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ON SMOOTHNESS OF SOLUTION OF THE FIRST BOUNDARY-
VALUE PROBLEM FOR SECOND-ORDER DEGENERATE
ELLIPTIC-PARABOLIC EQUATIONS

PO I'JIAJKICTH PO3B’SI3KY IEPIIOI KPAMOBOI 3ATAYI
JJISA BUPOJ2KEHUX EJIIIITUHYIHO-ITAPABOJITYHHUX
PIBHAHD APYT'OI'O ITOPAKY

In this work, the first boundary-value problem is considered for second-order degenerate elliptic-parabo-
lic equation with, generally speaking, discontinuous coefficients. The matrix of senior coefficients satis-
fies the parabolic Cordes condition with respect to space variables. We prove that the generalized soluti-

on to the problem belongs to the Holder space C h it the right-hand side f belongsto L pe P>

PosryisinyTo nepiry KpailoBy 3a/1a4y /17151 BUPOAKEHOT O eJIINTHYHO-NapabosIiYHOr0 PiBHAHHS APYTrOro

MOpAJKY i3, B3araji Kaxky4u, po3pMBHUMHU KoedpilieHTaMu. Matpuns crapmmx KoedilieHTiB

3a/10BOJIbHsIE MapaboJliuny yMoBy Kopzeca 3a mpocTopoBuMu 3MiHHUMU. [1OBEIEHO, 110 y3araJibHeHui
. 1+A

PO3B’ 130K 3a/1a4i HAJIEXKUTh /10 pocTopy ['enbaepa C -, sKIIO NpaBa yacTUHA f HAJIEXKUTh Lp,

p>n.

Introduction. Investigations of boundary-value problems for second-order degenerate
elliptic-parabolic equations ascend to the work by Keldysh [1], where correct state-
ments for boundary-value problems were considered for the case of one space variable
as well as existence and uniqueness of solutions. In the work by Fichera [2], bounda-
ry-value problems were given for multidimensional case. He proved existence of ge-
neralized solutions to these boundary-value problems. In the work by Oleynik [3],
existence and uniqueness of generalized solution to these problems were proved for
smooth and piecewise smooth domains. In the case of smooth coefficients and some
weighted functions, the generalized solvability was studied in [4] and [5]. Moreover,
the smoothness of the solution was studied and the condition (15) and the example (22)
were apparently given for the first time in the paper [5].
Let R,,; bean (n+1)-dimensional Euclidian space of points (x,?) = (xi, X, ...
.»X,, 1), & be abounded n-dimensional domain in R, with the boundary 0Q,
Qr = Qx(0,7) beacylinderin R, Te (0,%), Oy = {(x,1): xeQ, t =0} and
let T(Qp) = Oy U(@Q %[0, T]) be a parabolic boundary of the cylinder Q.
Let us consider in Q4 the first boundary-value problem for second-order degene-

rate elliptic-parabolic operator
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Za,](x t) -+, t) “y Zb(x t) + e, Du— = = f(x0, (1)

i,j=1 X
”‘NQT) = 0. @)

Assume that the coefficients of the operator Z satisfy the following conditions:
H a;(x, 1) H is a real symmetrical matrix with elements measurable in Q7 and, for any

(x,1)e Qp and & € R,, the following inequalities are true:
2 < g2
YIEF < zai/(x’t)gigj < yIEF, 3)
i,j=1

where ye (0, 1] is a constant,

upz alj(x, t)
1
G = - - VTR “4)
]
c(x,n) €0, cx,0)e L, (0, (5)
|b(x,1)|€ L,»(Q7),  |b(x,Df + Ke(x,1) < 0. (6)

Assume that the following conditions are true for the weighted function:
v(x ) = Mp)w® (T —1),

where

p = p(x) = dist(x,0Q), A(p) =0, A(p)eC'[0, diamQ],

NP < pMP], w20, we'[0,T],
0(z) 20, @) 20, 02)eC0,T], 00) = ¢'(0) =0, @) > Pz'(2),
(7)

where p, B are positive constants and (x, ) has bounded derivatives of the second
order.

