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ON THE ASYMPTOTIC EQUILIBRIUM 
AND ASYMPTOTIC EQUIVALENCE
OF DIFFERENTIAL EQUATIONS IN BANACH SPACES

PRO ASYMPTOTYÇNU RIVNOVAHU 

TA ASYMPTOTYÇNU EKVIVALENTNIST| 

DYFERENCIAL|NYX RIVNQN| U BANAXOVYX PROSTORAX

We present some conditions for the asymptotic equilibrium of nonlinear differential equations in Banach
spaces, in particular, of the linear nonhomogenous equation.  We also discuss analogous problems for the
linear equation with a nonbounded operator.  Some obtained results are applied to problems of
asymptotic equivalence.

Navedeno deqki umovy asymptotyçno] rivnovahy nelinijnyx dyferencial\nyx rivnqn\ u banaxo-

vyx prostorax i, zokrema, linijnoho neodnoridnoho rivnqnnq.  TakoΩ rozhlqnuto analohiçni py-

tannq dlq linijnoho rivnqnnq iz neobmeΩenym operatorom.  Deqki otrymani rezul\taty zastoso-

vano do zadaç asymptotyçno] ekvivalentnosti.

1.  Introduction.  Asymptotic equilibrium and asymptotic equivalence of differential
equation systems in  Rn   were investigated in papers [1 – 4].  Some extensions for the
case of linear differential equations in Banach spaces were given in [5].  This paper
studies the same problem for nonlinear differential equations and, particularly, for the
nonhomogenous linear equation in Banach spaces  E.  We also discuss analogous
problems for the linear equation with a nonbounded operator.  At last, we apply some
obtained results to problems of asymptotic equivalence.

2.  Asymptotic equilibrium for nonhomogenous linear equations.  
Definition 1.  We say that the equation

ẋ f t x= ( , ) (1)

has an asymptotic equilibrium if every its solution has a finite limit at the infinity and
for each  u E0 ∈   there exists a solution  x t( )  of (1) such that  x t( )  → u0   as  t →
→ + ∞.

Here and in the following,  E  denotes a Banach space.  I,  L E( ),  L a b E1 [ , ],( ) ,
C T E[ , ],0( ), …  are well-known notations.  For the linear equation

ẋ A t x= ( ) , (2)

where  A t( )  is a linear bounded operator strongly continuous on  [ , )0 ∞ ,  the following
statement was proved in [5].

Theorem 1.  Equation (2) has a linear asymptotic equilibrium if and only if the
equation

dU
dt

A t U= ( ) (2′ )

considered in the space of all linear bounded operators  L E( )  has a solution  V t( )

which strongly tends to   I    as   t →  + ∞   and which has   V t−1( ) ∈  L E( )  for   t ≥
≥ t0  ≥ 0.

We consider now the nonhomogenous linear equation 
˙ ( ) ( )x A t x f t= + , (3)

where  f t( )  is a function continuous on  0, ∞[ ) .  Suppose that equation (2) has a linear
asymptotic equilibrium and let  V t( )  be the operator mentioned in Theorem 1. It is
easy to verify that 
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x t V t V t x V t V f d
t

t

( ) ( ) ( ) ( )= +  ( ) ( )− −∫1
0 0

1

0

τ τ τ ,    t0  ≥ 0, (4)

is a solution of equation (3) which satisfies condition  x t( )0  = x0 .  Let  f t( )  be such

that integral  
0

1+∞ −∫ V f d( )τ τ τ( )   converges.  By virtue of properties of  V t( )  and from

the formula (4), we can state that there exists  lim ( )
t

x t
→ +∞

 : = x( )+∞ .  We show now

that, for  u E0 ∈ ,  the solution  x t( )  of (3) satisfying condition  x t( )0  = x0   with  

x0   =  V t u V t V f d
t

( ) ( )0 0 0
1

0

−
+∞

−∫ ( ) ( )τ τ τ (5)

tends to  u0   as  t → + ∞.
In fact, replacing the expression of  x0   from (5) into (4), we obtain

x t V t u V t V f d
t

( ) ( ) ( )=  ( ) ( )0
1−

+∞
−∫ τ τ τ .

Now, our statement is implied from the property of  V t( )  and the Banach – Steinhass
theorem.  Thus, we have prove the following statement.

