УДК 517.5

Н. П. Адаменко, И. Г. Величко (Запорож. нац. ун-т)

КЛАССИФИКАЦИЯ ТОПОЛОГИЙ НА КОНЕЧНЫХ МНОЖЕСТВАХ С ПОМОЩЬЮ ГРАФОВ

With the use of digraphs, topologies on finite sets are studied. On this basis, a new classification of such topologies is proposed. Some properties of T_0 -topologies on finite sets are proved. In particular, it is proved that, in T_0 -topologies, there exist open sets containing arbitrary number of elements that does not exceed the cardinality of the set itself.

3 допомогою орграфів вивчаються топології на скінченних множинах. На цій основі запропоновано нову класифікацію таких топологій. Доведено деякі властивості T_0 -топологій на скінченних множинах і, зокрема, існування в T_0 -топологіях відкритих множин, що містять будь-яку кількість елементів, яка не перевищує потужності самої множини.

Идея использования графов для изучения топологий на конечных множествах применялась неоднократно. В работах [1, 2] решались задачи перечисления всех топологий на конечных множествах с помощью транзитивных графов. В данной работе топологии на конечных множествах исследуются и классифицируются с помощью орграфов особого вида.

Пусть τ_X — топология на конечном множестве X (носителе топологии). Будем говорить, что множество $A \in \tau_X$ является максимальным в X, если A не содержится ни в каком другом множестве из τ_X , кроме самого X. При этом множество X будем называть объемлющим для A.

Предположим, что заданы множества $A, X, A \subset X$, и топология τ_A . Выясним, как можно восстановить все топологии на множестве X такие, что τ_A есть индуцированная ими топология и множество A является максимальным в соответствующей топологии на X (в этом случае топологию τ_A и соответствующие топологии на X будем называть согласованными).

Лемма 1. Если A максимально в X и $B = X \setminus A$, то для любого открытого множества $V \in \tau_X$ пересечение $V \cap B$ равно или пустому множеству, или самому множеству B.

Доказательство. Предположим противное: пусть существует множество $V\in$ \in τ_X такое, что пересечение $V\cap B=C$, где $C\neq\varnothing$, $C\neq B$. Очевидно, что $A\subset A\cup V\subset X$. То, что эти включения строгие, следует из того, что $A\cap B=\varnothing$, $(A\cup V)\cap B=C,\ X\cap B=B$. Значит, в этом случае множество A не является максимальным.

Лемма доказана.

Теорема 1 [о топологиях на объемлющем множестве]. Пусть X — конечное множество, $A \subset X$, $B = X \setminus A$ и τ_A — топология на A. Предположим, что $L \in \tau_A$, а набор \sum_L состоит из всех элементов топологии τ_A и всевозможных множеств вида $\{W_i \cup B \mid L \subset W_i \subset A, W_i \in \tau_A\}$. Набор τ_X подмножеств

множества X является топологией в X, согласованной с au_A , тогда и только

можествой X может может может и может может и может может и может и может может может и может может и может может и может Если $M\subset A$, то оно является элементом au_A и, следовательно, $M\in \sum_{A}$. Если $M \not\subset A$, то по лемме оно обязательно содержит в себе множество B. Поскольку множество $M\setminus B=M\cap A$ открыто в τ_A и содержит в себе L, то и в этом случае $M\in \sum_L$. Значит, $\tau_X\subset \sum_L$. Покажем, что для выбранного L имеет место включение $\sum_L\subset \tau_X$. Пусть

множество $M\in \sum_L$. Если $M\in au_A$, то $M\in au_X$. Если же $M\not\in au_A$, то по определению набора \sum_L получим $M=W\cup B$, где $L\subset W\subset A$ и $W\in au_A$. Так как $L\subset W$, то и в этом случае $M=W\cup B=(W\cup L)\cup B=W\cup (L\cup B)=$ $W=W\cup \left(\bigcap_{U\in au_X,U\supset B}U
ight)$ принадлежит au_X . Таким образом, топология au_X совпадает с набором \sum_{I} для некоторого L.

Легко проверяется, что для любого $L \in au_A$ набор \sum_{I} есть топология на X,согласованная с топологией τ_A .

Теорема доказана.

