SQ:O, <aa7_>5m0.

Similarly, in the case of ternary alloys (e.g., CdT®, _,; cf. [9]), we have to consider
an additional order parameter and — in the simplest case — the deformation

dz = p, (d2' +vido' +vidr' +vidb'),

do = py (vVIdz" + do’ +vZdr" +v§de'),

3)
dr = p; (vVIdz' +vldo’ + dr' +vjdd'),

d0 = pe (vidz' +vldo’ +vldr' +do'),

where alsgy has to be a positive constant and vg, v, v9, v, v¢ — real constants.
Here we arrive at a thirteen-dimensional system of the degrees of freedom.

This setting, especially formulae (1)—(3) provide one of possible motivations for
studying fractals related to Clifford structures and their relationship with twistor-like
structures. At the end of our outline we sketch, as an application, a geometrical model of
the surface melting effect (five degrees of freedom). The research will be continued in the
second part of the paper.

2. From alloys to fractals related to Clifford structures. Given generatorgl} =
= A, Al = A, ... ,Aép_l = A, of a Clifford algebraCls,_1(C), p = 2,3,...,in
particular the generators
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alz(‘f (1)) agz@ 0) 03:@ _01> @)

of the Pauli algebra [10, 11], consider the sequence

Ad 0
AT = 53 ® AL = . oa=1,2....2p+2¢—3,
0 —A2
0 IP«,q
Ag;i2q72 =01 ®I1lp4 = ( ), Q)
IP#J 0
0 il
AL == I, , = - ,
2p+2q—1 p.q —Z'Ip7q 0
of generators of Clifford algebraSis,24-1(C), ¢ = 1,2, ..., and the sequence of the

corresponding systems of closed squaigs, (of diameter 1, centred at the origin of
C, wherel, , = Iyp+q-2, the unit matrix of orde2?*?-2) together with theig?r+4-3
subsquare@jf‘l,k, with sides parallel to the sides 6f, , for a < 2p—1, and into4?+7~2
analogous subsquares fer> 2p. We endow the squareg’ with thegradating function
(colour) gg equalai’j. within Qfl‘,ﬁ and 0 otherwise. We call (5)k@asic constructiohl2].

It is convenient to start witly always from 1, i.e., to shif for o > 2p correspond-
ingly. This means that, in the case of the latter two generators in (5), we have tglsift

p— 1. For
¢g=5-p, p=234
the sequence (5) gives the expected fractal model for a binary alloy. For
q="17—p, p=2,3,4,5,6,

(5) gives the expected fractal model for a ternary alloy.
If, for fixed a in (5), we now consider

( 37(Q2}’:))5 n:253a"'a

we obtain agraded(coloured Clifford-type fractalX,, a = 1,2,..., of the flower type
[4, 5]. Thefractal setof eachy,, is a dense subset of the diagonal of the corresponding
squares, running

f Ly Ly

rom ﬁ(_ +1i) to 2\—@( —1);
namely it consists of points whose distance from the begining of the diagonal is an in-
tegral multiplem of 1/2 to some power (a positive integer) times the lengtbf the
diagonal of the matrix represented by the unit square. graded(coloured Clifford-
type fractal bundle,,, o = 1,2, .. .) is well defined which can be proved [13] using the
Cuntz algebra)(4) [14], Kakutani dichotomy theorem [15] and propertiepetals[13]
being suitable pairs of (ordered) quadruples of neighbouring, sufficiently small subsets of
Q7 and of (ordered) quadruples of the corresponding matrix entries.
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It appears that, independently which generator is taken into account in the basic con-
struction (5), we get precisely two kinds of periods (dependent on the algebra and gener-
ator), related to

m=1,2,4,7,8,11,13,14,16, 19, 21, 22, 25, 26, 28, 31, 32, 35, . .. (6)
and
m=3,5,6,9,10,12,15,17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, . . . (7

respectively, independently ofin . The result is precisely formulated and proved in
[13, 16, 17].

