UDC 517.5

A. Mukherjee, S. Halder (Tripura Univ., India)

ON FUZZY SEMI $\delta - V$ CONTINUITY IN FUZZY $\delta - V$ TOPOLOGICAL SPACE

ПРО НЕЧІТКУ НАПІВ $\delta - V$ НЕПЕРЕРВНІСТЬ В НЕЧІТКОМУ $\delta - V$ ТОПОЛОГІЧНОМУ ПРОСТОРІ

New concepts of fuzzy semi $\delta - V$ and fuzzy semi $\delta - \Lambda$ sets were introduced in the work "On fuzzy semi $\delta - \Lambda$ sets and fuzzy semi $\delta - V$ sets V - 6" by the authors (*J. Trip. Math. Soc.*, **6**, 81 – 88 (2004)). It was shown that the family of all fuzzy semi $\delta - V$ sets forms a fuzzy supra topological space on *X* denoted by $(X, FS^{\delta V})$. The aim of this paper is to introduce the concept of fuzzy semi $\delta - V$ continuity in a fuzzy $\delta - V$ topological space. Finally, some properties, preservation theorems, etc., are studied.

Нові поняття нечітких напів $\delta - V$ та нечітких напів $\delta - \Lambda$ множин введено у роботі авторів "On fuzzy semi $\delta - \Lambda$ sets and fuzzy semi $\delta - V$ sets V - 6" (*J. Trip. Math. Soc.* – 2004. – **6**. – C. 81 – 88). Було показано, що сім'я усіх нечітких напів $\delta - V$ множин формує нечіткий супра-топологічний простір в *X*, що позначається як (*X*, *FS*^{δV}). Метою даної статті є введення поняття нестійкої напів $\delta - V$ неперервності у нестійкому $\delta - V$ топологічному просторі. Також досліджено деякі її властивості, наведено теорему про збереження та інші питання.

1. Introduction. The notion of fuzzy semi $\delta - V$ and fuzzy semi $\delta - \Lambda$ set has been introduced by the authors in [1]. It was shown that the set of all fuzzy semi $\delta - V$ sets forms a fuzzy supra topological space denoted by $(X, FS^{\delta V})$.

In Section 2, we study some properties on fuzzy semi $\delta - V$ continuity. Some theorems are also studied. Finally, in Section 3, we study some relationships between the above two continuities. Here we denote the complement of λ , i.e., $1 - \lambda$, by λ^c , and the fuzzy topological space is denoted by (X, F).

Below, we present several definitions and results for reader's convenience.

1.1 [2]. Let *S* be a fuzzy subset of a fuzzy space (X, F). We define $\Lambda_{\delta}(S)$ and $V_{\delta}(S)$ as follows

$$\Lambda_{\delta}(S) = \inf \left\{ G: S \le G, \ G \in F_{\delta}O(X, F) \right\}$$

and

$$V_{\delta}(S) = \sup \{ D : D \le S, D \in F_{\delta}C(X, F) \}.$$

1.2 [2]. Fuzzy subsets *S*, *Q*, and $\{S_j, j \in J\}$ of a fuzzy space (X, F) possess the following properties:

(1) $S \leq \Lambda_{\delta}(S)$,

- (2) $Q \leq S$ implies that $\Lambda_{\delta}(Q) \leq \Lambda_{\delta}(S)$,
- (3) $\Lambda_{\delta}\Lambda_{\delta}(S) = \Lambda_{\delta}(S)$,
- (4) if $S \in F_{\delta}O(X, F)$, then $S = \Lambda_{\delta}(S)$,
- (5) $\Lambda_{\delta} \{ \bigcup (S_j, j \in J) \} = \bigcup \{ \Lambda_{\delta}(S_j), j \in J \},\$
- (6) $\Lambda_{\delta} \{ \cap (S_j, j \in J) \} \leq \cap \{ \Lambda_{\delta}(S_j), j \in J \},\$
- (7) $\Lambda_{\delta}(1-S) = 1 V_{\delta}(S),$
- (8) $\Lambda_{\delta}(0) = 0$ and $\Lambda_{\delta}(1) = 1$,
- (9) VqA iff $Vq\Lambda_{\delta}(A)$, where V is a δ -closed subset of X.