Theorem 2.  Let equation (2) have a linear asymptotic equilibrium and let

continuous  function   f t( )   be  such  that  integral    
0

1+∞ −∫ V t f t dt( ) ( )     converges.

Then equation (3) has an asymptotic equilibrium.

We note that  
0

1+∞ −∫ V t f t dt( ) ( )   converges if  V t−1( )  ≤ M   ∀  t ≥ 0  (for some

M > 0)  and  f ∈ L E1 0, ,∞[ )( ).  In particular, if the operator function  A t( )  satisfies the
condition of Theorem 3 in [5], then equation (3) has an asymptotic equilibrium if
f ∈ L E1 0, ,∞[ )( ).  In fact, in this case there exists a solution  V t( )  of equation (2 ′ )

which tends to  I  by norm of the space  L E( ) as  t →  + ∞.  Consequently, it is easy to

verify that  V t−1( )  ≤ M  for  t ≥ 0.

3.  The case of nonlinear differential equations.  We consider now the equation

˙ ( , )x f t x= , (6)

where  f : 0, +∞[ ) × E → E.  Further, we need the following statement (see [6]).
Proposition 1.  If  f : [ ]0, T  × E → E  is a compact operator, then the operator  F :

[ ]0, T  × D → C T E[ ]( )0, , ,  defined by the formula

( )( ) : , ( )Fx t x f x d
t

= + ( )∫0
0

τ τ τ ,      t T∈[ ]0, ,    x D∈ ,

is also a compact operator, where  D  is a set of continuous functions  x : [ ]0, T  → E.
Theorem 3.  Let the compact operator  f t x( , )  satisfy the following conditions:

f t x g t h x( , ) ( )≤ ( ),    ( , ) ,t x E∈ ∞[ ) ×0 ,

where  
0

+∞
∫ g t dt( )  < + ∞;  h u( )  is a positive continuous nondecreasing function such

that 

u

du
h u

0

+∞

∫ = + ∞
( )

,    u0 0> .
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Then equation (6) has an asymptotic equilibrium.
Proof.  Let  x t( )  be an arbitrary solution of (6) satisfying the condition  x t( )0  =

= x0 .  Then

x t( )  =  x0  + 
t

t

f x d

0

∫ ( )τ τ τ, ( ) . (7)

Hence,

x t x g h x d
t

t

( ) ( ) ( )≤ + ( )∫0

0

τ τ τ .

According to the theorem about the integral inequality, we have then  x t( )  ≤ y t( ),
where  y t( )  is a solution of the problem

˙ ( ) ( )y g t h y= ,
(8)

y t x( )0 0= .

From (8) we have

x

y t

t

t

t

du
h u

g d g d

0 0 0

( )

( )
( ) ( )∫ ∫ ∫= ≤ < + ∞

+ ∞

τ τ τ τ .

This shows that  y t( )  is upper bounded.  Hence,  x t( )  ≤ M  for  t ≥ t0 .  Let now  t1,
t2  > t0   satisfy the inequality 

t

t

g d
h M

1

2

∫ <( )
( )

τ τ ε .

Then

x t x t( ) ( )1 2−   =  
t

t

f x d

1

2

∫ ( )τ τ τ, ( )   ≤  
t

t

g h x d

1

2

∫ ( )( ) ( )τ τ τ   ≤

≤  h M g d
t

t

( ) ( )

1

2

∫ τ τ   <  ε.

This means that there exists  lim ( )
t

x t
→ +∞

.  Let now  u E0 ∈   be an arbitrary element of

E.  Let  x t( )  be a solution of (6) which tends to  u0   as  t → +∞ .  Then

u x f x d
t

0 0

0

= + ( )
+∞

∫ τ τ τ, ( ) . (9)

From (7), (9) we obtain

x t u f x d
t

( ) , ( )= − ( )
+∞

∫0 τ τ τ . (10)

Thus,  x t( )  is a solution of integral equation (10).  Consequently, it remains only to
prove the existence of solutions for integral equation (10).  For this purpose, we denote
by  Ω  the set of continuous functions  x t( )  satisfying inequality  x t( )  ≤ R    for  t ≥
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≥ t0  ≥ 0,  where  R  is large enough.  Clearly,  Ω  is closed, bounded, and convex.
Define now a map  F  by

( )( ) : , ( )Fx t u f x d
t

= − ( )
+∞

∫0 τ τ τ,    x ∈Ω ,    t t≥ 0 ,

t0   is large enough,

( )( ) , ( ) ( ) ( )Fx t u f x d u h R g d
t t

≤ + ( ) ≤ +
+∞ +∞

∫ ∫0 0

0 0

τ τ τ τ τ .

