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ON SMOOTHNESS OF SOLUTION OF THE FIRST BOUNDARY-
VALUE PROBLEM FOR SECOND-ORDER DEGENERATE
ELLIPTIC-PARABOLIC EQUATIONS 

PRO HLADKIST| ROZV’QZKU PERÍO} KRAJOVO} ZADAÇI

DLQ VYRODÛENYX ELIPTYÇNO-PARABOLIÇNYX

RIVNQN| DRUHOHO PORQDKU 

In this work, the first boundary-value problem is considered for second-order degenerate elliptic-parabo-
lic equation with, generally speaking, discontinuous coefficients.  The matrix of senior coefficients satis-
fies the parabolic Cordes condition with respect to space variables.  We prove that the generalized soluti-

on to the problem belongs to the Hölder space  C1+λ   if the right-hand side  f  belongs to  Lp ,  p n> . 

Rozhlqnuto perßu krajovu zadaçu dlq vyrodΩenoho eliptyçno-paraboliçnoho rivnqnnq druhoho

porqdku iz, vzahali kaΩuçy, rozryvnymy koefici[ntamy.  Matrycq starßyx koefici[ntiv

zadovol\nq[ paraboliçnu umovu Kordesa za prostorovymy zminnymy.  Dovedeno, wo uzahal\nenyj

rozv’qzok zadaçi naleΩyt\ do prostoru Hel\dera  C1+λ
,  qkwo prava çastyna  f  naleΩyt\  Lp ,

p n> . 

Introduction.  Investigations of boundary-value problems for second-order degenerate
elliptic-parabolic equations ascend to the work by Keldysh [1], where correct state-
ments for boundary-value problems were considered for the case of one space variable
as well as existence and uniqueness of solutions.  In the work by Fichera [2], bounda-
ry-value problems were given for multidimensional case.  He proved existence of ge-
neralized solutions to these boundary-value problems.  In the work by Oleynik [3],
existence and uniqueness of generalized solution to these problems were proved for
smooth and piecewise smooth domains.  In the case of smooth coefficients and some
weighted functions, the generalized solvability was studied in [4] and [5].  Moreover,
the smoothness of the solution was studied and the condition (15) and the example (22)
were apparently given for the first time in the paper [5]. 

Let  Rn+1  be an  ( )n + 1 -dimensional Euclidian space of points  ( , )x t   =  ( x1, x2, … 

… , xn , t ) ,  Ω  be  a bounded  n -dimensional domain in  Rn  with  the boundary  ∂Ω  ,

QT  =  Ω-× ( 0, T )  be a cylinder in  Rn+1,  T ∈ ( 0, ∞ ) ,  Q0  =  { }( , ) : ,x t x t∈ =Ω 0   and
let  Γ( )QT   =   Q T0 0∪ ( [ , ])∂ ×Ω   be a parabolic boundary of the cylinder  QT 

. 
Let us consider in  Q T  the first boundary-value problem for second-order degene-

rate elliptic-parabolic operator 
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u QTΓ( )  =  0. (2)

Assume that the coefficients  of  the  operator  Z   satisfy  the following conditions:
a x tij ( , )   is a real symmetrical matrix with elements measurable in  QT  and, for any

( x, t ) ∈ QT  and  ξ ∈ Rn ,  the following inequalities are true: 
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c x t( , )  ≤  0,      c x t L Qn T( , ) ( )∈ +1 , (5)

b x t L Qn T( , ) ( )∈ +2 ,      b x t Kc x t( , ) ( , )2 +   ≤  0. (6)

Assume that the following conditions are true for the weighted function:

ψ( , )x t   =  λ ρ ϕ( ) ( ) ( )w t T t− ,

where    

ρ  =  ρ( )x   =  dist ( , )x ∂Ω ,    λ ρ( )  ≥  0,    λ ρ( ) [ , ]∈C1 0 diamΩ ,

′λ ρ( )   ≤  p λ ρ( ) ,    w t( )   ≥  0,    w t C T( ) [ , ]∈ 1 0 ,

ϕ( )z   ≥  0,    ′ϕ ( )z   ≥  0,    ϕ( ) [ , ]z C T∈ 1 0 ,    ϕ( )0   =  ′ϕ ( )0   =  0,    ϕ( )z   ≥  β ϕz z′( ),

(7)

where  p,  β  are positive constants and  ψ( , )x t   has bounded derivatives of the second
order.

The condition (4) is called the condition of Cordes type and is taken within the ac-
curacy of a linear nonsingular transformation.  This means that the Cordes condition is
taken within the accuracy of nondegenerate linear transformation, that is the domain
QT  can be covered by a finite number of domains  Q QM1, ,…   so that in each  Qi

there exists such a nondegenerate linear transformation that a matrix of sinior
coefficients of the image of the operator  Z  satisfies the condition (4) in the image of
Qi ,  i  =  1, M . 