1.3 [2]. Fuzzy subsets S, Q, and $\{S_i, j \in J\}$ of a space (X, F) possess the fol-

© A. MUKHERJEE, S. HALDER, 2008 712 lowing properties:

- (1) $V_{\delta}(0) = 0$ and $V_{\delta}(1) = 1$,
- (2) $V_{\delta}(S) \leq S$,
- (3) $Q \le S$ implies that $V_{\delta}(Q) \le V_{\delta}(S)$,
- (4) $V_{\delta}V_{\delta}(S) = V_{\delta}(S),$
- (5) if $S \in F_{\delta}C(X, F)$, then $S = V_{\delta}(S)$,
- (6) $V_{\delta}\{\cap (S_j, j \in J)\} = \cap \{V_{\delta}(S_j), j \in J\},\$
- (7) $\bigcup \{ V_{\delta}(S_i), j \in J \} \leq V_{\delta} \{ \bigcup (S_i, j \in J) \},\$
- (8) MqA iff $V_{\delta}(A)qM$, where M is a fuzzy δ -open subset of X.

1.4 [2]. A fuzzy subset S of a fuzzy space (X, F) is called a fuzzy $\delta - \Lambda$ set (resp., a fuzzy $\delta - V$ set) if $S = \Lambda_{\delta}(S)$ (resp., $V_{\delta}(S) = S$).

1.5 [2]. Let *S* be a fuzzy subset of a fuzzy space (X, F). We define $\eta_{\delta}(S)$ and $\gamma_{\delta}(S)$ as follows:

$$\eta_{\delta}(S) = V_{\delta}\Lambda_{\delta}(S)$$

and

$$\gamma_{\delta}(S) = \Lambda_{\delta} V_{\delta}(S).$$

1.6 [2]. Fuzzy subsets S, Q, and $\{S_j, j \in J\}$ of a space (X, F) possess the following properties:

- (1) $Q \leq S$ implies that $\eta_{\delta}(Q) \leq \eta_{\delta}(S)$,
- (2) $V_{\delta}(S) \leq \eta_{\delta}(S) \leq \Lambda_{\delta}(S)$,
- (3) $\eta_{\delta}(0) = 0, \ \eta_{\delta}(1) = 1,$
- (4) if $S \in F_{\delta}O(X, F)$, then $\eta_{\delta}(S) = V_{\delta}(S)$,
- (5) $\eta_{\delta}(1-S) = 1 \gamma_{\delta}(S)$,
- (6) $\eta_{\delta}(S)$ is bounded,
- (7) $\eta_{\delta} \{ \bigcup (S_j, j \in J) \} \ge \bigcup \{ \eta_{\delta}(S_j), j \in J \},\$
- (8) $\cap \{\eta_{\delta}(S_i), j \in J\} \ge \eta_{\delta}\{\cap (S_i, j \in J)\},\$
- (9) VqA iff $\eta_{\delta}(A)q\Lambda_{\delta}(V)$, where V is a δ -closed subset of X.

1.7 [2]. Fuzzy subsets S, Q, and $\{S_j, j \in J\}$ of a fuzzy space (X, F) possess the following properties:

- (1) $Q \leq S$ implies that $\gamma_{\delta}(Q) \leq \gamma_{\delta}(S)$,
- (2) $V_{\delta}(S) \leq \gamma_{\delta}(S) \leq \Lambda_{\delta}(S)$,
- (3) $\gamma_{\delta}(0) = 0, \ \gamma_{\delta}(1) = 1,$
- (4) if $S \in F_{\delta}C(X, F)$ then $\gamma_{\delta}(S) = \Lambda_{\delta}(S)$,
- (5) $\gamma_{\delta}(S)$ is bounded,
- (6) $\gamma_{\delta} \{ \bigcup (S_j, j \in J) \} \ge \bigcup \{ \gamma_{\delta}(S_j), j \in J \},$
- (7) $\gamma_{\delta} \{ \cap (S_i, j \in J) \} \leq \cap \gamma_{\delta} \{ (S_i), j \in J \},$
- (8) VqA iff $\gamma_{\delta}(A)qV_{\delta}(V)$, where V is a δ -open subset of X.

