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SPECTRUM AND STATES OF THE BCS HAMILTONIAN
WITH SOURCES

CIIEKTP TA CTAHU BKIII TAMIJIBTOHIAHA 3 JIKEPEJIAMU

We consider the BCS Hamiltonian with the sources as it has been proposed by Bogolyubov and
Bogolyubov (jr.). We prove that the eigenvectors and eigenvalues of the BCS Hamiltonian with the
sources can be determined exactly in the thermodynamic limit. Earlier, Bogolyubov proved that the
energies per volume of the BCS Hamiltonian with sources and the approximating Hamiltonian coincide
in the thermodynamic limit.

Posrisnyro BKII raminsToHian 3 Jukepenamu, sikuii OyB 3anponoHoBanuii boromo6osum ta borono6osum
(mon.). JloBeneHo, mio BiacHi BekTopu Ta BiacHi 3HadeHHs BKII raminproHiaHa 3 mkepeiaaMd MOKHA
BH3HAYUTH TOYHO B TEPMOIMHAMIiuHii rpanuui. Paninre Boromo6oBuM Oyao BCTaHOBJICHO, IO MHTOMI
eneprii BKIL Ta anpokcuMy04oro raMiIbTOHIaHIB 30iraloThCs B TEPMOAWHAMIYHIN TPAHUIII.

Introduction. In the series of papers [1-7] and book [8], we have investigated the
spectrum and eigenfunctions of the BCS Hamiltonian [9]

2
P g
Hy=) <2m - “) aFap+ 37 D UpiUnty, 0ty 0 pap, 0]

D P1,P2

in a finite cube A with periodic boundary conditions. Here, p is discrete momenta p =
2m . . 1
= —(n1,n2,n3), n; C Z,i = 1,2,3. By p we denote momenta p and spin o = ii’

1 1 . . . . .
p= ,+§ yP=("P—5)9 is a coupling constant, v,, is the potential, x is the

chemical potential, V = L? is the volume of the cube A, and L is the length of the edge
of the cube.

In the special subspace of pairs we have represented the Hamiltonian H, as sum
of two operators A, and By. The spectrum and eigenfunctions of the operator A, can
be determined exactly in subspaces of arbitrary n pairs, and pairs do not interact. The
operator B describes the interaction of pairs and it tends to zero as the volume V' tends
to infinity for an arbitrary finite number n of pairs. The operator B can be considered as
a perturbation of the operator .4, , and the spectrum of the operator H, is a perturbation
of the spectrum of the operator A, and can be determined asymptotically exactly as the
volume V tends to infinity.

It is not a surprise that the Hamiltonian H, has eigenfunctions in the subspace of
n pairs because the operator of the number of particles commutes with the Hamiltonian
Hy. It is a great surprise that this phenomenon has not been recognized earlier.

We have discovered a new branch of the spectrum and eigenfunctions of the BCS
Hamiltonian H that differs from the well-known spectrum corresponding to the BCS
ground state and its excitations. This new branch of eigenfunctions consists of an
arbitrary number n = 1,2, ... of pairs in ground state and excitation of these pairs with
an arbitrary orbital momenta [ = 0,1, ... and a continuous energy divided by a nonzero
gap from the energy of the pairs in ground state.
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From the physical point of view, the first main difference between the classical BCS
branch of spectrum and eigenfunctions and the new branch of spectrum and eigenfunc-
tions consists of the following: In the excitations of the BCS ground states, a certain
number of pairs are replaced by the same number of electrons. In the excitations of the
new ground state, a certain number of pairs are replaced by the same number of pairs
with orbital momenta and continuous energy divided from the energy of pairs in the
ground state by a nonzero gap.

The same situation is true for the excitations. Namely, an arbitrary number n of
excited pairs of the second branch is the eigenfunction of the BCS Hamiltonian, while
excited n pairs of the first branch are not eigenfunction of the BCS Hamiltonian.