We choose  R > 2 u0   and  t0   be large enough such that

t

g t dt

0

+∞

∫ ( )   <  R
h R2 ( )

.

Then  ( )( )Fx t  ≤ R.  This shows that  F : Ω → Ω .
We prove now that  F  is a compact operator.  In fact,

( )( ) , ( ) , ( ) ( )( ) ( )( )Fx t u f x d f x d Gx t Hx t
t

T

T

= − ( ) − ( ) = +∫ ∫
+∞

0 τ τ τ τ τ τ , (11)

where 

( )( ) : , ( )Gx t u f x d
t

T

= − ( )∫0 τ τ τ ,    t ≥ t0 ,

( )( ) : , ( )Hx t f x d
T

= − ( )
+∞

∫ τ τ τ .

Choosing  T > t0   such that 

T

g d
h R

+∞

∫ <( )
( )

τ τ ε
4

we get 

( )( ) ( ) ( ) ( ) ( )Hx t h x g d h R g d
T T

≤ ( ) < <
+∞ +∞

∫ ∫τ τ τ τ τ ε
4

.

By proposition mentioned above, operator  G   is compact.  Consequently, sequence

( )( )Gx tn{ }  contains a subsequence  ( )( )Gx tnj{ }  which converges.  This means that

there exists a number  K > 0  such that

Gx t Gx tn nj j p( ) − ( ) <
+

( ) ( ) ε
2

    ∀ j > K,    p ∈ N.

From (11), we obtain 

Fx t Fx tn nj j p( ) − ( ) < + =
+

( ) ( ) ε ε ε
2 2

    ∀ t ≥ t0 .

This shows that  F  : Ω  → Ω   is a compact operator.  According to the Schauder
theorem, there exists an element  x ∈ Ω  such that  x = F x( )  or
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x t u f x d
t

( ) ( , ( ))= −
+∞

∫0 τ τ τ .

It is easy to verify that  x t( )  is a solution of (6) which tends to  u0   as  t → + ∞.
Theorem is completely proved.
Corollary 1.  If the compact operator  f t x( , )  satisfies conditions

f t x g t x( , ) ( )≤ α ,    0 < α ≤ 1,

t

g t dt

0

+∞

∫ < + ∞( ) ,    t0  ≥ 0,

then equation (6) have an asymptotic equilibrium. 
Theorem 4.  Let the compact operator  f t x( , )  satisfy the condition

f t x f t y g t h x y( , ) ( , ) ( )− ≤ −( ),    x, y ∈ E,    t ≥ 0,

where 

0

+∞

∫ < + ∞g t dt( )

and the positive continuous and nondecreasing function  h u( )   satisfies the condition

u

du
h u

0

+∞

∫ = + ∞
( )

,    u0  > 0.

Then equation (6) has an asymptotic equilibrium.
The proof of this theorem is analogous to that of Theorem 3.
4.  The case of linear equations with nonbounded linear operator.  In this

section, we consider the equation

˙ ( )x A t x= (12)

in the Hilbert space  H.  A t( )  is a linear operator defined in  D A( )  ⊆  H .  We suppose
that  D A( )   does not depend on  t ∈ 0, +∞[ )  and that  D A( )   is everywhere dense in
H.  Moreover, we suppose that the Cauchy problem  x( )0  = x0 ,  x0  ∈  D A( ) ,  has a
solution defined on  0, +∞[ ).

Theorem 5.  Let, for each  h ∈  D A( ) ,  A t h( )  ∈  L1 0, +∞[ )  and let the operator
A t( )  be self-adjoint.  Then every bounded solution of equation (12) has a weak finite
limit at the infinity.  Moreover, if the inclusion  A t h( )  ∈  L1 0, +∞[ )  is uniform for

h ∈ S( , )0 1  ∩ D A( )   (see [5]), then every bounded solution of (12) has a strong finite
limit at the infinity. 