Before we move to the proof of the basic result, let us consider some auxiliary pro-
blems.  Let 
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0  =  f x t( , ). (8)
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Without loss of generality, we may assume that the coefficients are smooth in  QT   and
their derivatives are bounded.  To speak more exactly, let us say that the coefficients
and the right-hand side have the first Hölder derivatives.  Let 

′L uε   =  a x t u
x x

x t u
tij

i j

n
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where  ψε( , )x t   is defined so:  for any fixed  ε ∈( , )0 T  

ϕε( )z   =  ϕ ε ϕ ε ε ϕ ε
ε

( )
( ) ( )− ′ + ′

−m m
zm

m
1     for    z ∈( , ]0 ε ,    ϕε( )z   =  ϕ( )z

for  z T∈[ , ]ε ,    m  =  2
β

    (we denoted by  z  the argument of  ϕ ( )T t− ).  Similarly, for

any fixed  ε ∈( , )0 T  

w zε( )   =  w
w

m
w
m

zm
m( ) ( ) ( )ε ε ε ε

ε
− ′ − ′

−1     for    z ∈( , ]0 ε ,

w zε( )   =  w z( )  for  z T∈[ , ]ε ,  m  =  2
β

  (we denoted by  z  the argument of  w t( ) ).

Analogously the new value of  λε( )z   =  λ ε ε( ) +   on the correspondent segment.
We multiply all the approximated functions to obtain  ψε( , )x t . 

Everywhere further, we consider the case where  ψ( )z > 0   for  z  >  0.  If  ψ( )z   ≡
≡  0,  then the equation (1) is parabolic, and the corresponding result on smoothness of

the solution ensues from [6].  But if  ψ( )z = 0  for  z z∈[ , ]0 0 ,  then the solution to the
problem (1), (2) can be obtained by composition of the solution  u x t( , )   to the first bo-
undary-value problem in the cylinder  Q

z0   and the solution    v( , )x t   to the first boun-

dary-value problem for the parabolic equation in the sylinder  Ω × ( , )z T0   with the bo-
undary conditions 

v( , )x z0   =  u x z( , )0 ,      
 
v ∂ ×Ω [ , ]z T0   =  0.

Note that under the conditions (3) – (6) for the coefficients, the smoothness of the solu-
tion results from [7].  Denote by  Σ0  the part of  QT ,  where  ψ( , )x t   =  0,  i.e., where

the equation (8) degenerates:  denote by  Γ0  the part of intersection of  Σ0  and the
boundary  Γ,  where a tangent plane to the surface  Γ  is orthogonal to the axis  t,  i.e.,
has a characteristical direction. 

By maximum principle, the solutions  u x tε( , )  of the equation (9) in the domain sa-
tisfy the following estimate: 

u x tε( , )   ≤  f x t
c x t

( , )
( , )

,

that is  u x tε( , )  are uniformly bounded with respect to  ε. 

Lemma 1.  The derivatives of the solution  u x tε( , )  are uniformly bounded on a

closed subset of the boundary  Γ,  that belongs to  Γ Γ\ 0 . 

Proof.  Let us take a point  ( , ) \′ ∈x t Γ Γ0   such that at the point a tangent plane to
Γ  is not orthogonal to the axis  t,  i.e., the surface  Γ  near the point has an equation of
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the  kind  x1  =  θ( , , , )x x tn2 … ,  where  θ  has  derivatives up to second order.   Let
χ( , , , )x x tn2 …   be twice continuously differentiable function equal to a positive

constant  β  in some neighborhood of a projection  ( , )′x t   onto the plane  ( , , , )x x tn2 …
and equal to zero in a little greater neighborhood  0  ≤  χ( , , , )x x tn2 …   ≤  β.  We denote

by  QT
1   the part of  QT   being between the surfaces  Γ  and  σ θ χ{ }x1 = + .  Let  Γ1

denote that part of  Γ,  where  χ  =  β .  Consider a function  v  =  e xα θ χ( )− + +1 .  It is ob-

vious, that on the surface  σ  v  =  1.  Then in  QT
1 ,  for sufficiently great  α,  we have 

      ′Lε( )v   ≥  α γ αµ µ2
1− −   >  

α γ2

2
,       

′ ±L uε ε( )v   >  
α γ2

2
− max ( , )

QT

f x t   >  0, (10)

where  µ ,  µ1  are maximums of the modules of the solution itself and its first deriva-
tives within  QT .  Then we choose  α  independent of  ε  so, that (10) is true and,

moreover,  eαβ   >  1 + max ( , )
QT

u x tε .  This means that on  Γ1  the values of functions

  v ± uε   equal  to  eαβ   are greater than their values on  σ,  where  v  =  1  (taking into
account that  u x tε( , ) Γ   =  0 ).  By maximum principle, it results from the following

estimate (10) that functions  v ± uε   within the domain  QT
1   cannot take maximal

positive value.  Hence, they reach maximum on the boundary  Γ,  i.e., on the part  Γ1

too, while on the other part of  Γ  v ± uε   =  eαχ   ≤   eαβ .  So, at points that belong to
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  are uniformly bounded.  Moreover,

derivatives of  u x tε( , )  with respect to directions lying in a tangent plane are equal to

zero as  u x tε( , ) Γ   =  0.  Thus, the derivatives  
∂

∂
u x t

xi

ε( , )
,  i  =  1, n ,  are uniformly bo-

unded with respect to  ε  on  Γ1. 

