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ON THE ASYMPTOTIC EQUILIBRIUM
AND ASYMPTOTIC EQUIVALENCE
OF DIFFERENTIAL EQUATIONS IN BANACH SPACES

IMPO ACUMIITOTUYHY PIBHOBAT'Y
TA ACUMIITOTHYHY EKBIBAJIEHTHICTD
AUOEPEHIIAJIbHUX PIBHAHDb Y BAHAXOBUX ITPOCTOPAX

We present some conditions for the asymptotic equilibrium of nonlinear differential equations in Banach
spaces, in particular, of the linear nonhomogenous equation. We also discuss analogous problems for the
linear equation with a nonbounded operator. Some obtained results are applied to problems of
asymptotic equivalence.

HageneHo fesiki yMOBM acCUMNITOTHYHOI piBHOBAaru HeJsliHIMHUX AudepeHIliaTbHUX PiBHAHb y 6aHaxo-
BHX IPOCTOpPAX i, 30Kpema, JIiHITHOr0 HEeOTHOPIAHOTO PiBHAHHA. TakoXK PO3rJISHYTO aHAJIOTIYHI MH-
TaHHs 17151 JIIHIHHOT O PiBHSIHHS 13 HEOOMEKEHUM ornepaTopoM. [lesiKi oTpuMaHi pe3yJsibTaTH 3aCTOCO-
BAaHO /10 33/1a4 aCUMINTOTHYHOI €KBiBaJICHTHOCTI.

1. Introduction. Asymptotic equilibrium and asymptotic equivalence of differential

equation systems in R" were investigated in papers [1 — 4]. Some extensions for the
case of linear differential equations in Banach spaces were given in [5]. This paper
studies the same problem for nonlinear differential equations and, particularly, for the
nonhomogenous linear equation in Banach spaces E. We also discuss analogous
problems for the linear equation with a nonbounded operator. At last, we apply some
obtained results to problems of asymptotic equivalence.

2. Asymptotic equilibrium for nonhomogenous linear equations.

Definition 1. We say that the equation

x = f(t,x) ey

has an asymptotic equilibrium if every its solution has a finite limit at the infinity and
foreach wuy € E there exists a solution x(t) of (1) such that x(t) — uy as t—

— +oo,
Here and in the following, E denotes a Banach space. I, L(E), L([a,bl,E),
C([0,T], E), ... are well-known notations. For the linear equation

x = A(D)x, @)

where A(¢) is a linear bounded operator strongly continuous on [0, e0), the following
statement was proved in [5].
Theorem 1. Equation (2) has a linear asymptotic equilibrium if and only if the
equation
du

eC = AnU 2)

considered in the space of all linear bounded operators L(E) has a solution V(t)
which strongly tendsto I as t— +e and which has V_l(t) € L(E) for t2=
=1, 20.
We consider now the nonhomogenous linear equation

x = Ax + f@), 3)
where f(¢) is a function continuous on [0, e). Suppose that equation (2) has a linear
asymptotic equilibrium and let V(¢) be the operator mentioned in Theorem 1. It is
easy to verify that
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t
x(1) = VOOV N 19) xg + jV(t)V‘l(r) f(vdr, 15=0, )

)
is a solution of equation (3) which satisfies condition x(fy) = x,. Let f(¢) be such
that integral _[(;rm v f(t)dt converges. By virtue of properties of V(¢) and from

the formula (4), we can state that there exists lim x(#) : = x(4+). We show now
t—>+oo

that, for uy € E, the solution x(f) of (3) satisfying condition x(fy) = x, with
oo
xy = V(ty)uy — J V(tO)V_l(‘C)f(’C)dT &)
fo
tends to uy as t— +oo.
In fact, replacing the expression of x; from (5) into (4), we obtain

+o0

x(t) = V(Ouy — j VOV (v f(t)dr.

t

Now, our statement is implied from the property of V() and the Banach — Steinhass
theorem. Thus, we have prove the following statement.
Theorem 2. Let equation (2) have a linear asymptotic equilibrium and let

continuous function f(t) be such that integral J;w V_l(t) f(®)dt converges.
Then equation (3) has an asymptotic equilibrium.