1.8 [2]. A fuzzy subset S of a fuzzy space (X, F) is called a fuzzy $\delta - \eta$ set (resp., a fuzzy $\delta - \gamma$ set) iff $S = \eta_{\delta}(S)$ (resp., $S = \gamma_{\delta}(S)$).

1.9 [2]. A fuzzy set S of a fuzzy space X is a $\delta - \eta$ set iff S^c is a fuzzy $\delta - \gamma$ set.

1.10 [2]. The families of all fuzzy $\delta - \Lambda$ sets and all fuzzy $\delta - V$ sets form fuzzy Alexandroff spaces. We denote them by $(X, F^{\Lambda_{\delta}})$ and $(X, F^{V_{\delta}})$ respectively, and call them the fuzzy $\delta - \Lambda$ topological space and the fuzzy $\delta - V$ topological space, respectively.

1.11 [1]. A fuzzy subset S of a fuzzy space (X, F) is called a fuzzy semi $\delta - V$ set if there exists a fuzzy $\delta - V$ set H such that

$$H \leq S \leq \Lambda_{\delta}(H) = \gamma_{S}(H),$$

and a fuzzy subset G is said to be a fuzzy semi $\delta - \Lambda$ set if there exists a fuzzy $\delta - \Lambda$ set K such that $V_{\delta}(K) \le G \le K$.

1.12 [1]. If S is a fuzzy $\delta - V$ set, then it is obviously a fuzzy semi $\delta - V$ set, but the converse statement is not necessarily true. Similarly, if G is a fuzzy $\delta - \Lambda$ set, then it is obviously a fuzzy semi $\delta - \Lambda$ set.

1.13 [1]. For any fuzzy subset λ of a fuzzy space X, the following statements are equivalent:

(a) λ is a fuzzy semi $\delta - V$ set,

- (b) λ^c is a fuzzy semi $\delta \Lambda$ set,
- (c) $\eta_{\delta}(\lambda^c) \leq \lambda^c$,
- (d) $\gamma_{\delta}(\lambda) \geq \lambda$.

1.14 [1]. Let *S* be a fuzzy subset of a fuzzy space (X, F). We define $\omega_{\delta}(S)$ and $m_{\delta}(S)$ as follows:

$$\omega_{\delta}(S) = \bigcap \{ G : G \ge S, G \text{ is a fuzzy semi } \delta - \Lambda \text{ set} \}$$

and

$$m_{\delta}(S) = \bigcup \{ G : G \le S, G \text{ is a fuzzy semi } \delta - V \text{ set} \}.$$

1.15 [1]. A fuzzy subset S of a fuzzy space (X, F) is a fuzzy semi $\delta - V$ set (resp., a fuzzy semi $\delta - \Lambda$ set) iff $m_{\delta}(A) = A$ [resp., $\omega_{\delta}(A) = A$].

1.16 [1]. Fuzzy subsets S, Q, and $\{S_j, j \in J\}$ of a fuzzy space (X, F) possess the following properties:

- (1) $S \ge m_{\delta}(S)$,
- (2) $Q \leq S$ implies that $m_{\delta}(Q) \leq m_{\delta}(S)$,
- (3) $m_{\delta}m_{\delta}(S) = m_{\delta}(S)$,
- (4) $m_{\delta}\{\bigcup (S_i, j \in J)\} \ge \bigcup \{m_{\delta}(S_i), j \in J\},\$
- (5) $m_{\delta}\{\cap (S_i, j \in J)\} \leq \cap \{m_{\delta}(S_i), j \in J\},\$
- (6) $m_{\delta}(1-S) = 1 \omega_{\delta}(S)$,
- (7) $m_{\delta}(0) = 0$ and $m_{\delta}(1) = 1$,
- (8) $m_{\delta}(S)$ is a fuzzy semi δV set,
- (9) $m_{\delta}(S) \leq \Lambda_{\delta}(S)$.