Let us take a point  ( , ) \′ ∈x t Γ Γ0 .  Let a tangent plane to  Γ  at this point be
orthogonal to the axis  t .  This case can be proved similarly. 

The lemma is proved. 

Remark 1.  If the boundary does not contain points of  Γ0,  then  
∂

∂
u x t

t
ε( , )

  are

uniformly bounded on the entire boundary. 

Lemma 2.  Suppose that on  Σ0  the condition
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 is true and  Σ1   is any closed domain with a boundary  σ1,  which belongs to  QT .
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where  C,  C1  are constants depending on a structure of the equation. 

Proof.  Introduce the notation    Σ Σ Σ1 0 1∩ ∩( )   =  Σ2.  Let us prove the inequality

in some neighborhood of closed domain  Σ2.  The boundary of  Σ2  consists of the part
σ1  of the boundary  Σ1  and the surface  σ2   being in the part, where  ψ( , )x t   >  0.  At
points  ( , )x t ∈σ2   the inequality 
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is true. 
The following estimate (13) is obtained from the fact, that derivatives of the

solution are bounded in any closed subdomain for the case of bounded derivatives up to
the boundary of a domain.  Now if we show that the following estimate (13) is also true
for the domain  Σ2,  the from (13) and this following estimate we will get (12) for the
domain  Σ1.  Assume that (11) is also satisfied in  Σ2.  For simplicity of calculations,
we will find following estimates for one space variable and in the end show the
changes in calculations in the case of many space variables.  Without loss of generality,
we take the coefficient at second derivative with respect to a space variable  x  equal to
unit, as it can be easily obtained by division by terms by the coefficient.  Denote 
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The lemma is proved. 

Lemma 3.  Assume that on the set  Σ0,  the following condition is satisfied:
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where  C,  C1  do not depend on  ε. 

Proof.  As  c x t( , )  <  0,  
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  ≥   0  on  Σ0,  the statement of the lemma for first

derivatives results form Lemma 2.  To prove the lemma, as in the proof of Lemma 2,
we have to show that in some neighborhood of    Σ Σ0 1∩  :  ′L zε 1  >  0  at the correspon-
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Taking into account (15) on  Σ0,  for sufficiently great  m,  we have 
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in some neighborhood of  Σ0.   Now we choose  β  <  µ µ1 2− ,  where  µ2 0> ,  and
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Having obtained the other estimates similarly to Lemma 2, we get the statement of the
lemma. 

The lemma is proved. 

Lemma 4.  Let the condition (15) be satisfied on the set  Σ0  and the boundary
of   QT   have no points of  Σ0.   Then in the closed domain  QT ,  derivatives of
u x tε( , )  with respect to space up to the second-order variables are uniformly boun-
ded. 

Proof.  Let us take a point  ( , )x t∗ ∗ ∈Γ   and let in its neighborhood the boundary
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a t
u

t
u

t
b t

u

,

( , ) ( , )
( )

( , )
=

∗ ∗ ∗ ∗
∗

=

∗ ∗∑ ∑∂
∂ ∂

+ ∂
∂

+ ∂
∂1

2 2

2
1

ξ
ξ ξ

ψ ξ ξ
ξ

ε
ε

ε ε   +

+  b t
u

t
c t u0

∗ ∗
∗

∗ ∗∂
∂

+( , ) ( , )ξ ξε
ε   =  f t∗ ∗( , )ξ , (17)

where  a t11
∗ ∗( , )ξ   ≥  µ  >  0,  c t∗ ∗( , )ξ   <  0,  and due to assumptions on smoothness of

the coefficients and boundary, the coefficients of (17) have uniformly bounded
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derivatives.  The boundary  Γ  will have the equation  ξ1  =  0  in the neighborhood of

( , )x t∗ ∗ .  For clarity, we take the axis  ξ1  to be pointed into  QT .  As in Lemma 1, we

denote by  χ ξ ξ( , , , )2 … ∗
n t   a nonnegative twice continuously differentiable function

equal to the constant  β  inside some neighborhood  Γ1  of the point  ( , )x t∗ ∗   on the
boundary  Γ  and equal to zero outside a little greater neighborhood  0 ≤ ≤χ β.  The
part of the domain  QT   lying between the boundary  Γ{ }ξ1 0=   and  σ ξ χ ξ{ ( ,1 2=  …