Clearly, (5) and (6) are not formal definitions of the sequences. Even if one writes
n = 1,2,..., it is possible to imagine the sequende2,4,5,7,8,...). Formally, we
have to consider two double sequences:

(2m — 12271 m,p=1,2,..., (8)
and
(2m—1)2% -1, m,p=1,2,.... )
If we order the set of numbers (8) to make the sequence
(an),an < @py1, n=1,2,..., (10)

thena,, with n odd give a subsequence of (6), andwith n even give a subsequence of
(7). (Explicitly, 2, 8, 14, 22, 26, 32,.. correspond to (6), and 6, 10, 18, 24, 30, 34,
correspond to (7).) If we order the set of numbers (9) to make the sequence

(bn),bn < bpp1, n=1,2,..., (11)

thenb,, with n odd give the subsequence of (7), complementary to that previously given,
andb,, with n even give the subsequence of (6), complementary to that previously given.
(Explicitly, 3, 15, 27, 43, 51, 63,.. correspond to (7), and 11, 19, 35, 47, 59, 67,
correspond to (6).)

It is natural to ask whether the sequences (6) and (7) really reflect some properties
of generators (4), in particular of;, o2, o3, or they are of more general, perhaps trivial
character like decomposition of an arbitrary integer into a linear combination of different
powers of 2. The role of 2 (more precisely, of 0, 1 ant)) is here replaced by, 1, —1,

i, —i, the entries constituting the Pauli matriees o2, o3 because of the crucial role of

the Pauli algebra and of the Cuntz algebtat)generated by four isometries. At present
we cannot answer this question in the form of a theorem, but we can see the following
three important facts.

1. For eact>, the corresponding fractal set is as described above, i.e., it is naturally
related to the sequences (6) and (7).

2. The fact that the Clifford product of two vectorsii has a symmetric part and an
antisymmetric part is trivial, but the fact that the symmetric part is the scalar product of
those vectors, whereas the antisymmetric part is the wedge product is quite important [18].
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3. It seems that the construction Bf, provides a successful quick search of inter-
esting geometrical objects involving Clifford algebras in the following sense (P. Jordan,
von Neumann, and Wigner [19]): Consider the family of algebfasith addition+ and
multiplicationo such that

MeA for Ac A, MeR,
((AocA)oB)oA=(AoA)o(BoA) for A/ BeA,
if (AcA)+(BoB)+(CoC)+...=0 for A,B,CcA,
then A=B=C=...=0.

The only irreducible such algebras are the following:
(i) the algebra of real numbers with+ B, AA and A o B defined in the usual way;
(i) Cn,m = 3,4,...;C, being the algebra with the linear basis, . .., s,_1, where
A+ B and)\A are defined in the usual way, bdto B is defined by

lol=1, losj=s; and sjosy=0;,01, j k=1,...,n—1,

andJ;;, denoting the Kronecker delta;

(i) HE, p=1,2,4,8,andg = 3,0rp = 1,2,4andqg = 4,5,...; Hl being the
algebra of Hermitian matrices of orderwhose elements are real numbers foe 1,
complex numbers fogp = 2, quaternions fop = 4, and octonions fop = 8, A + B and
AA are defined in the usual way, but fowe have

AoB:%(AB+BA), (12)

where A B represents the usual matrix multiplication.
This means that the subfamlly ¢t} including octoniongp = 8) is qU|.te marginal.
In contrast those corresponding to complex numifgrs- 2) and quaterniongp = 4)
have an infinite number of members. As far as our graded fractal bundles are concerned,

¥, corresponds to Mz, Yy corr.to  Hig, Y3 corrto Mgy,
and
31 corresponds to  H3, Yo corr.to  Hj, Y3 cort.to  Hijg,....