The second main difference consists of the following: the BCS ground state is a
coherent vector of the same pairs, as well as the ground state of the new branch. But
each pair and an arbitrary number of pairs of the new branch are eigenvectors of the
BCS Hamiltonian in the thermodynamic limit when an arbitrary number of pairs of the
BCS ground state are not eigenfunctions of the BCS Hamiltonian. It is interesting to
mention that Cooper in his famous paper [10], in fact, investigated the BCS Hamiltonian
in the subspace of one pair and promised to investigate the spectrum in the subspace
of an arbitrary number n of pairs. We solved this problem in the series of our papers
[1-7] and the book [8].

In the given paper, we consider the BCS Hamiltonian with sources, as it has been
proposed by Bogolyubov [11] and Bogolyubov (jr.) [12]. Namely, we consider the
Hamiltonian

2
_E : p + 9 }: + +
Hy, = <2m — u) ag ap + % Upy Upy Gy, Q1 Gy Gy +

p P1,P2
+ +
+v E vpa, a’, + v E VpQ—plp, 2)
P P

: + +
where v > 0 is parameter and v E ) vpa, a’, and v E ) vpa—_pay are the operators of

sources.

Bogolyubov had explained [13] that sources are introduced into the original BCS
Hamiltonian in order to choose the proper solution (eigenvectors). In the final results
one should put v = 0. It will be shown that the Hamiltonian with sources (2) has
only one branch of the spectrum, namely the ground state and its excitations discovered
by Bardeen, Cooper, and Schrieffer. The eigenvectors and their eigenvalues depend
continuously on the parameter v, but at v = 0 they coincide with the corresponding
BCS eigenvectors and their eigenvalues, but not with the second branch. This means
that the BCS Hamiltonian remembers perturbation by sources, which are unbounded
operators.

The BCS Hamiltonian with sources does not have eigenfunctions in the subspace
of n pairs because the operators of sources connect the subspaces of n + 1 and n — 1
pairs with the subspace of n pairs. Therefore, it is necessary to consider the eigenvalue
problem in the entire subspace of pairs. We showed that the BCS Hamiltonian with
sources (2) can be represented in it as the sum of two operators A, ,, and By, where the
operator By tends to zero in the thermodynamic limit and can be considered as a pertur-
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bation. The operator A, ,, coincides in the thermodynamic limit with the approximating
Hamiltonian on the ground and excited BCS states

2
HX#’:Z(;;H_’U)@ as + (cp +v Zup

p

+(ca +v) vaa;ra_pap —g PV, 3)
p
where cy is a certain constant and I is the identity operator. As is known, the spectrum
and eigenvectors of the approximating Hamiltonian can be determined exactly.

Thus, we have proved that the eigenvectors and eigenvalues of the BCS Hamilto-
nian can be determined exactly in the thermodynamics limit. Earlier, Bogolyubov [11]
proved that the energies per volume of the BCS Hamiltonian with sources (2) and of the
approximating Hamiltonian coincide in the thermodynamic limit. His result was very
unique information about the spectrum of the BCS Hamiltonian.

1. BCS Hamiltonian with sources in the subspace of pairs. 1.1. Action of the
BCS Hamiltonian with sources in the subspace of pairs. Consider the BCS Hamilto-
nian with sources in a finite cube A of volume V'

2
D
Hy,y = § <2m ﬂ) a ap + E : Um”pza a”t Zp1A—poGp, +
P

P17P2
+v E vpa;afp +Vvaa,pap, (1.1)
P P

where v > 0 is the same parameter, which characterizes the last two operators in

Hy , known as sources. Note that the summation is carried out over momenta p =
o

- (
num%aers 1=1,2,3, p = (p,£1). The original BCS Hamiltonian is obtained for v = 0,
i.e., HA,u |l,:0: HA.