… , ξ γ αn t, ) / }∗ ,  will be denoted by  QT
ε .  Further,  α  will be chosen as depending on

ε,  and  γ  as not depending on  ε.  In  QT ,  the uniform boundedness results from
Lemma 2 for first derivatives of  u x tε( , )  with respect to  xi  and  t,  and hence, with

respect to  ξi ,  t∗  in a neighborhood of  ( , )x t∗ ∗ .  By Lemma 3, second derivatives of
u x tε( , )  are estimated via their values on the boundary, and as second derivatives with

respect to  xi  and  t,  as well as with respect to  ξi ,  t∗,  are mutually expressed by each

other and by first derivatives in a neighborhood of  ( , )x t∗ ∗   in a uniformly bounded
way, so 

∂
∂ ∂

+ ∂
∂ ∂

+ ∂
∂

∗ ∗ ∗2 2 2

2
u t u t

t
u t

ti j i

ε ε εξ
ξ ξ

ξ
ξ

ξ( , ) ( , ) ( , )
  <  µ ε µH( ) + 1 (18)

at  ( , )ξ t QT
∗ ∈ ,  i,  j  =  1, n .  Here, a maximum of second derivatives on the boundary

Γ  is denoted by  H( )ε . 

If at the point  ( , )x t∗ ∗   a tangent plane to  Γ  is orthogonal to the axis  t,  then by de-

finition of  Σ0,  at the point, and that’s in some its neighborhood,  ψ µε( , )x t > >1 0 .

Thus, for each point  ( , )x t∗ ∗ ∈Γ ,  a neighborhood exists on the boundary such that 

∂
∂ ∂

+ ∂
∂ ∂

+ ∂
∂

2 2 2

2
u u

t
u

ti j i

ε ε ε
ξ ξ ξ

  <  µ ε µ6 7H( ) + ,      i,  j  =  1, n .

Taking a finite number of such neighborhoods covering  Γ,  and taking into account the
smoothness of change of coordinates in each of these neighborhoods, we get 

∂
∂ ∂

+ ∂
∂ ∂

+ ∂
∂

2 2 2

2
u

x x
u

x t
u

ti j i

ε ε ε   <  µ ε µ8 9H( ) +

on entire boundary  Γ   or,  due to definition of  H( )ε ,  H( )ε   ≤   µ ε µ10 11H( ) + .
Hence,  H( )ε   <  µ12,  i.e.,  we have boundedness of second derivatives on the bounda-
ry, and by Lemma 3, in the whole domain  QT .  Here, we used only boundedness of
first derivatives of coefficients of the equation (17). 

The lemma is proved. 
Now we can move to the proof of existence and the uniqueness theorem for the first

boundary-value problem for the equation (8). 
Theorem 1.  Let the equation (8) defined in a cylindrical domain  QT   with the

boundary  Γ ,  degenerate on the set  Σ0 ⊂ QT   into a parabolic one, let the
condition (3) be satisfied and let all the coefficients and the right-hand side of the
equation (8) have bounded derivatives up to the first order, satisfying the Hölder
condition.  Assume that, in a cylindrical domain  ′ ⊃Q QT T ,  ψ( , )x t ≥ 0   and the

conditions (7) are satisfied.  If the boundary  Γ   has no points of  Γ0  and the

condition (15) is satisfied on  Σ0,  then in  QT   there exists a unique solution of the
equation (8) that satisfy the condition (2) and have in  QT   derivatives of the first
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order satisfying the Hölder condition;  and the following estimate is true: 

u C QT
1+λ ( )   ≤  K f uC Q

Q
T

T

1 λ ( ) sup+






. (19)

Proof.  From Lemma 4 it results that solutions of the equation 

′L u x tε ε( , )   =  f x t( , ), (20)

vanishing on  Γ,  are uniformly bounded in the closed domain  QT   along with their
derivatives up to the second order.  In other words, it is possible to find a sequence
u x tε( , )  such that as  ε  →  0,  it uniformly converges to some function  u x t( , )   along

with its derivatives up to the first order in the closed domain  QT .  And it is clear that
these derivatives of  u x t( , )   will be Hölder derivatives and the function  u x t( , )   equals
zero on the boundary  Γ.  Moreover, for such solutions, the estimate (19) is true (see [6,
p. 235], Chapter 3).  Passing to the limit in the equation (20) as  ε  →  0,  we obtain that
u x t( , )   satisfies the equation (8) and the estimate (19) is true.  Uniqueness of the
solution follows directly from maximum principle. 

Remark 2.  From the proof of Theorem 1,  the convergence of the solutions of the
equation (20) to the solution of the equation (1) as  ε  →  0  also follows. 