1.17 [1]. Fuzzy subsets S, Q, and $\{S_j, j \in J\}$ of a fuzzy space (X, F) possess the following properties:

(1) $S \leq \omega_{\delta}(S)$,

- (2) $Q \leq S$ implies that $\omega_{\delta}(Q) \leq \omega_{\delta}(S)$,
- (3) $\omega_{\delta}\omega_{\delta}(S) = \omega_{\delta}(S)$,
- (4) $\omega_{\delta} \{ \bigcup (S_i, j \in J) \} \ge \bigcup \{ \omega_{\delta}(S_i), j \in J \},\$

- (5) $\omega_{\delta} \{ \cap (S_i, j \in J) \} \leq \cap \{ \omega_{\delta}(S_i), j \in J \},\$
- (6) $\omega_{\delta}(0) = 0$ and $\omega_{\delta}(1) = 1$,
- (7) $\omega_{\delta}(S)$ is a fuzzy semi $\delta \Lambda$ set,
- (9) $V_{\delta}(S) \leq \omega_{\delta}(S)$.

1.18 [1]. The family of all fuzzy semi $\delta - V$ sets forms a fuzzy supra topological space and is denoted by $FS^{\delta V}$; the supra topological space may be denoted by $(X, FS^{\delta V})$ and can be written as a fuzzy supra semi $\delta - V$ topological space.

1.19 [3]. A function $f: (X, FS_1^{\delta V}) \to (Y, FS_2^{\delta V})$ is said to be fuzzy supra semi $\delta - V$ continuous if the inverse image of every fuzzy semi $\delta - V$ set in Y is a fuzzy semi $\delta - V$ set in X.

1.20 [2]. A function $f: (X, F_1^{\Lambda_{\delta}}) \to (Y, F_2^{\Lambda_{\delta}})$ is called fuzzy Λ_{δ} -continuous iff the inverse image of a fuzzy Λ_{δ} -open set in $(Y, F_2^{\Lambda_{\delta}})$ is a fuzzy Λ_{δ} -open set in $(X, F_1^{\Lambda_{\delta}})$.

1.21 [4]. A function $f: (X, F_1) \to (Y, F_2)$ is called fuzzy $\delta - \Lambda$ continuous iff the inverse image of a $\delta - \Lambda$ set in (Y, F_2) is a fuzzy δ -open set in (X, F_1) .

2. Fuzzy semi $\delta - V$ continuity in a fuzzy $\delta - V$ topological space. In this section, we introduce fuzzy semi $\delta - V$ continuity in the fuzzy $\delta - V$ topological space. Some related properties are to be studied. Some important theorems are also introduced.

Definition 2.1. A function $f: (X, F_1^{V_{\delta}}) \to (Y, F_2^{V_{\delta}})$ from a fuzzy topological space X into a fuzzy topological space Y is called fuzzy semi $\delta - V$ continuous if $f^{-1}(B)$ is a fuzzy semi $\delta - V$ set of X for each $B \in F_2^{V_{\delta}}$.

Example 2.1. Let $X = \{a, b, c\}$ and let A and B be fuzzy sets of X defined as follows:

$$A(a) = 0.3, \quad A(b) = 0.2, \quad A(c) = 0.4,$$

 $B(a) = 0.15, \quad B(b) = 0.1, \quad B(c) = 0.2.$

We set $F_1 = \{0, A, 1\}$ and $F_2 = \{0, B, 1\}$ and define $f: (X, F_1^{V_\delta}) \to (Y, F_2^{V_\delta})$ as f(x) = x. It is clear that $F_1^{V_\delta} = \{0, A^c, 1\}$ and $F_2^{V_\delta} = \{0, B^c, 1\}$. Here, $f^{-1}(0) = 0$, $f^{-1}(1) = 1$, and $f^{-1}(B^c) = B^c \notin F_1^{V_\delta}$. Then $V_{\delta}(A) = 0$. Hence, $0 = V_{\delta}(A) \le B \le A$. If A is a fuzzy $\delta - \Lambda$ set in X, then B is a fuzzy semi $\delta - \Lambda$ set in X. Hence, B^c is a fuzzy semi $\delta - V$ set in X. Therefore, the inverse image of a fuzzy $\delta - V$ set in Y is a fuzzy semi $\delta - V$ set in X. Hence, f is fuzzy semi $\delta - V$ continuous but not fuzzy V_{δ} -continuous. Again, f is also fuzzy supra semi $\delta - V$ continuous. Taking into account that B^c is a fuzzy $\delta - V$ set and using 1.12, we conclude that B^c is a fuzzy semi $\delta - V$ set.