Generally, we have
¥, cort to H%ZQ,I(MH) and Y4 COIT. to H§2a—2(2a+1)~

Now, let us come back to the relatioship between the gradation and inoculation of
fractals [20, 21]. Let us recall [22, 23] that each fraciabf the flower type has itdual
= of the branch type and vice versa. In the case of the Siskpgasket this is illustrated
by Fig. 2a), b). We consider there two copiesof =; and=; in Fig. 2b), c), differing
in gradation (colour) androculate =1 of the first kind on its n-th embranchment by
a branch of=, (Fig. 2d)). The second kind of inoculaticeppears when, together with
changing gradation at the embranchment we change the number of branches (Fig. 4 vs.
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Fig.3). If, for somen, then-th branch of a fractat; within the graded fractal bundle in
question is considered in the bundle together with the 1-st embranchment of aFactal
within the fractal bundle in question, we say thRitis inoculated of the third kindt its
n-th embranchment b,.

a)

Fig. 2. a) The Sierpifiski gasket ©! (of the flower type) after the 2nd step of construction.
b) The fractal =1, dual to 3; (of the branch type) after the 2nd step of construction.
c) The fractal =5 differing from =; in gradation.
b) and ¢) The bundle (Z1, Z2).
d) A graded fractal obtained from (21, Z2) by inoculation of the first kind.

The corresponding definitions for fractals of the flower type are similar. For instance
in the case of inoculation of the third kind we just replace “embranchment” by “growing
step”. As far as the graded Clifford-type fractal bun¢i&,) is concernedy;, o, ...

..., Xgp_1 are inoculated of the third kind at their first growing stepby, andX,,, 1;

the fractals®,, andX,,; are inoculated of the third kind at their first growing step by
Yopt2 andapy 3, alsoXy, Xo, . . ., Xo,— are inoculated of the third kind at their second
growing step bya, 12 andXq, 3, etc.

Now, following [20] we define the graded fractalof the branch type, inoculated of
the first kind (Fig. 3), related to the sequences (6) and (7), in six steps:
(i) At the n-th embranchment we have the numbgrg, ..., 2"~! in the growing
order. Then from 1 we get 1 and 2, from 2 we get 3 and 4; finally, fedm' we get
2" — 1 and2™.
(i) Inoculation concerns the sequences (6) and (7), and we have to determine all the
related numbers preceding and following the inoculation.
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Fig. 3.  The inoculated graded fractal = of the branch type, corresponding to the sequences (6) and (7)
responsible for the types of periods related to (5).

(iif) The numbers preceding the inoculation are of the form (8).

(iv) The numbers following the inoculation are of the form (9).

(v) If we order the set of numbers (8) to make the sequence (10), we realize,that
with n odd correspond to (6), and, with n even correspond to (7).

(vi) If we order the set of numbers (9) to make the sequence (11), we realizg, that
with n odd correspond to (7), ard,,) with n even correspond to (6).

The whole construction leading to the fracklis visualized on Fig.3. The sixth
embranchment is drawn separately in the lower left and lower right parts of the figure.
We have the followindrractal Inoculation Theorem

Theorem 1. The inoculated graded fractal = of the branch type can be decom-

posed to the bundle of inoculated fractals =1 and Z5 without gradation, where =5 is
repeated infinitely many times. Here =1 corresponds to (6) and Z5 corresponds to (7).
Precisely, the embranchments of =1 are renumbered according to the scheme n — n+1.
At the new first embranchment of =1 this fractal is inoculated of the second kind by the
first copy 23 of Za. At the first embranchment of Z3 this fractal is inoculated of the
second kind by the second copy =3 of Za. At the first embranchment of Z3 this fractal
is inoculated of the second kind by the third copy Z3 of Zs, etc.

The whole construction is visualized on Fig. 4. A detailed proof will be given in Part
Il of the paper.

3. Atomization theorem for fractals and Hurwitz twistor-like structures. The
fractal = (shown on Fig. 3) has six types of embranchments:

DDD, DDD, OOO, QOO, O[]D, OOD.
[ O O ] ] O
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Fig. 4. The bundle (Z1,Z1,22,...) of inoculated fractals without gradation, corresponding
to the sequences (6) and (7) responsible for the types of periods related to (5).