Proof.  Let  x t( )  be any bounded solution of (12), i.e., there is  M > 0  such that
x t( )  ≤ M  ∀ t ≥ 0.  Then, for any  h ∈  D A( ) ,  we have

x t h( ),   =  〈 〉x h0,  + 
t

t

A x h d

0

∫ ( ) ( ),τ τ τ   =  〈 〉x h0,  + 
t

t

x A h d

0

∫ ( ), ( )τ τ τ , (13)

where  x0  = x t( )0 .  Hence,

x t x t h x A h d M A h d
t

t

t

t

( ) ( ), ( ), ( ) ( )1 2

1

2

1

2

− = ≤ <∫ ∫τ τ τ τ τ ε
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if  t1, t2  > T,  where  T  is large enough.  This shows that there exists  lim ( ),
t

x t h
→ +∞

for all  h ∈  D A( ) .  Because of the denseness of  D A( )   and the boundedness of  x t( ),
we easily prove that this limit exists for all  h ∈ H.  Thus, the first statement is proved.
Since  H  is weakly complete, there exists  h0  ∈ H  such that

lim ( ),
t

x t h
→ +∞

  =  〈 〉h h0, ,    h ∈ H.

By virtue of (13), we have

〈 〉h h0,   =  〈 〉x h0,  + 
t

x A h d

0

+∞

∫ ( ), ( )τ τ τ. (14)

From (13), (14) we obtain

〈 〉x t h( ),   =  〈 〉h h0,  – 
t

x A h d
+∞

∫ ( ), ( )τ τ τ,    h ∈  D A( ) . (15)

Hence,

〈 〉x t h( ),   ≤  〈 〉h h0,  + M A h d
t0

+∞

∫ ( )τ τ   <  〈 〉h h0,  + ε (16)

if  t0   large enough.  By virtue of (16) and the denseness of  D A( ) ,  we have

x t h( ) ≤ +0 ε (17)

for  t  large enough.  On the other hand, by theorem about the weak convergence,

h x t0 ≤ +( ) ε (18)

for  t  large enough.  Inequalities (17), (18) show that lim ( )
t

x t
→ +∞

 = h0 .  Since  x t( )

weakly tends to  h0 ,  we obtain that  lim ( )
t

x t
→ +∞

 = h0 .

Theorem is proved.
We extend now the notion “solution”. 
Definition 2.  Let  A t( ) = A t*( ),  t  ≥ t0  ≥ 0,  x t( )  is said to be an extended

solution of the equation (12) if it satisfies the relation

d
dt

x t y x t A t y( ), ( ), ( )=     ∀ ∈y D A( ),    t ≥ t0  ≥ 0.

This definition of solution is given in [7].
Theorem 6.  Let  A t h( )  ∈  L1 0, +∞[ )  uniformly for  h ∈    S D A( , ) ( )0 1 ∩ ;  A t( ) =

= A t*( ).   Then for  each   h D A0 ∈ ( )    there  exists  an  extended  solution    x t( )   of
equation (16) such that

lim ( )
t

x t
→ +∞

  =  h0 . (19)

Proof.  Consider the functional

ζ τ τ τ1 0 0( , ) , ( ) ( ),t h h h A x h d
t

= 〈 〉 −
+∞

∫ ,

where  t ≥ t0 ,  h D A∈ ( ) ,  x t0( ) ≡ h0 ,

ISSN  1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 5



632 NGUYEN SINH BAY, NGUYEN THE HOAN, NGUYEN MINH MAN

ζ1( , )t h   ≤  h0 h   + 
t

x A h d
+∞

∫ 0( ) ( )τ τ τ   ≤  h0 h q+( ) , (20)

where  q = 
t

A h d
0

+∞
∫ ( )τ τ .  We choose  t0   be large enough such that  0 < q < 1.

Inequality (20) shows that  ζ1( , )t h    is a linear continuous functional defined in   D A( ) .
Because of the denseness of  D A( )   on  H,  we can extend continuously this functional
in  H  with the norm preserving.  We denote the extended functional also by  ζ1( , )t h .
According to the Riesz theorem, there exists an element  x t1( )  in  H   such that
ζ1( , )t h  = x t h1( ), .

Clearly,  x t1( )  ≤ ( )1 0+ q h .  Consider now the functional

ζ2( , )t h   : =  〈 〉h h0,  – 
t

x A h d
+∞

∫ 1( ), ( )τ τ τ ,    h ∈  D A( ) .