We note that J‘Jw V_l(t)f(t)dt converges if H V_I(I)H <M Vt>20 (for some
M >0) and fe L([0, ), E). In particular, if the operator function A(r) satisfies the

condition of Theorem 3 in [5], then equation (3) has an asymptotic equilibrium if
fe€ Li([0, ), E). In fact, in this case there exists a solution V(r) of equation (27)

which tends to / by norm of the space L(E) as ¢ — +oo. Consequently, it is easy to
verify that ||V™'(5)|| < M for £>0.
3. The case of nonlinear differential equations. We consider now the equation

x = ft,x), (6)

where f: [0, +e) X E — E. Further, we need the following statement (see [6]).
Proposition 1. If f:[0,T] X E — E is a compact operator, then the operator F':
[0,T]x D — C([0, T}, E), defined by the formula

t
(FX)(@) = xo + [ f(t,x(0)dt, 1e[0,T], xeD,
0

is also a compact operator, where D is a set of continuous functions x:[0,T] — E.
Theorem 3. Let the compact operator f(t, x) satisfy the following conditions:

I f@ )| < g)h([x]), (2 x)€[0,)xE,

400
where Io gt)dt < +o0; h(u) is a positive continuous nondecreasing function such

that
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Then equation (6) has an asymptotic equilibrium.
Proof. Let x(t) be an arbitrary solution of (6) satisfying the condition x(#;) =

= xo. Then

1
x() = xp+ J f(t, x(1))dr. @)
fo

Hence,

t
x| < x| + [g@hllx®])dr.
fo
According to the theorem about the integral inequality, we have then ||x(@)| < (),
where y(7) is a solution of the problem

y = gnh(y),
3)
Y1) = | xo -
From (8) we have
y(®) du t +oo
_[ m = jg(r)dr < _[g(r)dr < +oo,
l[xo | ) Iy

This shows that y(¢) is upper bounded. Hence, || x(r)|| <M for ¢ > t,. Let now ¢,
t, > 1, satisfy the inequality

€
(M)

I
j g(vdt| <
t

Then

|xt) = xw)]| = | [ £ x@)an| < | [enr(lx@)ar) <

n g}

< M) j svdt| < .

h

This means that there exists lim x(#). Let now uy € E be an arbitrary element of
t—>+oo

E. Let x(tf) be asolution of (6) which tends to u, as t— +eo. Then

+oo
Uy = xg + j f(z, x(1))dr. &)
fo
From (7), (9) we obtain
EISY
() = uy — | f(5, x(v)dr. (10)
t

Thus, x(¢) is a solution of integral equation (10). Consequently, it remains only to
prove the existence of solutions for integral equation (10). For this purpose, we denote
by Q the set of continuous functions x(¢) satisfying inequality | x(r)| £ R for ¢ 2
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=ty 20, where R is large enough. Clearly, Q is closed, bounded, and convex.

Define now a map F by
+o0

(Fx)(1) = uy — jf(r,x(r))dr, xeQ, 121,
t
to 1is large enough,
400
< Jug |l + h(R) | gy,

fo

IEDON < llug ||+ [ £z, x()de

fo

We choose R >2|uy| and #, be large enough such that

i R
J.g([)dt < %

Iy

Then ||(Fx)(#)|| £ R. This shows that F: Q —Q.
We prove now that F is a compact operator. In fact,

T +oo
(F0)(®) = uy = [ f(nx@)dt — [ f(z,x(@)dt = (G0)@) + (H)@), (A1)
t T
where

T
(Gx)(1) = uy — j ft, x(v)de, 121,

(HD)(0) = = [ f(z, x()dr.
T

Choosing T > 1, such that

+oo
€
we get
oo +oo
[(H@] < [ Al Ds@dt < hR) [ gmdr < 7.
T T

By proposition mentioned above, operator G is compact. Consequently, sequence
{(Gx,)(#)} contains a subsequence {(Gxnj)(t)} which converges. This means that

there exists a number K >0 such that
H(Gxnj)(t) - (Gxnﬂp)(t)H < % Vji>K, peN.