Remark 3.  The condition (15) cannot be omitted.  There exists an essential diffe-
rence from existence theorems proved for a smooth solution of the Dirichlet problem
for elliptic equation.  Let us give an example. 

Example 1.  Let us consider the equation 

t
u x t

t
u x t

x
t

u x t
t

cu2
2

2

2

2
∂

∂
+ ∂

∂
+ ∂

∂
+( , ) ( , ) ( , )β   =  0 (21)

with sufficiently smooth coefficients, where  β,  c  are constants,  c  ≤  0.  It is easy to
check that the equation has a solution 

u x t( , )   =  t pxγ sin , (22)

γ γ βγ( )− + +1 c   =  p2 . (23)

The equation degenerates on the axis  x .  The condition (15) for the equation means
that  2 2+ +β c   <  0.  Let the condition be not satisfied,  e.g.,  2 2+ +β c   >  0.  Then
such  p,  γ  <  2  exist that they satisfy (23).  Let us consider the domain  QT   containing
a segment of the axis  x ,  whose  boundary near the axis  x  consists of straight lines
x  =  0  and  x  =  π / p   and everywhere is sufficiently smooth.   Then the solution (22)
will be sufficiently smooth on the boundary (near the axis  x  =  0  it is zero), but,
nevertheless, its first order derivatives will not satisfy the Hölder condition for  t  =  0,
0  <  x  <  π / p . 

Let us give the scheme of proof of the solvability when passing from smooth coef-
ficients to coefficients satisfying (3) – (6), (8). 

First, let  f x t( , )  be sufficiently smooth in  QT .  Denote by  v( , )x t   a classical
solution of the first boundary-value problem 

  ∆v v− t   =  f x t( , ),      ( , )x t QT∈ ,
(24)

 
v Γ( )QT

  =  0.

It is known that the solution   v( , )x t   to the problem exists and   v( , ) , ( )x t C QT∈ 2 1 .
Now we take an operator  Lε .  Let  u x tε( , )  be a classical solution of the Dirichlet
problem 
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L u x tε ε( , )   =  f x t( , ),      ( , )x t QT∈ ,

u QTε Γ( )   =  0,      u t Tε =   =  v t T= .

Such a solution  u x tε( , )  exists due to smoothness of  ψε( , )x t   and  f x t( , ).  As we

have shown,  { ( , )}u x tε   are uniformly bounded with respect to  ε  in  C QT0
2 1, ( ).  There-

fore, it is compact in this space,  i.e.,  there exist such a function  u x t C QT( , ) ( ),∈ 0
2 1   and

a sequence  εk   →  0,  k  →  ∞ ,  that the corresponding sequence  { ( , )}u x t
kε   converges

to the function  u x t C QT( , ) ( ),∈ 0
2 1   as  k  →  ∞ .  Further, we can obtainthat  L u0   =  f  in

QT .  Now let  f x t L Qp T( , ) ( )∈ ,  p  >   n + 2.  Then a sequence  { ( , )}f x tm ,  f x tm( , ) ∈
∈ C QT

∞( )   exists such that 

lim ( )m
m L Qf f

p T→∞
−   =  0.

For natural  m,  denote by  u x tm( , )   the sequence of solutions of the first boundary-
value problem for 

u x t C Qm T( , ) ( ),∈ 0
2 1 ,

L u x tm0 ( , )  =  f x tm( , ),      ( , )x t QT∈ .

It is proved that the limit  u x t( , )   of the sequence  { ( , )}u x tm   in  C QT0
2 1, ( ),  m   →  ∞  ,

satisfies in  QT   the equation  L u x t0 ( , )  =  f x t( , ). 

Note that as we said above,  ψ ( x, t )  >  0.  If  ψ ( x, t )  ≡   0,  then the equation (1) is
parabolic and that is why under the conditions (3) – (6)  and  f x t L Qp T( , ) ( )∈ ,  p  >  n +
+ 2,  for the bounded solution of the equation (1) the following estimate is true: 

u C QT
1+λ ρ( )   ≤  K f uL Q

Q
p T

T

1 ( ) sup+






. (25)

If  ψ ( x, t )  >  0  and the condition of Theorem 1 is satisfied for the coefficients, then for
the bounded solution of the equation (1) the estimate (25) is true.  The estimate (25)
can be obtained by composition of the solution  u ( x, t )  to the problem in the cylinder
Q

z0 ,  where  ψ ( z )  =  0  for  z ∈ [ 0, z 
0

 ] ,  and the solution  v( , )x t   to the first bounda-

ry-value problem for parabolic equation in the cylinder  Ω × (  z 
0, T  )  with boundary

conditions  v ( x, z 
0

 )  =  u ( x, z 
0

 ) ,  v ∂ ×Ω [ , ]z T0   =  0.  It must be noted that the theorem

has been obtained for smooth coefficients, but we can pass to  f x t L Qp T( , ) ( )∈   by
means of the above mentioned scheme.  Further, to prove the estimate (25) under the
conditions (3) – (7), we apply the method of continuation by parameter. 