The condition (4) is called the condition of Cordes type and is taken within the ac-
curacy of a linear nonsingular transformation. This means that the Cordes condition is
taken within the accuracy of nondegenerate linear transformation, that is the domain
Q7 can be covered by a finite number of domains Ql,...,QM so that in each Q'

there exists such a nondegenerate linear transformation that a matrix of sinior
coefficients of the image of the operator Z satisfies the condition (4) in the image of
o,i=1,M.

Before we move to the proof of the basic result, let us consider some auxiliary pro-
blems. Let

Zalj(x t)

+ y(x, 1) Z+
i,j=1 ] ot

+ Zb (x, t) + by(x, t) vy cx,hu = f(x,1). )
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Without loss of generality, we may assume that the coefficients are smooth in aT and
their derivatives are bounded. To speak more exactly, let us say that the coefficients
and the right-hand side have the first Holder derivatives Let

Zalj(x t)

i,j=1

2u
+ Y, (x, t)

+ Zb(x t)— + by(x, z) Ly, nu = f(x,0), 9)

where W, (x,1) isdefined so: for any fixed €<(0,T)

0.(2) = &) - “’(8)8 “’f;f)lz’” for ze(.el. 0.(2) = 92

for zele, T], m = % (we denoted by z the argument of @(7 —1)). Similarly, for
any fixed €€(0,7)

we(2) = w(€)—M Wff)l 7" for ze(0,€],
m me

Wwe(z) = w(z) for zele,T], m = % (we denoted by z the argument of w(¢)).

Analogously the new value of A.(z) = A(€)+¢€ on the correspondent segment.
We multiply all the approximated functions to obtain W, (x, ).

Everywhere further, we consider the case where y(z) > 0 for z > 0. If y(z) =
= 0, then the equation (1) is parabolic, and the corresponding result on smoothness of
the solution ensues from [6]. Butif y(z) = 0 for z€[0, zo], then the solution to the

problem (1), (2) can be obtained by composition of the solution u(x,t) to the first bo-
undary-value problem in the cylinder QZ(, and the solution v(x,t) to the first boun-

dary-value problem for the parabolic equation in the sylinder € x (zo, T) with the bo-
undary conditions

0 0
v(x,z) = ulx,z ), U‘BQX[ZO’T] =0.

Note that under the conditions (3) — (6) for the coefficients, the smoothness of the solu-
tion results from [7]. Denote by 30 the partof Qp, where wy(x,f) = 0, i.e., where
the equation (8) degenerates: denote by I the part of intersection of 2 and the
boundary I', where a tangent plane to the surface I" is orthogonal to the axis ¢, i.e.,
has a characteristical direction.

By maximum principle, the solutions u(x,?) of the equation (9) in the domain sa-
tisfy the following estimate:

|ug (x, 1)| <

clx, 0|

thatis u.(x, ) are uniformly bounded with respect to €.

Lemma 1. The derivatives of the solution u.(x,t) are uniformly bounded on a
closed subset of the boundary T, that belongs to T\ ro.

Proof. Let us take a point (x',1) eI\ " such that at the point a tangent plane to
I" is not orthogonal to the axis #, i.e., the surface I" near the point has an equation of
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726 T. S. GADJIEV, E. R. GASIMOVA

the kind x; = 0(x,,...,x,,t), where 0 has derivatives up to second order. Let
% (x,...,x,,t) be twice continuously differentiable function equal to a positive

constant B in some neighborhood of a projection (x’,7) onto the plane (x,,..., x,, )
and equal to zero in a little greater neighborhood 0 < % (x,,...,x,,7) < B. We denote
by QlT the part of Qr being between the surfaces I' and o{x; = 0+7}. Let r!
=00t is ob-

vious, that on the surface ¢ v = 1. Then in Q}, for sufficiently great o, we have

denote that part of I', where % = . Consider a function v = e

2 2
L(v) 2 o’y —op — py > %, L(vtu) > % - r%ax\f(x,t)\ > 0, (10)
T

where |, W, are maximums of the modules of the solution itself and its first deriva-
tives within Qp. Then we choose o independent of € so, that (10) is true and,

moreover, ¢®P > 1+ max|u,(x,7)|. This means that on T the values of functions
Or

vtu, equal to ™ are greater than their values on &, where v = 1 (taking into
account that u(x, t)\l- = 0). By maximum principle, it results from the following
estimate (10) that functions v+*u, within the domain QIT cannot take maximal
positive value. Hence, they reach maximum on the boundary T, i.e., on the part r!
too, while on the other part of T v+u, = ¢** < ¢*. So, at points that belong to
Fl, we have

o(vtu,)

a.xl

dug (x, 1)
a.xl

_o
! axl

oug(x, t)
axl
derivatives of u.(x,t) with respect to directions lying in a tangent plane are equal to