From (11), we obtain
H(Fx”.i)(t)_(Fx”./w)(t)H < §+§ =& Vizy.

This shows that F:Q — Q is a compact operator. According to the Schauder
theorem, there exists an element x € Q such that x= F(x) or
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400
x(t) = uy — | f5, x(m)dr.
t

It is easy to verify that x(#) is a solution of (6) which tends to u, as t — +oo.

Theorem is completely proved.
Corollary 1. If the compact operator f(t, x) satisfies conditions

If@ 0| < g@]x|*, 0<oa<l,
+oo
j gt)ydt < +oo, 1,20,
Ty

then equation (6) have an asymptotic equilibrium.
Theorem 4. Let the compact operator f(t, x) satisfy the condition

If@x)=fanl < gh(lx=yl). xyeE 120,
where
ISy
J g)ydt < +oo
0
and the positive continuous and nondecreasing function h(u) satisfies the condition
+o0
du +oo, uy >0.
o )

Then equation (6) has an asymptotic equilibrium.

The proof of this theorem is analogous to that of Theorem 3.

4. The case of linear equations with nonbounded linear operator. In this
section, we consider the equation

x = A(H)x (12)

in the Hilbert space H. A(t) is a linear operator defined in D(A) < H. We suppose
that D(A) does not depend on f e [0,+) and that D(A) is everywhere dense in
H. Moreover, we suppose that the Cauchy problem x(0) = x,, xy € D(A), has a
solution defined on [0, +<o).

Theorem 5. Let, for each h € D(A), ||A(®)h| € L0, +) and let the operator
A(t) be self-adjoint. Then every bounded solution of equation (12) has a weak finite
limit at the infinity. Moreover, if the inclusion ||A@®)h| € L[0, +e0) is uniform for
he S(0,1) N D(A) (see [5)]), then every bounded solution of (12) has a strong finite
limit at the infinity.

Proof. Let x(t) be any bounded solution of (12), i.e., there is M > 0 such that
| x()| €M ¥V t=0. Then, forany h € D(A), we have

1 1
(X0, h) = (xo, by + [ (A@x(), Wydt = (x, ) + [ (x(0), ADR)dT,  (13)
fy )

where x, = x(#;). Hence,

j (x(1), A(D)h)dr

1

5]
< M|[llA@h]d| < &

I

|(x(1) = x(2), h)| =
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if 1, t, > T, where T is large enough. This shows that there exists lim (x(z), h)
t—> oo

forall h e D(A). Because of the denseness of D(A) and the boundedness of x(z),
we easily prove that this limit exists for all 4 € H. Thus, the first statement is proved.
Since H is weakly complete, there exists A, € H such that

lim (x(t),h) = (hy,h), he H.

By virtue of (13), we have

+o0

(hos By = (xo, By + [ (x(), A h)dr. (14)
From (13), (14) we obtain 0
(x().h) = (o, ) = f (x(v), AR} T, he D(A). (15)
Hence, t
(a0, 1] < [Cho. )| + MTHA(r)thr < [y 1) + ¢ (16)

fo

if #, large enough. By virtue of (16) and the denseness of D(A), we have

x| < [l + € a7
for ¢ large enough. On the other hand, by theorem about the weak convergence,

Iho |l < lx@)] + € (18)
for ¢ large enough. Inequalities (17), (18) show that tl_i)rilme(t)H = | hyll- Since x(r)

weakly tends to /i, we obtain that lim x(¢) = hy.
t—>+oo

Theorem is proved.

We extend now the notion “solution”.

Definition 2. Ler A(f) = A"(t), t = ty 20, x(t) is said to be an extended
solution of the equation (12) if it satisfies the relation

%OC(I), J’> = <-x(t), A(t)y) \V/y € D(A), t= tO >0.

This definition of solution is given in [7].