Theorem 2.  Suppose that the equation (1) defined in  QT   degenerates on the

set   Σ0 ⊂ QT   into a parabolic one, the conditions (3) – (7) are satisfied for the
coefficients, and the right-hand side of the equation   f x t L Qp T( , ) ( )∈ ,  p  >  n + 2.  If

the boundary  Γ  has no points of  Γ  
0  and on  Σ  

0   the condition (15) is satisfied,
then for the bounded solution  u ( x, t )  of the equation (1) the following estimate is
true: 

u C QT
1+λ ρ( )   ≤  K f uL Q

Q
p T

T

1 ( ) sup+






,

where  λ  >  0  depends only on coefficients of the operator  L   and   n  ;    and   K1,
moreover, depends on  p,  ρ,  diam QT . 
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Remark 4.  Theorem 2 in this formulation is also true for the equation (1), if in the
condition (15) instead of  b x t0( , )  will be taken  b x t1( , ) . 

Proof of Theorem 2.  To prove it, we consider a family of operators  Z( )τ   =
=  ( )1 − ′ +τ τL Z   for  τ ∈[ , ]0 1 ,  where  ′L   is a model operator defined from the equa-
tion (8) with Laplacian main part and smooth coefficients, and the operator  Z  is defin-
ed from the equation (1).  Let us show that the set  E   of points  τ,  at which for
solutions of the problem 

Z u( )τ   =  f x t( , ),      ( , )x t QT∈ , (26)

u QTΓ( )  =  0, (27)

the estimate (25) is true if  f x t L Qp T( , ) ( )∈ ,  p  >  n + 2,  is nonempty, and open and

closed simultaneously with respect to the segment [ 0, 1 ] .  Hence,  E  =  [ 0, 1 ]  and, in
particular, for the solution of the problem (26), (27) the estimate (26) is true for  τ  =   1,

i.e., when  Z Z( )1 = .  The set  E  is nonempty by Theorem 1.  Let us show that it is
open.  For this purpose, we prove that for solutions of the problem (26), (27) the
estimate (25) is true for all  τ ∈[ , ]0 1   such  that  τ τ− 0   <  ε  (here,  τ0 ∈E   and  ε  >
>  0  will be chosen later).  Rewrite the problem (26), (27) in the equivalent form 

Z u( )τ0   =  f x t Z Z u( , ) ( )( ) ( )− −τ τ0 ,      ( , )x t QT∈ , (28)

u x t C QT( , ) ( ),∈ 0
2 1 .

We introduce an arbitrary function  v( , ) ( ), ,x t C QT∈ 0
2 1 λ   and consider the first bounda-

ry-value problem 

Z u( )τ0   =  f x t Z Z( , ) ( )( ) ( )− −τ τ0 v ,      ( , )x t QT∈ , (29)

u x t C QT( , ) ( ),∈ 0
2 1 .

It is clear that   ( )( ) ( ) , , ( )Z Z C QT
τ τ λ− ∈0 2 1v .  Indeed, note that for all operators  Z( )τ

the conditions (3) and (4) are satisfied with constants  γ γτ( ) min{ , }0 ≥ n   and  σ στ( ) ≤ ,

respectively.  Let us show this.  Denote by  a x tij
( )( , )τ ,  i n= 1, ,  the coefficients of the

operator  Z( )τ   at higher derivatives with respect to space variables.  Let 

ι  =  sup
( , )

( , )
,

Q

iji j

n

T

a x t

g x t

2
1

2
=∑

,     ι τ( )   =  sup
( , )

( , )

( )
,

( )Q

iji j

n

iii

n
T

a x t

a x t

τ

τ

[ ]
[ ]

=

=

∑
∑

2

1

1

2 ,     ι τ( )   =  sup ( , )( )

QT

x tι τ ,

where 

g x t( , )  =  a x tii
i

n

( , )
=
∑

1

.

Taking into account (4) and the fact that for any operator of  Z-type the inequality
ι ≥ 1  is true, we conclude that 

ι τ( )( , )x t   =  
n g x t a x t

n ng x t g x t

iji j

n
( ) ( ) ( , ) ( , )

( ) ( ) ( , ) ( , )
,

1 2 1

1 2 1

2 2 2
1

2 2 2 2

− + − +

− + − +
=∑τ σ τ τ

τ τ τ τ
  ≤

≤  1 12 2

2 2n
n g x t

g x t
+ −τ ι

τ
( ) ( , )

( , )
/   =  ι. (30)

Let now 
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λ−   =  inf ( , )
QT

g x t ,      λ+   =  sup ( , )
QT

g x t ,      λ τ( )  =  
inf ( , )

sup ( , )

( )

( )

Q iii

n

Q
iii

n
T

T

a x t

a x t

τ

τ

=

=

∑
∑

1

1

.