Here [ ]resp.O represenmembers of (6) resp. (7). Only two latter structures corre-

spond to inoculation at the embranchment. They will be caj@maef =. Extending

our Atomization Theorem (on isometric embeddings) [24, 25] we are going to state the

following Atomization Theorem for Fracta21]:
Theorem 2. Suppose that the pseudometric corresponding to the p-dimensional

real vector space appearing in the definition of an Hermitian Hurwitz pair of bidimen-

sion (p,n) has the form

(dz, dx)
respectively:

(dx, dx) =
or
or
or

respectively:

= da? —dz3— ... —daZ,

or dx?+...+dx3 —dx3 — da?,

for p =5,
do? — dz3 — ... — dx3,
do? + ... +dat —dad — ... — dad,
do? + ... +dad — da% — ... — dad,

dz? + ...+ d22 — dz} — da3,

Jor p=9,

ISSN 1027-3190. Vkp. mam. ocypn., 2008, m. 60, Ne 5
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(dz, dz) = dx?—da3—...—dzi,,
or dx?+...+dx?—dxd— ... —dxis,
or dx?+...+da3 —dx3 — ... —dzis,
or dx?+ ...+ dx3 —daiy — dais, (15)
or dx?+...+da2 —drd— ... —dxis,
or dr?+...+dxd —dx3, — ... —dxis,
Jor p=13,

Then in each of these cases there exists a finite subfractal =y C =, where all gemmae
can be obtained with the help of type-changing transformations listed in Table 1.

Table 1. Fractal atoms

No. Atom No. Atom

111
111

10 | r3:

!
!

11 | s3:

J

GE BC 6E 86 68 B0

J

~~ N~ N -~ N~ N ~—
I® OFE B &8 HE
N— — " 0 ~—

Ne)
¥
— N
~~ N -~ N -~ N .-~/ N ~—

EB® Ok B® O B GFE
N~ — — ~—  —
~— —— "
Ok HE® O EG OF
~———— ——

S
=3
[ V)

N N 7N N 77N TN

In the above tabl<> etc.stays for the pair of gemmae

616
and @
®

with (6) and taken away. The other symbols and numbers can correspondingly
be deduced from Fig. 5 illustrating the (constructive) proof. For the full transformations
listed in the table, the gemmae indicated have to be extended to finite sequences of petals
corresponding to these gemmae and related to the generators of the Clifford algebra con-
cerned. Under thgypeof gemmae we mean the class of abstraction of all the structures
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032 16 8 4 2

V2732
V2/16
J2/8

43 V24242 V2 V2

V274

(b)

r (a)

Fig. 5.  Type-changing transformations (J) < (O):
(a) decomposed as stigmas of the pistil, (b) compared with the stamens.

(%) resp.(%). A transformation of gemmae igpe-changingf it sends(%) to (8)
orvice versa. In analogy to the fact that C lies in the real and imaginary axis as well,
we complete the both sequences (6) and (7) by 0 at the beginning, so that we have objects
[0] and (0). This is caused by the fact that we have no pairing#121], so we need this
extension.

The table is illustrated by Fig. 5. The choice of coordinates is motivated by the notions
of pistil and stamens introduced and discussed in [13]. The choice of symiaoid s
for particular basic type-changing transformations, caffedtal atoms, as well as the
corresponding lower indices seem natural. Exceptrforthe choice of upper indices
refers to the length of the corresponding vectors. The notaitfent 7, etc. informs on
theend of the sequence

(m/2°7', m=0,1,...,2°"' —1) for 2p—1=5,7, etc.

A detailed proof of Theorem 2 will be given in Part Il of the paper.