.. du.(x,1) . .
zero as  ug(x, t)\r = 0. Thus, the derivatives M, i = 1,n, are uniformly bo-

Xi

<0 = o™,

IN

rl

In other words on Fl, the derivatives are uniformly bounded. Moreover,

unded with respect to € on rt

Let us take a point (x/, nel\T’. Leta tangent plane to I' at this point be
orthogonal to the axis #. This case can be proved similarly.
The lemma is proved.

Remark 1. If the boundary does not contain points of I, then w are
uniformly bounded on the entire boundary.
Lemma 2. Suppose that on 3° the condition
c(x,t)+M <0 (11)

ot

is true and E is any closed domain with a boundary &y, which belongs to QT

Then at (x,t)e 21
d aug(x ) (aug(x, l‘))2
2 ( ) ot =

i=1
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ON SMOOTHNESS OF SOLUTION OF THE FIRST BOUNDARY-VALUE PROBLEM ... 727

n 2 2

ou.(x,1) (au (x, t))
< C £ £ G, 12
o |32 < (0] g a2

i=1

where C, C; are constants depending on a structure of the equation.

Proof. Introduce the notation (Zl N EO) Nz! = 2. Letus prove the inequality

in some neighborhood of closed domain ¥2. The boundary of >2 consists of the part

o, of the boundary >! and the surface G, being in the part, where wy(x,7) > 0. At
points (x,t) € G, the inequality

2 2
oug(x, 1) (Bug (x, t))
2( o, ) T )

i=1

n 2 2
oug(x, 1) (Bue (x, t))
< C(xr,rtl)zg;l {2( ox ) + > + G (13)

i=1

is true.

The following estimate (13) is obtained from the fact, that derivatives of the
solution are bounded in any closed subdomain for the case of bounded derivatives up to
the boundary of a domain. Now if we show that the following estimate (13) is also true

for the domain 22, the from (13) and this following estimate we will get (12) for the

domain X'. Assume that (11) is also satisfied in X>. For simplicity of calculations,
we will find following estimates for one space variable and in the end show the
changes in calculations in the case of many space variables. Without loss of generality,
we take the coefficient at second derivative with respect to a space variable x equal to

unit, as it can be easily obtained by division by terms by the coefficient. Denote

_ M)’" (M)“ 2
7z = ( o + 0y o ue(x,t)'

First, we show that for corresponding n, 0o, we have L;z > 0 in 22, if

(aue (x,1)

2
5 ) > W;. Let n be a positive even number. We get
t

A Qug (x, t))m (aug(x, t))m2 2 -
L€|:(8t + oy o ug (x, )| = Lgz > 0,

2
if (W) > My. Now if z takes its maximum within 22, then at this point
t

2
L.z < 0. So, either (%) < W, or the value of z within X? is not greater
t

than the maximum on the boundary ¥2. Since

o, (x, 1)\ ” o, (x, 1)\
(552) s @ s oM50) v o

and
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(aue(x, z))z
ot

< ‘22 < G max 2"+ G <

52 o,Uo
< C, max (aus(x, t))z + C. (14)
4 o, Us, ot >
M can be estimated similarly.
X

The lemma is proved.
Lemma 3. Assume that on the set X°, the following condition is satisfied:
82\|I(x D, 50

or’ ot

+e(x,1) <0 (15)

and first derivatives of ug(x,t) are uniformly bounded in a closed domain z! C@
with the boundary &. Then

2
2 azug(x, 1) : u azug(x, 1) o° ug(x t)
Z( aor ) iél oy, )\ o

i=1

2 2

L(9%u(x, 1) : 2 (9% (x,1) ’u (x,1)
< I lel%D) el el . (6
Céfﬁ?é‘c{;( o1 ) ’ ,.,].2:1 awax, ) a2z )| (O

1
where C, C; do not depend on €.