Theorem 2.1. Let $f: (X, F_1^{V_{\delta}}) \to (Y, F_2^{V_{\delta}})$ be a mapping from a fuzzy topological space $(X, F_1^{V_{\delta}})$ into a fuzzy topological space $(X, F_2^{V_{\delta}})$. Then the following statements are equivalent:

- (i) f is fuzzy semi δV continuous;
- (ii) $f^{-1}(B)$ is a fuzzy semi $\delta \Lambda$ set in X for every fuzzy $\delta \Lambda$ set B in Y;
- (iii) $f[\omega_{\delta}(A)] \leq \Lambda_{\delta}[f(A)]$ for every fuzzy set A of X;
- (iv) $\omega_{\delta}[f^{-1}(B)] \leq f^{-1}[\Lambda_{\delta}(B)]$ for every fuzzy set B of Y;

(v) $f^{-1}[V_{\delta}(B^{c})] \leq m_{\delta}[f^{-1}(B^{c})]$, where B^{c} is the complement of B.

Proof. (i) \Rightarrow (ii). f is fuzzy semi $\delta - V$ continuous iff $f^{-1}(B^c)$ is a fuzzy semi $\delta - V$ set in X for every $B^c \in F_2^{V_\delta}$ iff $1 - f^{-1}(B^c)$ is fuzzy semi $\delta - \Lambda$ in X for every $1 - B^c$ being a fuzzy $\delta - \Lambda$ set in Y iff $f^{-1}(B)$ is a fuzzy semi $\delta - \Lambda$ set in X for every B being a fuzzy $\delta - \Lambda$ set in Y [from 1.13, 1.2 (7), and 1.4]. The required implication is proved.

(ii) \Rightarrow (iii). Let A be a fuzzy set of X and let f(A) be a fuzzy set of Y. Then $\Lambda_{\delta}[f(A)]$ [from 1.2 (3) and 1.4] is a fuzzy $\delta - \Lambda$ set in Y. Hence, it follows from (ii) that $f^{-1}\Lambda_{\delta}[f(A)]$ is a fuzzy semi $\delta - \Lambda$ set in X and

$$\begin{split} \omega_{\delta}(A) &\leq \omega_{\delta} \big[f^{-1} f(A) \big] \leq \omega_{\delta} f^{-1} \Lambda_{\delta} \big[f(A) \big] \text{ [from 1.2 (1)]} = \\ &= f^{-1} \Lambda_{\delta} \big[f(A) \big] \text{ [from 1.15]}. \end{split}$$

Therefore, $f[\omega_{\delta}(A)] \leq ff^{-1}\Lambda_{\delta}[f(A)] \leq \Lambda_{\delta}[f(A)].$

(iii) \Rightarrow (iv). Let $A = f^{-1}(B)$. Then $f(A) = ff^{-1}(B) \le B$, and from 1.2 (2) we have $\Lambda_{\delta}[f(A)] \le \Lambda_{\delta}(B)$. Hence, it follows from (iii) that $f[\omega_{\delta}[f^{-1}(B)]] \le \Lambda_{\delta}(B)$, i.e., $f^{-1}f[\omega_{\delta}[f^{-1}(B)]] \le f^{-1}\Lambda_{\delta}(B)$, i.e., $\omega_{\delta}[f^{-1}(B)] \le f^{-1}f[\omega_{\delta}[f^{-1}(B)]] \le f^{-1}\Lambda_{\delta}(B)$.

(iv) \Rightarrow (v). $1 - \omega_{\delta}[f^{-1}(B)] \ge 1 - f^{-1}\Lambda_{\delta}(B)$, i.e., $f^{-1}[V_{\delta}(B^{c})] \le m_{\delta}[f^{-1}(B^{c})]$ [from 1.2 (7) and 1.16 (6)].

(v) \Rightarrow (i). Let B^c be a fuzzy $\delta - V$ set. Then it follows from 1.4 that $B^c = V_{\delta}(B^c)$, i.e., $f^{-1}(B^c) = f^{-1}[V_{\delta}(B^c)] \le m_{\delta}[f^{-1}(B^c)] \le f^{-1}(B^c)$ [from 1.16 (1)]. Hence, $m_{\delta}[f^{-1}(B^c)] = f^{-1}(B^c)$.

Thus, f is fuzzy semi $\delta - V$ continuous.