Calculations we made before show that  λ τ( )  =   ( )
( )
1
1

− +
− +

−

+
τ τλ
τ τλ

n
n

.  But on the other

hand,  ′λ τ( )  =  λ λ
τ τλ

− +

+
−

− +[ ]( )1 2n
  ≤  0.  That is why, 

λ ι( )   ≥  λ ( )1   =  λ  , (31)

(30) and (31) imply that  σ τ( )   =  ι
λ τ

τ( )

( )
−

−
1

2n
  ≤   ι

λ
−

−
1

2n
  =  σ  ,  and the needed

statement is obtained. 

Note that all above mentioned reasonings and Lemma 4 imply that if  T  ≤   T  
0,  the

following estimate is true for any  τ ∈[ , ]0 1   and any function  u x t C QT( , ) ( ), ,∈ 2 1 λ : 

u C QT
2 1, , ( )λ   ≤  K Z u

C QT
2

0
0

( )
( ),λ( ). (32)

For the solution  u x t( , )   of the boundary-value problem (29), due to the assumption

made, the estimate (25) is true for any    v( , ) ( ), ,x t C QT∈ 0
2 1 λ .  Thus, an operator  Φ  is

defined from  C QT0
2 1, , ( )λ   to  C QT0

2 1, , ( )λ   and  u  =  Φ  v .  This operator is compressing

at  ε  chosen in an appropriate way.   Indeed,  let    v
( ) , ,( , ) ( )i

Tx t C Q∈ 0
2 1 λ ,  u i( )  =    Φv( )i ,

i  =  1, 2.  Then, takling into account that  ( )( ) ( )Z Zτ τ− 0   =  ( )( )τ τ− − ′0 Z L ,  we con-

clude that  u x t u x t( ) ( )( , ) ( , )1 2−   is a classical solution of the first boundary-value prob-
lem 

Z u x t u x t( ) ( ) ( )( )( , ) ( , )τ0 1 2−   =  ( ) ( , ) ( , )( )( )( ) ( )τ τ− − ′ −0
1 2Z L x t x tv v ,

u x t u x t C QT
( ) ( ) , ,( , ) ( , ) ( )1 2

0
2 1− ∈ λ .

Using (32), we get 

u x t u x t
C QT

( ) ( )
( )

( , ) ( , ) , ,
1 2

2 1− λ   ≤

≤  K Z L x t x t
C QT

2 0
1 2

0τ τ λ− − ′ −( ) ( ) ( )
( )

( , ) ( , ) ,v v . (33)

On the other hand, 

 
  
( ) ( ) ( )

( )
( , ) ( , ) ,Z L x t x t

C QT
− ′ −v v1 2

0 λ   ≤  
 
K Z n T x t x t

C QT
3

1 2
2 1( , , , ) ( , ) ( , )( ) ( )

( ), ,Ω v v− λ .

So, 

u x t u x t
C QT

( ) ( )
( )

( , ) ( , ) , ,
1 2

2 1− λ   ≤  
  
K K x t x t

C QT
2 3

1 2
2 1ε λv v( ) ( )

( )
( , ) ( , ) , ,− .

Now taking  ε = 1 2 2 3/ K K ,  we prove that the operator  Φ  is compressing.  Hence, it

has a stationary point  u  =  Φ u ,  that is a classical solution of the boundary-value prob-
lem (28), and of (26), (27) as well, and for the solution the estimate (25) is true.  So, we
have proved that the set  E  is open. 

Let us show that the set  E  is closed.  Let  τk E∈ ,  k  =  1, 2, … ,  lim
k

k
→∞

τ   =  τ.  For

natural  k ,  we denote by  u x tk[ ]( , )   the solution of the first boundary-value problem

Z u x tk
k

( )
[ ]( , )τ   =  f x t( , ),  ( , )x t QT∈ ,  u x tk QT

[ ] ( )
( , )

Γ
  =   0,  for which the following
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estimate takes place: 

u x tk C Ql T
[ ] ( )

( , ) ,2 1   ≤  K f L Qp T3 ( ). (34)

So, from (34) we obtain that the family of functions  { }[ ]( , )u x tk   is compact in

C QT0
2 1, ( ),  i.e.,  there exists such a subsequence of natural numbers  { }kl ,  lim

l
lk

→∞
  =  ∞

and a function  u x t C QT( , ) ( ),∈ 0
2 1   that, for any  ϕ( , ) ( )x t C QT∈ ∞

0 , 

lim ,( )( )
[ ]

l
kZ uk

l
l

→∞

τ ϕ   =  ( )( ) ,Z uτ ϕ . (35)