2
Proof. As c(x,1) < 0, %—\ZV > 0 on ZO, the statement of the lemma for first
t

derivatives results form Lemma 2. To prove the lemma, as in the proof of Lemma 2,
we have to show that in some neighborhood of X°NZ': Lz > 0 at the correspon-
ding m (an even number) and «;. Here, z; is the same as in Lemma 2, but it con-

m

. .. %u. (x, t . . .

tains additional terms. An element (5(2) is the main in it, so we have to esti-
t

| (9%ue (x, 1) " _ 0%u, (x, 1) " azug(x 1)
L€|:( or’ )]_ m( or l?' ¥

3 azue(x, 1)) " 3Lt,;(x 1) 83148()6, 1)
+ m(m D(Btz Zal](x 1) Btzaxj +

i,j=1

m-2 3 2 m
+ m(m— )(8”85;‘ ’)) W (x r)(a le (. ”J (m—l)c(x,t)(a ”ast(f I)) .

mate

Taking into account (15) on 20, for sufficiently great m, we have

aZ\VE abO
— 2—= =

in some neighborhood of 3% Now we choose B < u —u,, where p, >0, and
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[P

el S )

+ m(m—1)uye(x, 1) ( ug(x t)J (83”55)6 t))
(] el

i azue(x,t) :
N Bxiaxj
N z 0? 97U (x, 1) t) i 0%u, (x, 1) ’ +1
ox; 0t i o\ 0x;0x ;01 '

fix B. Then

1+/>0,1¢/
i=1

Let us choose sufficiently great m, so that —mu; +m(m -1 > H3 > 0 and fix
m. Under this condition,

azue(x, 1) " a2u£(x, ) 2 a3u€(x, 1) :
L{( or’ R E or* dx,

2 m 2 m=2 /.3 2
N H5(a ug (x, t)) L t)(a ug (x, t)) (a ua(;c, t)) B

or’ or’ o1
m— 2 2
Pu o)) | & (FPunn) | & (Pug(x )
: 4[ or i+j>%,-¢,- aox, | F 2" anar
3
+ 2 (a ua(x t)) + 1].
i,j=1

Having obtained the other estimates similarly to Lemma 2, we get the statement of the
lemma.
The lemma is proved.

Lemma 4. Let the condition (15) be satisfied on the set 20 and the boundary

of Qr have no points of 2. Then in the closed domain O, derivatives of
u.(x,t) with respect to space up to the second-order variables are uniformly boun-
ded.

Proof. Let us take a point (x*,7")eT" and let in its neighborhood the boundary

I' be presented in the form x; = @(x,,...,x,,7). By means of change of variables
t=1, & = x—00y.... x50, & = x5, ..., &, = x, in the neighborhood of
(x*, 1), the equation (9) is reduced to the form
s N e e DU I R #, Ollg
Leu, ,-,,Zzla”@’t ) %o, Ve 3 21 A )a&
#p w0, wp fe
+ by(& 1 )atf + (&, = fE1), a7

where afl(ﬁ,t*) >u>0, c*(ﬁ,t*) < 0, and due to assumptions on smoothness of
the coefficients and boundary, the coefficients of (17) have uniformly bounded
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730 T. S. GADJIEV, E. R. GASIMOVA

derivatives. The boundary T" will have the equation & = 0 in the neighborhood of
(x*,1"). For clarity, we take the axis €, to be pointed into Qp. As in Lemma 1, we
denote by % (&,,...,&,,¢") anonnegative twice continuously differentiable function
equal to the constant [ inside some neighborhood I of the point (x*,") on the

boundary T" and equal to zero outside a little greater neighborhood 0 <y < B. The
part of the domain @, lying between the boundary T{§, = 0} and of{§, = x(&,, ...