Theorem 2.2. Let $f: (X, F_1^{V_{\delta}}) \to (Y, F_2^{V_{\delta}})$ be a bijective mapping from a fuzzy topological space $(X, F_1^{V_{\delta}})$ into a fuzzy topological space $(X, F_2^{V_{\delta}})$. Then f is fuzzy semi $\delta - V$ continuous iff $f[m_{\delta}(A^c)] \ge V_{\delta}[f(A^c)]$.

Proof. $f[m_{\delta}(A^c)] \ge V_{\delta}[f(A^c)]$ iff $1 - f[m_{\delta}(A^c)] \le 1 - V_{\delta}[f(A^c)]$ iff $f[\omega_{\delta}(A)] \le \Delta_{\delta}[f(A)]$ [from 1.2 (7) and 1.16 (6)] iff f is fuzzy semi $\delta - V$ continuous [from Theorem 2.1].

Theorem 2.3. Let $f: (X, F_1^{V_{\delta}}) \to (Y, F_2^{V_{\delta}})$ be a mapping from a fuzzy topological space $(X, F_1^{V_{\delta}})$ into a fuzzy topological space $(X, F_2^{V_{\delta}})$. Then the following statements are equivalent:

(i) f is fuzzy semi $\delta - V$ continuous;

(ii) $\eta_{\delta}[f^{-1}(B)] \leq f^{-1}[\Lambda_{\delta}(B)]$ for any fuzzy set B of Y;

(iii) $\gamma_{\delta}[f^{-1}(B^c)] \ge f^{-1}[V_{\delta}(B^c)]$, where B^c is the complement of B;

(iv) $f[\eta_{\delta}(A)] \leq \Lambda_{\delta} f(A)$ for any fuzzy set A^{c} of X.

Proof. (i) \Rightarrow (iii). It follows from 1.3 (4) and 1.4 that $V_{\delta}(B^c)$ is a fuzzy $\delta - V$ set in X. If f is fuzzy semi $\delta - V$ continuous, then $f^{-1}[V_{\delta}(B^c)]$ is a fuzzy semi $\delta - V$ set in X. Hence, $\gamma_{\delta}[f^{-1}(V_{\delta}(B^c))] \ge f^{-1}[V_{\delta}(B^c)]$ [from 1.13], i.e., $f^{-1}[V_{\delta}(B^c)] \le \gamma_{\delta}[f^{-1}(V_{\delta}(B^c))] \le \gamma_{\delta}[f^{-1}(B^c)]$ [from 1.3 (2)].

 $(\mathrm{iii}) \Leftrightarrow (\mathrm{ii}). \ 1 - f^{-1} \big[V_{\delta}(B^c) \big] \ge 1 - \gamma_{\delta} \big[f^{-1}(B^c) \big] \ \mathrm{iff} \ \eta_{\delta} \big[f^{-1}(B) \big] \le f^{-1} \big[\Lambda_{\delta}(B) \big]$

[from 1.6 (5) and 1.2 (7)] for any fuzzy set B of Y.

(ii) \Rightarrow (iv). Let B = f(A). Then $f^{-1}(B) = f^{-1}f(A) \ge A$. Hence, it follows from (ii) that $\eta_{\delta}(A) \le \eta_{\delta}[f^{-1}(B)]$ [from 1.6 (1)] $\le f^{-1}[\Lambda_{\delta}(B)] \le f^{-1}[\Lambda_{\delta}f(A)]$, i.e., $ff^{-1}[\Lambda_{\delta}f(A)] \ge f[\eta_{\delta}(A)]$, i.e., $[\Lambda_{\delta}f(A)] \ge ff^{-1}[\Lambda_{\delta}f(A)] \ge f[\eta_{\delta}(A)]$.

(iv) \Rightarrow (ii). Let $A = f^{-1}(B)$. Then $f(A) = ff^{-1}(B) \leq B$, i.e., $\Lambda_{\delta}(B) \geq [\Lambda_{\delta}f(A)]$ [from 1.2 (2)] $\geq f[\eta_{\delta}[f^{-1}(B)]]$. Consequently, $f^{-1}[\Lambda_{\delta}(B)] \geq f^{-1}f[\eta_{\delta}[f^{-1}(B)]] \geq \eta_{\delta}[f^{-1}(B)]$.