However, 

( )( )
[ ],Z u kl

τ ϕ   =  (( ) )( ) ( )
[ ], ( , )Z Z u fk

l
l

k
τ τ ϕ ϕ− +   =  J l f1( ) ( , )+ ϕ . (36)

Moreover, taking into account (33) and (34), we have 

J l1( )   ≤  τ τ ϕ− − ′kl kZ L u
l

( ) [ ],   ≤  τ τ ϕ λ− kl k C Q C QK u
l T T4 2 1 0[ ] ( ) ( ), ,   ≤

≤  K K fkl L Q C Qp T T3 4 0τ τ ϕ λ− ( ) ( ), . (37)

It follows from (37) that  lim ( )
l

J l
→∞

1   =  0.  From (36) and (37) we get that  ( )( ) ,Z uτ ϕ   =

=  ( , )f ϕ ,  i.e.,  Z u( )τ   =  f x t( , ),  everywhere in  QT .  Thus, we showe that  τ ∈E ,
i.e., the set  E  is closed. 

The theorem is proved. 
Now we prove some estimate for the solution, which can also be taken as an inde-

pendent result. 
Theorem 3.  Let the conditions (3) – (7) be satisfied for the coefficients of the

operator (1).  Then for any function  u x t( , )  ∈  
�

W QT2
2 2
,
, ( )ψ ,  the following estimate is

true: 

u x t C QT
( , ) ( )   ≤  k f L Qn T+1( ) , (38)

where  k  =  k n( , )γ . 

Proof.  Suppose that  ( , )x t QT
0 0 ∈   and at this point  sup

QT

u   =  u x t( , )0 0   =  µ  >  0.

Let us take an auxiliary function  z  =  u  
m,  where  m  ≥   2  is a natural number, which

will be chosen later.  Denote by  Az   the set 

{ ( , ) : ( , )x t x t QT∈ ,  u x t( , ) ≥ 0,  z x tt ( , ) ≥ 0,  z x ttt ( , ) ≤ 0,

z x tij ( , )   is a positively defined matrix } .

We have 

µm n( )+1   ≤  K z a z dxdtt ij ij
i j

n
n

Az

1
1

1

−










=

+

∑∫
,

  ≤  K z a z x t z dxdtt ij ij
i j

n

tt

n

Az

− −










=

+

∑∫
,

( , )
1

1

ψ   ≤

≤  K mu Zu mu u x t b x t u x t
A

m m
i

i

n

x

z

2
1 2

1

2 1 2

∫ ∑− −

=
− +





















∇








( ) ( , ) ( , ) ( , )

/

  +

+  c x t u m u x t dxdtx

n

( , ) ( ) ( , )2 2

1

1− − ∇








+

γ . (39)
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If  ( , )x t Az∈   is such that 

∇xu x t( , )   ≥  b x t
m

u x t
( , )

( )
( , )

− 1 γ
,

then 

u b u x t cu m u x tx x∇ + − − ∇( , ) ( ) ( , )2 21 γ   ≤  0.

However, if 

∇xu x t( , )   ≤  b x t
m

u x t
( , )

( )
( , )

− 1 γ
    for    ( , )x t Az∈ ,

then 

u b u x t cu m u x tx x∇ + − − ∇( , ) ( ) ( , )2 21 γ   ≤  u
m

b m c
2

2

1
1

( )
( )

−
+ −( )γ

γ .

Now we take  max ,2 1 +







m
γ

  as  ψε( , )x t m .  Then from (14) we get that 

µm n( )+1   ≤  K m f dxdtn m n

Q

n

Tz

2
1 1 1 1+ − + +∫µ( )( ) .

Hence, the estimate (38) with  K  =  K mn
2
1 1/( )+   is obtained in a standard way.  The case

where  ( , )x t0 0   =  ( , )x T0 ,  x0 ∈ Ω  is considered similarly. 

Theorem 4.  The conditions of  Theorem 2  be satisfied and in the cylinder  QT
the solution to the first boundary-value problem (1), (2)  be defined,  f L Qp T∈ ( ) ,
p  >  n + 2.  Then the following estimate is true: 

u x t C QT
( , ) ( )1+λ   ≤  K f L Qp T4 ( ) . (40)

Proof.  To prove this, we should use the estimate (25) from Theorem 2 and the
estimate (38) from Theorem 3, which implies the estimate (40). 

As a consequence of the estimate (40), we get the theorem on classical solvability
of the first boundary-value problem for the operator  Z,  which can be proved by the
standard Lere – Schauder method [6]. 

Theorem 5.  Let the conditions of Theorem 2 be satisfied.  Then the problem (1),
(2) has a classical solution  u x t C QT( , ) ( ), ,∈ 2 1 λ   and  λ  >  0  depends only on  σ,  n. 

Note that classical solvability can be proved analogously to Theorem 2. 
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