., &, 1)y /), will be denoted by Q%. Further, o will be chosen as depending on

e, and y as not depending on €. In Qp, the uniform boundedness results from
Lemma 2 for first derivatives of u.(x,7) with respect to x; and ¢, and hence, with

respectto &;, ¢* in a neighborhood of (x*,¢"). By Lemma 3, second derivatives of
u.(x, t) are estimated via their values on the boundary, and as second derivatives with

respect to x; and ¢, as well as with respect to &;, t*, are mutually expressed by each

other and by first derivatives in a neighborhood of (x*,7") in a uniformly bounded
way, so

0%u, (&.1%)
o

Puy(&,1)
0,0t

0%u, (&.1%)
€08
at (€, t*) € Q7ﬂ i, j = 1, n. Here, a maximum of second derivatives on the boundary

I' is denoted by H(g).
If at the point (x",7") atangent plane to T is orthogonal to the axis 7, then by de-

< WH(e) + W, (18)

finition of 20, at the point, and that’s in some its neighborhood, w,.(x,#) > u; > 0.

Thus, for each point (x*,7")eT’, a neighborhood exists on the boundary such that

0%u,
or

+

2
0ue < WJHE) + g, i, j=1n.

gStly

Taking a finite number of such neighborhoods covering I', and taking into account the
smoothness of change of coordinates in each of these neighborhoods, we get

o%u,
o, or

0%u,
axi ax]

o%u,
ox;ot

o%u,
or

+ < ugy H(e) + Wo

on entire boundary T or, due to definition of H(g), H(e) < o H(E) + 1.
Hence, H(e) < Uy,, i.e., we have boundedness of second derivatives on the bounda-
ry, and by Lemma 3, in the whole domain Q. Here, we used only boundedness of
first derivatives of coefficients of the equation (17).

The lemma is proved.

Now we can move to the proof of existence and the uniqueness theorem for the first
boundary-value problem for the equation (8).

Theorem 1. Let the equation (8) defined in a cylindrical domain Qp with the

boundary T, degenerate on the set ¥ < aT into a parabolic one, let the
condition (3) be satisfied and let all the coefficients and the right-hand side of the
equation (8) have bounded derivatives up to the first order, satisfying the Holder

condition. Assume that, in a cylindrical domain Qr > Qr, W(x,1) >0 and the
conditions (7) are satisfied. If the boundary T" has no points of I and the
condition (15) is satisfied on ZO, then in Qr there exists a unique solution of the
equation (8) that satisfy the condition (2) and have in E derivatives of the first
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ON SMOOTHNESS OF SOLUTION OF THE FIRST BOUNDARY-VALUE PROBLEM ... 731

order satisfying the Holder condition; and the following estimate is true:

HMHCIH‘(QT) S Kl(fc’”(QT) + supu). (19)
Or

Proof. From Lemma 4 it results that solutions of the equation
Liug(x, 1) = f(x,1), (20)

vanishing on T', are uniformly bounded in the closed domain @ along with their
derivatives up to the second order. In other words, it is possible to find a sequence
ug(x,t) suchthatas € — 0, it uniformly converges to some function u(x,t) along
with its derivatives up to the first order in the closed domain Q. And it is clear that
these derivatives of u(x,t) will be Holder derivatives and the function u(x,f) equals
zero on the boundary I'. Moreover, for such solutions, the estimate (19) is true (see [6,
p. 235], Chapter 3). Passing to the limit in the equation (20) as € — 0, we obtain that
u(x,t) satisfies the equation (8) and the estimate (19) is true. Uniqueness of the
solution follows directly from maximum principle.

Remark 2. From the proof of Theorem 1, the convergence of the solutions of the
equation (20) to the solution of the equation (1) as € — 0 also follows.

Remark 3. The condition (15) cannot be omitted. There exists an essential diffe-

rence from existence theorems proved for a smooth solution of the Dirichlet problem
for elliptic equation. Let us give an example.

Example 1. Let us consider the equation

2uen) | Fubnn) WLLER)
or* o ot
with sufficiently smooth coefficients, where B, ¢ are constants, ¢ < 0. It is easy to
check that the equation has a solution

+cu =0 21

u(x,t) = t'sinpx, (22)
Y -D+By+c = p (23)
The equation degenerates on the axis x. The condition (15) for the equation means
that 2+2B+c¢ < 0. Let the condition be not satisfied, e.g., 2+2B+c¢ > 0. Then
such p, vy < 2 exist that they satisfy (23). Let us consider the domain Q@ containing
a segment of the axis x, whose boundary near the axis x consists of straight lines
x =0 and x = n/p and everywhere is sufficiently smooth. Then the solution (22)
will be sufficiently smooth on the boundary (near the axis x = 0 it is zero), but,
nevertheless, its first order derivatives will not satisfy the Holder condition for ¢ = 0,
O<x<m/p.
Let us give the scheme of proof of the solvability when passing from smooth coef-
ficients to coefficients satisfying (3) — (6), (8).
First, let f(x,t) be sufficiently smooth in @ Denote by v(x,f) a classical
solution of the first boundary-value problem

Av —v, = f(x,1), (x,0)e0r,

(24)

U‘F(Qr) = 0.