Следствие 1. Если задана топология на множестве A, то любая топология на объемлющем множестве X (согласованная с топологией на A) получается следующим образом: выбираем любое открытое множество $L \in \tau_A$, каждый элемент из τ_A , содержащий в себе L, объединяем с $B = X \setminus A$ и к полученной системе множеств добавляем все элементы au_A . Этот набор является топологией на множестве X.

Каждой топологии на конечном множестве будем ставить в соответствие ориентированный конечный граф (колчан) Q [3]. При этом вершинам колчана соответствуют открытые в заданной топологии au_X множества. Из вершины v_i в вершину v_i ведет стрелка, если множество, соответствующее вершине v_i , вложено во множество, соответствующее вершине v_i , и между ними нет промежуточных открытых множеств. Колчан, который соответствует некоторой топологии на конечном множестве X, будем называть T-колчаном. При этом пустое множество и X соответствуют вершинам T-колчана, которые являются истоком и стоком соответственно.

Перейдем к выяснению того, когда произвольный колчан будет T-колчаном. Из теоремы 1 следует такое утверждение.

Теорема 2. 1. Колчан, изображенный на рисунке, является *Т-колчаном*.

2. Пусть есть T-колчан на множестве A и $B \cap A = \varnothing$. Из любой вершины L колчана Q_A достраивается стрелка в новую вершину, соответствующую $L \cup B$. Из этой новой вершины достраивается подграф, изоморфный подграфу T-колчана Q_A с истоком в вершине L. Все соответствующие вершины обоих подграфов соединяются стрелками. Этот колчан будет изображать топологию на множестве $X = A \cup B$, согласованную с топологией на множестве A, m. e. будет T-колчаном.

Покажем, что способом, описанным в данной теореме, можно получить все T-колчаны топологий на произвольном конечном множестве.

Напомним, что топология называется T_0 -топологией, если для любых двух ее различных точек хотя бы одна имеет окрестность, не содержащую другую точку.

Лемма 2. Если топология τ является T_0 -топологией на n-элементном множестве X, то существует хотя бы одно (n-1)-элементное открытое множество в τ .

Доказательство будем проводить от противного. Предположим, что не существует (n-1)-элементного открытого множества и максимальное по мощности открытое множество $V \in \tau$ состоит из n-k, $2 \le k < n$, элементов. Рассмотрим произвольные точки x_1 и x_2 из $X \setminus V$. Поскольку τ является T_0 -топологией, хотя бы одна из этих точек имеет окрестность, не содержащую другую точку. Пусть, для определенности, U_{x_1} — окрестность точки x_1 , не содержащая x_2 . Тогда множество $W = V \cup U_{x_1}$ является открытым в τ и его мощность больше чем n-k, а это противоречит максимальности V. Таким образом, k=1.

Лемма доказана.

Теорема 3. Все T-колчаны T_0 -топологий могут быть получены описанным в теореме 2 способом.

Доказательство. Пусть τ_{A_n} является T_0 -топологией на n-элементном множестве A_n . Выберем (n-1)-элементное открытое множество A_{n-1} (оно существует по лемме 2) и рассмотрим на нем индуцированную топологию $\tau_{A_{n-1}}$. В силу согласованности топологий T-колчан, соответствующий топологии τ_{A_n} , получается из T-колчана, соответствующего топологии $\tau_{A_{n-1}}$, описанным в п. 2 теоремы 2 способом. Далее в $\tau_{A_{n-1}}$ выберем (n-2)-элементное открытое множество A_{n-2} и рассмотрим на нем индуцированную топологию $\tau_{A_{n-2}}$. T-колчан, соответствующий $\tau_{A_{n-1}}$, получается описанным в п. 2 теоремы 2 способом из T-колчана, соответствующего $\tau_{A_{n-2}}$. Процедуру повторяем до тех пор, пока не придем к топологии τ_{A_1} на одноэлементном множестве, T-колчан которой изображен на рисунке. Таким образом, искомый T-колчан топологии τ_{A_n} образуется из T-колчана, изображенного на рисунке, применением n-1 раз п. 2 теоремы 2. В силу произвольности n получаем утверждение теоремы.

Следствие 2. Т-колчаны всех топологий на конечном множестве можно получить описанным в теореме 2 способом.

Доказательство. Пусть τ — топология на n-элементном множестве X, не являющаяся T_0 -топологией. Тогда существуют точки a и b, неотделимые в смысле аксиомы T_0 . Переобозначим во множестве X и элементах из τ подмножество $\{a,b\}$ через c. Указанную процедуру повторяем до тех пор, пока не придем к

 T_0 -топологии. На каждом из шагов (а их конечное число) получаем T-колчан, изоморфный T-колчану исходной топологии.