The Hurwitz-twistor counterpart of the Penrose theorem in the semiglobal version
states a one-to-one correspondence of the space of holomorphic solutions of the above
mentioned spinor equations of sp;mz with the one-dimensional Dolbeault cohomology
group H! depending orO(n — 2) = O([e]"~2), where[¢] is the canonical effective
divisor of P3(C). On the other side the analogous pseudotwistor counterpart of the Pen-
rose theorem states a one-to-one correspondence of the respective space of holomorphic
solutions with the grougZ! depending orO(—an — 3), wherea and 3, 3 > 2, are
some positive integers. Therefore, again, the both structures have to be linked by a proper
type-changing transformation.
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Let us analyze the situation more closely. In [26] we can find such dualities, expressed
as type-changing transformations, relating manifdldswith the following pseudomet-
rics.

Case 1. da?+ ...+ dx% — da% — da? and do? — do3 — ... — da? for p = 5.

In analogy to Penrose twistors [27] we arrive at the structure of Hurwitz twistors

(H for short) [28], determined by a system i = 5 algebraic equations, and at their

anti-objects (aH), corresponding to the 5-dimensional KatuKlein theory [29, 30].
Case 1. da? —da3 —...—dx3 and da? + ... + dz? — dzd + dx3 for p = 9.
Here we arrive at the structure of pseudotwistors (p) [24, 25, 31], determined by a

system of(Z) = 126 algebraic equations, and at their anti-objects (ap).

Case N dx?+...+dz?—dz?—...—da3sand daxd+. .. +dx2 —dad—...—dxi,
for p = 13.
Here we arrive at the structure of bitwistors (b) [24, 25, 31, 32], determined by a

system of(143> = 715 algebraic equations, and at their anti-objects (ab).

Case IV. da?+...+dx?—dx?2—...—dxd and do?+...+dx3 —da3—. .. —dad
forp =9.

Here we arrive at the structure of pseudobitwistors (pb) [31, 32], determined by a
system ofl26 algebraic equations, and at their anti-objects (apb).

The other cases appearing in (15) were not discussed in [21] because of the (8,8)-
periodicity of the Clifford structure.

The above demands can be fulfilled with the help of Atomization Theorem for fractals.
Namely, we have, as a corollary to that theorem, the followAtmmization Theorem for
Twistor-like Structures

Theorem 3. Suppose that the pseudometric corresponding to the p-dimensional
real vector space appearing in the definition of an Hermitian Hurwitz pair of bidimen-
sion (p,n) has the form given in cases 1-1V. Then in each of these cases there exists a
type-changing transformation of the form listed in Table 2.

Table 2. Basic type-changing transformations for Hurwitz twistor-like structures

No. | Transformation || No. | Transformation
1 H <= ap 7 p < apb
2 aH <= p 8 ap <= pb
3 H <= aH 9 p < ap
4 p < ab 10 H <= ab
5 ap <=b 11 aH < b
6 b <= ab

The theorem may be regarded as a further contribution to the so-called double Cartan-
like triality of Hermitian Hurwitz pairs [18, 33].
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4. Geometrical model of the surface melting effect. A good example of physical
application of Theorem 2 is provided by the geometrical model of the surface melting
effect [8, 34 —36], related to the formulae (13).

If a very thin layer at the crystal surface is the solid-vapour interface whose appearance
defines the surface melting effects, it can be described by its tangent bundle with the arc-
length elementiz? + dy?. Let us embed each tangent space of the bundle in a three-
dimensional space-time with the arc-length elemént? — dz? — dy?, with the usual
meaning oft andt. We consider the further embedding in a four-dimensional space time
M, with the arc-length element

ds? = dt? — da? — dy® — ndr? (16)

wheren = 1, or its modificationM} with arc-length element (16), where= —1. Here
each atom at the surface is treated as a small oscillator and the stochastical character
of its behaviour is introduced by thstochastical dimension related to entropy, while
n = 1 or —1 corresponds to two different kinds of stochastic nature. This means that
n = 1 stands for th&katuza — Klein-typeof differential equations governing the motion.
Correspondinglyy = —1 stands for the temporal character of the stochasticity which
leads to thé’enrose-typef differential equations governing the motion. Theredgr=
= M, or M} will be called thebase spacef our construction.