It is known that the solution v(x,t) to the problem exists and v(x, )€ Cz’l(@).
Now we take an operator L.. Let u.(x,#) be a classical solution of the Dirichlet
problem
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Laug(xa t) = f(x7 t)’ (X, t)EQT’

Ug ‘r(QT) =0, ugl_y = vl_r
Such a solution u.(x,t) exists due to smoothness of W.(x,7) and f(x, 7). As we
have shown, {u.(x,?)} are uniformly bounded with respectto € in Cg’l(QT). There-

fore, it is compact in this space, i.e., there exist such a function u(x,?)e Cg’l(QT) and
asequence g, — 0, k — oo, that the corresponding sequence {uek (x,t)} converges

to the function wu(x, t)ecg’l(QT) as k — oo. Further, we can obtainthat Lyu = f in
Or. Now let f(x, neL,Op), p>n+ 2. Then a sequence ({f,,(x,1)}, f,(x,1)¢€
€ C”(Qp) exists such that

n}flefm - fHLp(QT) = 0.

For natural m, denote by u,,(x,t) the sequence of solutions of the first boundary-
value problem for

(%, 1) € CgN(Op),
LOMm('x’ t) = fm(-xs t)» (X, I)EQT.

It is proved that the limit u(x,#) of the sequence ({u,,(x,?)} in Cg’l(QT), m — oo,
satisfies in QO the equation Lyu(x,t) = f(x,1).

Note that as we said above, y(x, ) > 0. If y(x,7) = 0, then the equation (1) is
parabolic and that is why under the conditions (3) — (6) and f(x,f)€ L(Or), p>n+
+ 2, for the bounded solution of the equation (1) the following estimate is true:

H“Hc”’”(gg) < Kl(pr(QT) + supu). (25)
0

T
If y(x, t) > 0 and the condition of Theorem 1 is satisfied for the coefficients, then for
the bounded solution of the equation (1) the estimate (25) is true. The estimate (25)
can be obtained by composition of the solution u(x, t) to the problem in the cylinder
on, where y(z) = 0 for z € [0, 7971, and the solution v(x,f) to the first bounda-
ry-value problem for parabolic equation in the cylinder Q x (z° T) with boundary
conditions v (x,z%) = u(x, z%), U‘BQX[ZO,T] = 0. It must be noted that the theorem
has been obtained for smooth coefficients, but we can pass to f(x,7) e L,(Or) by

means of the above mentioned scheme. Further, to prove the estimate (25) under the
conditions (3) — (7), we apply the method of continuation by parameter.

Theorem 2. Suppose that the equation (1) defined in Qp degenerates on the

set ¥° CQ7T into a parabolic one, the conditions (3) — (7) are satisfied for the
coefficients, and the right-hand side of the equation  f(x,t)€ L,(Qr), p > n + 2. If

the boundary T has no points of T° and on X0 the condition (15) is satisfied,

then for the bounded solution u(x,t) of the equation (1) the following estimate is
true:

Jileros gp) < Kl(pr(QT) + supu),
Or

where A > 0 depends only on coefficients of the operator L and n; and K,
moreover, depends on p, p, diam Qr.
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ON SMOOTHNESS OF SOLUTION OF THE FIRST BOUNDARY-VALUE PROBLEM ... 733
Remark 4. Theorem 2 in this formulation is also true for the equation (1), if in the
condition (15) instead of by(x, ) will be taken &(x,1).