Следствие доказано.

Отнесем к одному классу топологии, которые имеют изоморфные T-колчаны. Поскольку изоморфизм орграфов есть отношение эквивалентности, получаем классификацию топологий на конечных множествах.

Рассмотрим T-колчан T_0 -топологий. По теореме 3 T-колчан T_0 -топологии на n-элементном множестве может быть построен из T-колчана, изображенного на рисунке, применением n-1 раз п. 2 теоремы 2. Так как каждый раз при применении п. 2 теоремы 2 мощность носителя топологии увеличивается на единицу, построенный T-колчан будет соответствовать топологии на n-элементном множестве. Рассмотрим произвольный маршрут из истока в сток. Множества, соответствующие вершинам этого маршрута, строго упорядочены по включению. Значит, их мощности образуют монотонно возрастающую последовательность целых чисел $a_0=0,a_1,\ldots,a_n=n$. Отсюда получаем $a_k=k$.

С другой стороны, любой маршрут из истока в фиксированную вершину в T-колчане T_0 -топологии соответствует линейно упорядоченному набору элементов из этой топологии, или, в терминах частично упорядоченных множеств, любой маршрут из истока в фиксированную вершину в T-колчане T_0 -топологии соответствует некоторой цепи. Одной из важных числовых характеристик цепи является ее длина l, равная |n|, где |n| — мощность носителя линейно упорядоченного множества [3]. Итак, имеет место следующий факт: в T-колчане T_0 -топологии длины всех маршрутов из истока в некоторую фиксированную вершину одинаковы. А так как T-колчан произвольной топологии является T-колчаном некоторой T_0 -топологии, этот факт справедлив и для T-колчана произвольной топологии.

Будем говорить, что вершина T-колчана является вершиной k-го уровня, если маршруты из истока к ней имеет длину k. Вершина, соответствующая пустому множеству, будет вершиной нулевого уровня.

Приведенные выше рассуждения можно сформулировать в виде теоремы.

Теорема 4. На k-м уровне произвольного T-колчана T_0 -топологии находятся вершины, соответствующие k-элементным открытым множествам.

В заключение докажем несколько свойств T_0 -топологий с использованием T-колчанов.

Следствие 3. Если $\tau - T_0$ -топология на n-элементном множестве, то для любого $k, 0 \le k \le n$, в ней существует k-элементное множество.

Доказательство. Построим T-колчан, соответствующий данной T_0 -топологии. Он будет n-уровневым. Вершины k-го уровня соответствуют k-элементным открытым множествам.

Следствие 4. Для любого нетривиального открытого k-элементного множества в n-элементном топологическом T_0 -пространстве существуют содержащее его (k+1)-элементное открытое множество и содержащееся в нем (k-1)-элементное открытое множество.

Доказательство. Построим T-колчан, соответствующий T_0 -топологии. Заданному k-элементному открытому множеству, согласно теореме 4, соответствует вершина k-го уровня. Стрелка с началом в данной вершине ведет в вершину (k+1)-

го уровня. Эта вершина соответствует (k+1)-элементному открытому множеству, содержащему данное. Вторая часть следствия доказывается аналогично.

Следствие 5 (критерий T_0 -пространства). Топология на n-элементном множестве является T_0 -топологией тогда и только тогда, когда ей соответствует n-уровневый T-колчан.

Доказательство. Если топология является T_0 -топологией, то, согласно теореме 4, ей соответствует n-уровневый T-колчан. Если топология не является T_0 -топологией, то, используя метод доказательства следствия 2, получаем, что ее T-колчан изоморфен T-колчану T_0 -топологии на k-элементном множестве, где k < n.

- 1. Evans J. W., Harary F., Lynn M. S. On the computer enumeration of finite topologies // Communs ASM. 1967. 10. P. 295 298.
- Козырев В. П. Перечисление транзитивных ориентированных графов и вложение транзитивных графов // Вопросы кибернетики. 1975. Вып. 15. С. 44 60.
- 3. *Горбатов В. А.* Основы дискретной математики: Уч. пос. для студентов вузов. М.: Высш. шк., 1986. 18 с.

Получено 15.10.07