(iii) \Rightarrow (i). Let B^c be a fuzzy $\delta - V$ set in Y. Then $V_{\delta}(B^c) = B^c$ [from 1.4] and $f^{-1}(B^c) = f^{-1}[V_{\delta}(B^c)] \le \gamma_{\delta}[f^{-1}(B^c)]$. Hence, it follows from 1.13 that $f^{-1}(B^c)$ is a fuzzy semi $\delta - V$ set in X. Therefore, f is fuzzy semi $\delta - V$ continuous. Thus, we have shown that (i) \Rightarrow (iii) \Leftrightarrow (ii) \Leftrightarrow (iv) and (iii) \Rightarrow (i).

Theorem 2.4. Let $f: (X, F_1^{V_{\delta}}) \to (Y, F_2^{V_{\delta}})$ be a bijective mapping from a fuzzy topological space $(X, F_1^{V_{\delta}})$ into a fuzzy topological space $(X, F_2^{V_{\delta}})$. Then f is fuzzy semi $\delta - V$ continuous iff $f[\gamma_{\delta}(A^c)] \ge V_{\delta}[f(A^c)]$.

Proof. $f[\gamma_{\delta}(A^c)] \ge V_{\delta}[f(A^c)]$ iff $1 - V_{\delta}[f(A^c)] \ge 1 - f[\gamma_{\delta}(A^c)]$ iff $[\Lambda_{\delta}f(A)] \ge f[\eta_{\delta}(A)]$ [from 1.2 (7) and 1.6 (5)] iff f is fuzzy $\delta - V$ continuous [from Theorem 2.3].

3. Relationship between fuzzy supra semi $\delta - V$ continuity and fuzzy semi $\delta - V$ continuity. In this section, we introduce the relationship between fuzzy semi $\delta - V$ continuity, fuzzy supra semi $\delta - V$ continuity, and fuzzy Λ_{δ} continuity.

Theorem 3.1. If a function $f: X \to Y$ is fuzzy supra semi $\delta - V$ continuous, then f is fuzzy semi $\delta - V$ continuous.

Proof. Let A be a fuzzy $\delta - V$ set in Y. Then it follows from 1.12 that A is a fuzzy semi $\delta - V$ set. Since f is fuzzy supra semi $\delta - V$ continuous, $f^{-1}(A)$ is a fuzzy semi $\delta - V$ set in X, i.e., the inverse image of a fuzzy $\delta - V$ set in Y is a fuzzy semi $\delta - V$ set in X. Hence, f is fuzzy semi $\delta - V$ continuous.

Remark 3.1. The converse statement is not necessarily true because a fuzzy semi $\delta - V$ set is not necessarily a fuzzy $\delta - V$ set.

Theorem 3.2. If a function $f: X \to Y$ is fuzzy Λ_{δ} continuous, then it is also fuzzy semi $\delta - V$ continuous.

Proof. Let A be a fuzzy $\delta - \Lambda$ set in Y. Since f is fuzzy Λ_{δ} continuous, we conclude that $f^{-1}(A)$ is a fuzzy $\delta - \Lambda$ set in X, i.e., $f^{-1}(A)$ is a fuzzy semi $\delta - \Lambda$ set in X [from 1.12]. Hence, by virtue of Theorem 2.1, f is fuzzy semi $\delta - V$ continuous.

Remark 3.2. The converse statement is not necessarily true because a fuzzy semi $\delta - \Lambda$ set is not necessarily a fuzzy $\delta - \Lambda$ set. This follows from Example 2.1.

- 1. *Mukherjee A., Halder S.* On fuzzy semi $\delta \Lambda$ sets and fuzzy semi δV sets *V-6 // J.* Trip. Math. Soc. 2004. **6**. P. 81 88.
- 2. *Mukherjee A., Halder S.* Some properties of fuzzy $\delta \Lambda$ sets and fuzzy δV sets *V-6 //* Ibid. P. 23 34.
- 3. *Mukherjee A., Halder S.* On fuzzy supra semi δV continuity in fuzzy supra semi δV topological space // Acta math. hung. (to appear).
- 4. *Mukherjee A., Halder S.* On fuzzy Λ_{δ} continuous functions // Indian J. Pure and Appl. Math. (to appear).

Received 23.08.05