Proof of Theorem 2. To prove it, we consider a family of operators AREES
= (1-1)L" +1Z for t€[0,1], where L’ is a model operator defined from the equa-
tion (8) with Laplacian main part and smooth coefficients, and the operator Z is defin-
ed from the equation (1). Let us show that the set E of points T, at which for
solutions of the problem

Z% = fx,n, (x1)eQ, (26)

tlrgyy = 0. 27)

the estimate (25) is true if f(x,7)e Lp(QT), p > n+ 2, is nonempty, and open and
closed simultaneously with respect to the segment [0, 1]. Hence, £ = [0, 1] and, in
particular, for the solution of the problem (26), (27) the estimate (26) is true for T = 1,

ie,when Z" = Z. The set E is nonempty by Theorem 1. Let us show that it is
open. For this purpose, we prove that for solutions of the problem (26), (27) the
estimate (25) is true for all t€[0,1] such that [T—1y| < € (here, Tp€eE and & >
> 0 will be chosen later). Rewrite the problem (26), (27) in the equivalent form

72y = ) - (29 -2, (neQr, (28)
u(x, tye C Q).

We introduce an arbitrary function v(x,t) € Cg’”‘ (Qr) and consider the first bounda-
ry-value problem

Zu = f,n - (20 =72, (e, (29)
u(x, 1) e G (Or).
It is clear that (Z(T) - Z(TO))U € Cz’l’k(QT). Indeed, note that for all operators AR
the conditions (3) and (4) are satisfied with constants y?n 2 min{y,n} and o < O,
respectively. Let us show this. Denote by a,(jr)(x, n, i= 1, n, the coefficients of the
operator 7 at higher derivatives with respect to space variables. Let

2
. ZZFIC”% 1 @ ZZFl [ cx 0] @ _

1 = sup 5 s = sup " 5, L1~ = sup l(T)(x, 1),
Or 8 (%1 Or [Zizla‘(r)(X,l‘)] Or

where
n
gl = Y ay(x,0).
i=1

Taking into account (4) and the fact that for any operator of Z-type the inequality
1 =1 is true, we conclude that

n(1=1 +20(1 - Dge N+ X aj(x.1) 3
n?(1-1° +21(1—Tng(x, ) +T°¢%(x, 1)

Ta-1/ngwn _ 30)

O, 1) =

<Ly 22
n g7 (x, 1)

Let now
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B 1nfz a0 D)
A = infg(x,n), A = supg(x), A1) =
or o sup Y alP(xn)
Or =

A-Dn+1h

(-0 o But on the other
-Tn+71

Calculations we made before show that X(T) =

hand, A (1) = % < 0. That is why,
[A=T)n+1A"]
AV = A1) = A, (31)
. _ 1 - 1
30) and (31) imply that &, = 1V ——— < 1- = o, and the needed
(30) and (31) imply @ =250 2
statement is obtained.
0

Note that all above mentioned reasonings and Lemma 4 imply that if 7 < T, the
following estimate is true for any 7T €[0, 1] and any function u(x,?)e C2’1’7”(QT):

HMHCZ’”‘(QT) < K2(HZ(O)MHCO,L (32)

(QT))'
For the solution u(x,f) of the boundary-value problem (29), due to the assumption
made, the estimate (25) is true for any v(x,t)€ Cg’u‘(QT). Thus, an operator @ is
defined from C2 L X(QT) to Cé’”‘(QT) and u = ®v. This operator is compressing
at € chosen in an appropriate way. Indeed, let v(i)(x, t)eCé’“‘(QT), u® = o,
i = 1,2. Then, takling into account that (Z(T) - Z(TO)) = (t1-19)(Z-L"), we con-

clude that u(l)(x, 1) — u(z)(x, t) is a classical solution of the first boundary-value prob-
lem

200 -uP @ 0) = =12 - L) -vP(x, 1),

uD(x, 1) —u®(x, 1) € GTMMOp).

Using (32), we get

Hu(l)(x, 1) — M(Z)(x, t)ch"~7‘(Q ) <
< K|t/ (2= L) 0= 0200 o (33)
On the other hand,
[(Z- 19000 -0 sy, < KZn QD[P0 D=2 D) g,

So,

[V =200 2ny, S KoK 000 0= 02000 o

©Qr) o)
Now taking € = 1/2K, K53, we prove that the operator @ is compressing. Hence, it

has a stationary point u = ®u, thatis a classical solution of the boundary-value prob-
lem (28), and of (26), (27) as well, and for the solution the estimate (25) is true. So, we
have proved that the set E is open.