Fix now a point 0 inMj, consider a family of the analogues dffy, corresponding
to different further layers of the crystal, and take into account the uniquely determined
curveM.; starting from O, passing through all the layers in question, and normal to each
of them. Denote bW, = M5 or M the bundle of all those layers, with the arc-length
element

ds? := Pdt® — da® — dy? — dz® — n(2)dr?, n(z)=1lor —1,

and this corresponds to the formulae (13) in Theorem 2 and Case | in Theorem 3.

The notatioriM; or M is justified by the theorem formulated in [37], Sect. 5.6, which
assures that: (i) an arbitrary system of particles governed by equations of theakatu
Klein-type, completed by an even number of particles governed by equations of the Pen-
rose type, is again a system of particles governed by equations of theakallein-type,

(i) an arbitrary system of particles governed by equations of the 26ahKlein-type,
completed by an odd number of particles governed by equations of the Penrose type, is a
system of particles governed by equations of the Penrose type.

In order to find the surface potentigl(ps), where ps stands for the value of the
order parametep at the surface, we take into account the general idea that the inhomo-
geneous behaviour of thermodynamic parameters can be connected with a deformation
of the space-time in which a considered system is embedded. This idea introduced in
analogy to the considerations reported by Ruppeiner [38] in order to describe the ther-
modynamical curvature in terms of the pseudoriemannian geometry was preliminarily
applied to the model of the surface melting description [36]. In the present paper we
outline a self-consistent approach determining the surface energy characteristics.

Our purpose requires that the surface energy is proportional to the inverse of the space-
time curvature in the neighbourhood of the surface, i.e., in the region of inhomogeneity,
in analogy to the Ruppeiner’s hypothesis originally introduced for the thermodynamic
space. Our condition can be then expressed as follows:
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F (T =Ty,,) = kgTmR?,

whereF; denotes theurface free energgt the phase transition solid-liquid temperature
T,, and R is the curvature describing a deformation of a very thin layer whose thickness
is given by

5 =b/R,

whereb is a positive parameter determined in [8]. This is the self-consistent condition
connecting the physical deformation close to the surface with its geometrical description
in terms of the Clifford-algebraic structure.

From the methodological point of view the deformation can be considered fibre bun-
dles, which are very appropriate not only to global topological problems but also for local
problems of differential geometry and field theory. The concept of induced represen-
tations of Lie groups and algebras may be most easily explained using the language of
bundles as reported by Trautman [39].

The algebraical content of this staff is strictly related to the idea of one of us and
Rembielfski [29, 30] to consider two vector spaces, the so-called Hurwitz(saift”)
restricted by the Hurwitz-type condition:

(a, a)s{z, y)v =(a o x,a o y)v, ac€S, =z, yeV,

where(a, a)s and(z, y)y are the corresponding pseudoscalar productsasithe mul-
tiplication in the Clifford algebra involved.

In the same manner the methodological aspect can be extended to the case of surface
physics. In particular, the surface energy characteristics can be described in terms of such
structures where the behaviour of atoms within the crystallographic lattice is characterized
by a standard equatidiy = E o ¢ where is a spinor defined in a domain $ with
values inV; S, V ando being properly chosen. Practically, this choice is governed by the
so-called Clifford constant.

From the physical point of view we consider surface of a sample treatediah@n
mogeneityof the space. We choose the simplest idealized situation which is sufficient to
be a proper example showing the usefullness of the proposed methodology.

The investigations in the field of surface phenomena, in particular, surface melting,
show that there are at least two different configurations which are observed at the surface.
One of them represents the surface melting where a liquid-like layer is formed at the sur-
face. The other configuration is of solid-like layer character, but its structure is different
from the structure inside a sample.

Two different configurations at the surface are described by means of the density
whose profile corresponds to the distribution in the superficial region and contributes to
the surface energy. A comparison between two surface energies shows that the phase
transition characterized by the change of the density can be expected.

Explicit calculations are left to Part Il of the paper.
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