By the analogous proof, we obtain that  ζ2( , )t h   is a linear continuous functional
defined in  H.  Consequently, 

ζ2( , )t h   =  x t h2( ), ,

where  x t2( )  ≤ ( )1 2
0+ +q q h .  Continuing this process, we have the linear

continuous functional

ζn t h( , )  : =  〈 〉h h0,  – 
t

nx A h d
+∞

−∫ 1( ), ( )τ τ τ , (21)

defined in  D A( ) .  The continuous extension of this functional has a form

ζn t h( , )  =  x t hn( ), , (22)

x t q q h
h

qn
n( ) ≤ + + … +( ) ≤

−
1

10
0 . (23)

We show now that the sequence   x tn( ){ }  uniformly converges on  t0, +∞[ ) .  To prove
this statement, it suffices to show that

x t x t h qn n
n( ) ( )− ≤−1 0 . (24)

In fact, for  n = 1  we have

x t x t1 0( ) ( )−   ≤  sup ( ) ( ),
h

x t x t h
≤

−
1

1 0   =  
  

sup ( ) ( ),
( , ) ( )h S D A

x t x t h
∈

−
0 1

1 0
∩

  ≤

≤  sup ( ) ( )
( , ) ( )h S D A t

A h x d h q
∈

+∞

∫ ≤
0 1

0 0
∩

τ τ τ ,

i.e., formula (24) is true for  n = 1.  Let us now assume that (24) is true for  n.  Then

x t x tn n+ −1( ) ( )   =  sup ( ) ( ),
h

n nx t x t h
≤

+ −
1

1   =

=  

 

sup ( ) ( ), ( )
( , ) ( )h S D A t

n nx x A h d
∈

+∞

−∫ −
0 1

1

0
∩

τ τ τ τ   ≤
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≤  
t

n nx x A h d

0

1

+∞

−∫ −( ) ( ) ( )τ τ τ τ  ≤  h qn
0

1+ ,

i.e., formula (15) is valid for  n + 1.  Since  0 < q < 1, inequality (24) shows that
sequence  x tn( ){ }  uniformly converges on  t0, +∞[ ) .

Setting  x t( ) = lim ( )
n

nx t
→ +∞

  and tending  n → + ∞  in (21), (22), we obtain

x t h h h x A h d
t

( ), , ( ), ( )= 〈 〉 −
+∞

∫0 τ τ τ ,    h ∈  D A( ) . (25)

This show that  x t( )  is an extended solution of (12) and that  x t( )  weakly tends to  h0

as  t → + ∞.  We prove now that  x t( )  strongly tends to  h0   as  t →  + ∞.  By virtue of

the uniform convergence of  x tn( ){ },  it suffices to show that  x tn( )  → h0   as  t →  + ∞.
In fact, we have

x t h h x A h d
h

q
A h dn

t
n

t

( ) , ( ) ( ) ( )− < ≤
−

+∞

−

+∞

∫ ∫0 1
0

0 0
1

τ τ τ τ τ .

Hence,

x t h
h q

qn( ) − ≤
−0
0

1
.

Since  q → 0  as  t → + ∞,  our statement is proved.
5.  Asymptotic equivalence.  In this section, we consider equations 

˙ ( )y A t y= , (26)

˙ ( ) ( , )x A t x f t x= + . (27)

Definition 3.  Equations (26), (27) are said to be asymptotically equivalent if to
each solution  x t( )  of (27) there exists a solution  y t( )  of (26) such that

lim ( ) ( )
t

x t y t
→ +∞

−   =  0 (28)

and conversely, to each solution  y t( )  of  (26) there exists a solution  x t( )  of (27)
satisfying (28).

We assume throughout that  A t( ) ∈  L E( )  for  t  ≥ 0  and  A t( )  is strongly
continuous on  0, +∞[ );  f : 0, +∞[ ) × E → E  is a continuous operator.  We denote by
U t( )   the Cauchy operator of (26) satisfying  U( )0  = I.  Consider the equation

˙ ( ) , ( )z U t f t U t z= [ ]−1 . (29)

Theorem 7.  Let equation (26) be stable and consequently  U t( )  ≤ M.
Moreover, we suppose that equation (29) has an asymptotic equilibrium.  Then
equations (26), (27) are asymptotically equivalent.