Let us show that the set E isclosed. Let 1, €E, k=1,2,..., lim 1, = 1. For
k—>eo0

natural k, we denote by up,(x,7) the solution of the first boundary-value problem

ZWup (e = a0, (DO, uyy(x1) = 0, for which the following

T'(Qr)
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estimate takes place:
H”[kl](x’t)ch,l(QT) = K3HfHLp(QT)- (34)

So, from (34) we obtain that the family of functions {u[k](x, 1} is compact in

Cg’l(QT), i.e., there exists such a subsequence of natural numbers {kl}, llim kj = o0
—Soo
and a function u(x,t)e Cg’l(QT) that, for any @(x, 1) € C;'(Qr),
lim (2w, 0) = (2%, 9). (35)
—> oo

However,
(Zu0.0) = (Z0 = Z"Nug 1. @) + (f.0) = ZD) + (f.9).  (36)

Moreover, taking into account (33) and (34), we have
FACIENE T ‘ (z- L')M[k,p (P‘ < Jt-tylKy H Uk, ch.l(QT) o HCM(QT) =
S K3Ky|t-1y| HfHLI,(QT) o HCM(QTy (37)
It follows from (37) that llim Jy(1) = 0. From (36) and (37) we get that (Zu, ¢) =
—Soo

= (f,0), ie, 7Oy = f(x,1), everywhere in Q. Thus, we showe that TeFE,
i.e., the set E is closed.

The theorem is proved.

Now we prove some estimate for the solution, which can also be taken as an inde-
pendent result.

Theorem 3. Let the conditions (3) — (7) be satisfied for the coefficients of the
operator (1). Then for any function u(x,t) € Wf;ﬁ(Qﬁ, the following estimate is
true:

lu(x, t)Hc(QT) < kaHLnH(QT)’ (38)
where k = k(y,n).

Proof. Suppose that (xo,to)eQT and at this point supu = u(xo,to) =u>0.
Or
Let us take an auxiliary function z = u™, where m > 2 is a natural number, which
will be chosen later. Denote by A, the set

{0 (e, ulx,1) 20, z(x,1) >0, z,(x,1) <0,
H z;(x, 1) H is a positively defined matrix }.
We have

n

n+l n+l1
n
],lm(nﬂ) < K J[Zt_ zaijzij] dxdt < KJ[Zt_ Zaijzij—\u(x, t)Ztt] dxdt <
A, ij=1

ij= A i.j=1
/2

< K, J- mu™ " (= Zu) + mu 2| u(x, t)[Zbi(x, t)) |V u(x, 0] +
A, i=1

n+l

+ e, —(m=1)y|Voux,nf|  dxdr. (39)
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If (x,t)e A, is such that

V(x| > 28Dl .

(m—1)y
then
ulb||Vu(x, 0| + cu® - (m=1)y|V u(x, t)\2 < 0.
However, if
|V u(x, )| < (Z(f’lt))yu(x, n for (x,HeA,
then

ulb||V u(x, )| + cu® — (m—-D)y|V, ux, 0 < b + (m = ye).

=

(m—=1y

Now we take max{Z, 1+ m} as We(x,t)m. Then from (14) we get that
v

lem(n+l) < szn+lu(m—l)(n+l) J-‘f‘nﬂdxdt.
Or,

Hence, the estimate (38) with K = K;/(””)m is obtained in a standard way. The case
where (xo,to) = (xo, T), x% e Q is considered similarly.

Theorem 4. The conditions of Theorem 2 be satisfied and in the cylinder Qr
the solution to the first boundary-value problem (1), (2) be defined, f¢€ L,(Op),

p > n+ 2. Then the following estimate is true:
luCx, 1) Hc”"(QT) < Kyl fHLp(QT)' (40)

Proof. To prove this, we should use the estimate (25) from Theorem 2 and the
estimate (38) from Theorem 3, which implies the estimate (40).

As a consequence of the estimate (40), we get the theorem on classical solvability
of the first boundary-value problem for the operator Z, which can be proved by the
standard Lere — Schauder method [6].

Theorem 5. Let the conditions of Theorem 2 be satisfied. Then the problem (1),

(2) has a classical solution u(x,t) € C2’1’)‘(QT) and A > 0 depends only on G, n.

Note that classical solvability can be proved analogously to Theorem 2.
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