Theorem 6. Ler ||A(t)h| € Li[0, +o0) uniformly for h e S(0,1)( D(A); A(t) =
= A*(t). Then for each hy € D(A) there exists an extended solution  x(t) of
equation (16) such that

im x(t) = hy. (19)

t—>+oo

Proof. Consider the functional

+oo

Gty = (hooh) = [ (A xo(), h)dr,

t

where 121, he D(A), xy(t) = hy,
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G ] < Ik llal + [ @Il ARl < |k l(1R1+q).  @0)

where ¢ = Jjw | A(t)h||dt. We choose f, be large enough such that 0 < ¢ < 1.
0

Inequality (20) shows that (¢, 1) is a linear continuous functional defined in  D(A).
Because of the denseness of D(A) on H, we can extend continuously this functional
in H with the norm preserving. We denote the extended functional also by ,(z, h).
According to the Riesz theorem, there exists an element x;(tf) in H such that
Ci(t, h) = (x,(0), h).

Clearly, ||x;(0)|| £ (14 q)|hgyl|. Consider now the functional

+o0

G h) o= (o, by = [ (x(0), ARYdT, he DA).

t

By the analogous proof, we obtain that {,(¢, ) is a linear continuous functional
defined in H. Consequently,

Calt. ) = (x3(0), h),

where sz(t)H < (1+q+4¢*)|hy|. Continuing this process, we have the linear
continuous functional

400
Gt ) o= (koo by = [ (x,1(0), AR, @1
t
defined in D(A). The continuous extension of this functional has a form
Gt ) = (x,(0), hy, (22)
lx, @l < (1+q+...+¢" )| < g’ (23)

We show now that the sequence {x,(r)} uniformly converges on [z, +e°). To prove
this statement, it suffices to show that

[ENGEENNG]ET N i (24)
In fact, for n =1 we have
[ x,(5) = xo()|| £ sup [{x;(1) = xo(2), B)| = sup |(x,(6) = x (1), h)| <
[A]<1 heS0,1)ND(A)

[ 1@ ]| xo(0) |1

t

< [lho|

< sup
heS(0,HND(A)

q,

i.e., formula (24) is true for n = 1. Let us now assume that (24) is true for n. Then

Haﬂm—%mu=f$w%ﬂm—%mwﬂ
h|£1

+oo

= sup | [ (5,0 x40, ADR)dT
heSO.DNDA) 7

IN
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+oo
< | |m@-xo@|lA@hldr < hy]q"",
)
i.e., formula (15) is valid for n + 1. Since 0 < g < 1, inequality (24) shows that
sequence {x,(#)} uniformly converges on [z, +°°).
Setting x(t) = lim x,(f) and tending n — + in (21), (22), we obtain
n—+oo
+o0
(x(1), hy = (ho, by — f (x(1), A(Wh)dt, he D(A). (25)
t
This show that x(¢) is an extended solution of (12) and that x(¢) weakly tends to /,
as t — +oo. We prove now that x(#) strongly tendsto h, as t — +co. By virtue of

the uniform convergence of {x,(r)}, it suffices to show that x,(f) — hy, as t — +oo.
In fact, we have

[ =hos )] < [ | xum @]l A@ANdT < 1’2 [lA@h]dx.
fo fo

Hence,

0~ fo | < 1Lolle.
1-¢q

Since g — 0 as t — +oo, our statement is proved.
5. Asymptotic equivalence. In this section, we consider equations
y =AMy, (26)
x = A®)x + f(t, x). 27)

Definition 3. Equations (26), (27) are said to be asymptotically equivalent if to
each solution x(t) of (27) there exists a solution y(t) of (26) such that

lim || x(t) = y(®)| = 0 (28)
t—>+4oo0

and conversely, to each solution y(t) of (26) there exists a solution x(t) of (27)
satisfying (28).