Proof.  I.et  x t( )  be an arbitrary solution of (27).  It is easy to verify that  z t( ) =

= U t x t−1( ) ( )  is a solution of (29).  By virtue of the assumptions, there exists  z+∞  =
= lim ( )

t
z t

→ +∞
.  Setting  y t( ) = U t z( ) +∞,  we easily verify that  y t( )  is a solution of (26)

which satisfies relation (28).  Conversely, let now  y t( )  be an arbitrary solution of (26)
satisfying condition  y( )0  = y0.  Then  y t( ) = U t y( ) 0 .  According to the assumption,
there exists a solution  z t( )  of (29) such that  lim ( )

t
z t

→ +∞
 = y0.  Let  x t( ) = U t z t( ) ( ) .  It
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is easy to verify that  x t( )  is a solution of (27) and

lim ( ) ( )
t

x t y t
→ +∞

−   ≤  M z t y
t
lim ( )
→ +∞

− 0   =  0.

Theorem is proved.
Remark.  We have proved that, in the condition of stability of equation (26), the

asymptotic equilibrium of equation (29) is a sufficient condition for the asymptotic
equivalence of equations (26), (27).  In general, this condition is not necessary.

Example.  Consider the following example:

ẋ Ax B t x= + ( ) ,

ẏ Ay= ,

where 

A =
−

−











1 0

0 2
,      B t

e

e

t

t
( ) =













−

−

0

0
.

In this case, 

U t
e

e

t

t
( ) =













−

−

0

0 2
,      U t

e

e

t

t

− =












1

2

0

0
( ) ,      U t B t U t

e t
−

−

=












1
20

1 0
( ) ( ) ( ) .

By the Levison theorem (see [8, p. 159]), above equations are asymptotically
equivalent.  However, equation 

ż U t B t U t z= ( ) ( ) ( )−1

has not an asymptotic equilibrium.  In fact, this equation can be written in the form

ż e zt
1

2
2= − ,

ż z2 1= .

Suppose that this system has an asymptotic equilibrium.  Then for  h0  = (1, 1),  there

exists a solution  z t z t1 2( ), ( )( )  such that  z t1( ) →  1;  z t2( )  →  1  as  t → + ∞.  Hence,
˙ ( )z t2  → 1  as  t → + ∞.  Therefore,

1 12− < < +ε ε˙ ( )z t     ∀ ≥ >t T 0.

Consequently,

z t z T t T2 2 1( ) ( ) ( )( )> + − −ε .

Tending  t → + ∞,  we obtain a contracdition.
However, we have the following theorem.
Theorem 8.   Let  equation (26)   be   bistable   (see   [9,  p. 165]).    Then   the

asymptotic equilibrium of equation (29) is a necessary and sufficient conditions for
the asymptotic equivalence of (26), (27).

Proof. According to assumptions, we have

U t M( ) ≤ ,      U t M− ≤1( )     ∀ ≥t 0.

Obviously, we remain to prove the necessary condition.  Let  y E0 ∈   and  y t( ) =
= U t y( ) 0   be a solution of (26).  According to our assumption, there exists a solution

x t( )  of (27) such that  x t y t( ) ( )−  → 0  as  t → + ∞.  Consider  z t( ) = U t x t−1( ) ( ).  It
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is a solution of (29) and

z t y U t x t y t M x t y t( ) ( ) ( ) ( ) ( ) ( )− ≤ − ≤ −−
0

1 .

Therefore,  z t( ) →  y0  as  t → + ∞.  Let now  z t( )  be an arbitrary solution of (29).
Then  x t( ) = U t z t( ) ( )   is a solution of (27).  According to our assumption, there exists
a solution  y t( ) = U t y( ) 0   y y0 0=( )( )   of (26) such that  x t y t( ) ( )−  → 0  as  t → + ∞.

Consequently, we have that  z t y( ) − 0  ≤ U t−1( ) x t y t( ) ( )−  ≤ M x t y t( ) ( )−  → 0

as  t → + ∞.  This shows that  z t( ) →  y0  as  t → + ∞.  Thus, equation (29) has an
asymptotic equilibrium.

Theorem 9.  Let equation (26) be bistable.  The compact operator  f t x( , )
satisfies conditions of Theorem 3  or  Theorem 4.   Then  equations (26),  (27)  are
asymptotically equivalent. 

In fact, in this case conditions of Theorem 3 or Theorem 4 are satisfied for
equation (29).  Hence, it has an asymptotic equilibrium.  By virtue of Theorem 6, we
obtain the assertion of this theorem.
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