We assume throughout that A(f) € L(E) for t+ =2 0 and A(f) is strongly
continuous on [0, +oo); f: [0, +e0) X E — E is a continuous operator. We denote by
U(t) the Cauchy operator of (26) satisfying U(0) = 1. Consider the equation

;= U0 f[nU®Dz]. (29)

Theorem 7. Let equation (26) be stable and consequently |U@®)| < M.
Moreover, we suppose that equation (29) has an asymptotic equilibrium. Then
equations (26), (27) are asymptotically equivalent.

Proof. let x(t) be an arbitrary solution of (27). It is easy to verify that z(z) =

U_l(t)x(t) is a solution of (29). By virtue of the assumptions, there exists z,., =

lim z(¢). Setting y(¢) = U(?)z,.., we easily verify that y(¢) is a solution of (26)
t—>+oo

which satisfies relation (28). Conversely, let now y(f) be an arbitrary solution of (26)
satisfying condition y(0) = y,. Then y(t) = U(t)y,. According to the assumption,

there exists a solution z(r) of (29) such that lim z(¢) = yy,. Let x(t) = U@t)z(z). It
t—>+oo
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is easy to verify that x(#) is a solution of (27) and

lim || x(t) — y(©)| < M lim ||z(t) - y, || = O.
t—>e0 1—> oo

Theorem is proved.

Remark. We have proved that, in the condition of stability of equation (26), the
asymptotic equilibrium of equation (29) is a sufficient condition for the asymptotic
equivalence of equations (26), (27). In general, this condition is not necessary.

Example. Consider the following example:

x = Ax + B x,

y = Ay,

_1 0 0 e—l
A = , B(t) = .
0 -2 et 0
In this case,

e’ 0 el 0 0 e_2’
Ut) = ., Ule = . U 'OBOU®) = )
0 % 0 ¥ 1 0

By the Levison theorem (see [8, p. 159]), above equations are asymptotically
equivalent. However, equation

where

;= U 0OBOU®)z
has not an asymptotic equilibrium. In fact, this equation can be written in the form

d -2t
i = € 2y,

22 = 7.
Suppose that this system has an asymptotic equilibrium. Then for hy = (1, 1), there
exists a solution (z;(r), zp(f)) such that z;(r) = 1; z,(f) > 1 as t— +oo. Hence,
Zy(t) = 1 as t — +oo. Therefore,
l-e< ) <1l4+4e Vi2T>0.
Consequently,

7)) > (M) + 1-8)@-T).

Tending ¢ — +c0, we obtain a contracdition.

However, we have the following theorem.

Theorem 8. Let equation (26) be bistable (see [9, p. 165]). Then the
asymptotic equilibrium of equation (29) is a necessary and sufficient conditions for
the asymptotic equivalence of (26), (27).

Proof. According to assumptions, we have

luwl < M, |uo| <M vizo.

Obviously, we remain to prove the necessary condition. Let y,€E and y() =
= U(t)y, be a solution of (26). According to our assumption, there exists a solution

x(t) of (27) such that | x(¢#) — y(¢)| — 0 as # — +e. Consider z(¢) = U\ (0x@). Tt
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is a solution of (29) and
|2ty = yoll < U @)||1x(0) = )|l < M|x(t) = y0)].

Therefore, z(t) = yy as t— +oo. Let now z(¢f) be an arbitrary solution of (29).
Then x(z) = U(#)z(¢) is a solution of (27). According to our assumption, there exists
asolution y(t) = U(t)yy (yg = y(0)) of (26) such that || x(r) — y(?)|[| = 0 as 7 — +oo.
Consequently, we have that || z(t) = yo || < [|UT' )| [ x(6) = y(®) | < M| x(t) = y®)| = 0

as t— +oco. This shows that z(f) = y;, as t— +eo. Thus, equation (29) has an
asymptotic equilibrium.

Theorem 9. Let equation (26) be bistable. The compact operator  f(t, x)
satisfies conditions of Theorem 3 or Theorem 4. Then equations (26), (27) are
asymptotically equivalent.

In fact, in this case conditions of Theorem 3 or Theorem 4 are satisfied for
equation (29). Hence, it has an asymptotic equilibrium. By virtue of Theorem 6, we
obtain the assertion of this theorem.
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