The sources have been introduced by Bogolyubov [11] “in order to choose a proper
solution for eigenvalue problem”.
We introduce the subspace of pairs H*

f= Z Z falky, ...k )aklafk1 .a;rnafkn|0>:

ny,ne, ng), where L is the length of the edge of the cube A and n; are integer

n=0 """ kit
—Zn, Z Falkr, o ka)af aty b aty 10), (12)
where f, (k1,...,k,) are the wave functions of n pairs of electrons with opposite mo-

menta and spins and are symmetric, |0) is the vacuum state, and the summation is carried
out over all ky # ... # k,,. We suppose that the functions f,(k1,...,k,) are defined
for all momenta k1, ..., k,, but not only for k; # ... # k,. In the last expression on
the right-hand side of (1.2) we add terms with equal momenta. These terms are equal to
Zero.

In the subspace of pairs H? we introduce the following scalar product of two ele-
ments f and g:
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Z Z fralky, ..k )gn(k17...7k):

n= O kl 7é 7£kn

72 Z fn k17'-'7 )gn(kla"'akn)7 (13)
n=0k1#...#ky,
where Zk means that the summation is carried out over all k1 # ... # k,, and
l

the points k 7£ ;é k,, that differ only by permutations are identified. The norm is
defined as follows: || f||" = {(f, f)'}=.
We will also use the scalar product of two elements f and g defined as follows:

Z Z Fu(krs oo kn)gn(kry o k), (1.4)

where the summation is carried out over all k1, . . ., k,,, including momenta that coincide.
We have the norm || f|| = (f, f)2.

In order to perform the thermodynamic limit we need the following scalar products
and norms:

Z Z Falkty o k) gn(kr, - k) =

n= 0 kﬁé Fkn
_ <011 k k k k 1.5
=S o Y bk kga(k k), (1.5)
n=0 k1#...#kn
LA = {(f, v}
and
=11
szilvi Z Jnlki, ... k )gn(k17"'7k)’ (1.6)
n=0 ki, kn

Il = {(F, v} E

We suppose that the potential v, satisfies the following conditions: it has support
on compact D, it is continuous for p € D and — Z lup|? = |lv||* < oo, where

SUp,ep |vp| = v < oo uniformly with respect to A(V) The wave functions of n pairs
fn(ki,... k,) are supposed to have support in the domain D with respect to all the
momenta ki, ..., ky.

Repeating the calculation performed in our previous paper [6] with obvious modifi-
cations connected with sources, one obtains for Hy , f the following expression:
2k3 2k2
— +

+"—2un)fn<k1,...,kn)+

(HA,Vf)n(k:l,...,kn):<2m et g

9 < i
g RO R
—&-V;wﬁvpf (1 » )+
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+ Vzvkifnfl(klw">v7"‘>kn) +V Z Upfn+1(p>k17"'7kn) -
i=1 p#(k)n

9 ?
v Uk, e K 1.
Vz; ;.vklvk]fn (kh Ty ,kn), (1.7)

1
(k) = (k1,..., kn), m>1,

where <k12kn) = (k1o ki1 pokiss k) and (Buy oo Ve k) =
p

= (k1y.. o ki1, kig1, oo k).

Note that expression (1.7) was derived, according to the Fermi statistics, for all
momenta such that k; # ... # k,. Due to the fact that functions f,(k1,...,ky) are
defined for all ki,...,k,, but not only for &y # ... # k,, we will suppose that
expression (1.7) is also true for all kq,...,k,. For example, equating in expression
H)y , f coefficients of the same products of the operators of creation pairs, including
operators with equal momenta, one obtains expression (1.7) for all k4, ..., k,, including
equal momenta. In what follows we will consider both expressions when we investigate
the eigenvalue and eigenvector problem for the Hamiltonian Hjy ,,.

Note that both expressions coincide in the thermodynamic limit as V' — oo (A
/" R3). This will be shown later in subsection 3.1.

Denote by Ay, and B, the following operators:

2k% 2k2
(Anp fnlkrs ... kn) = (Qm AEER —2un)fn(k17--.7kn) +

Z Ok, Up fn <k;1 k) +

<\m

+ Y Ok Sty VR A Y O faga (s K,
i=1 p£(k)n
(1.8)

Baf)n(ki, .. k) = —éz W, f (klkljkn>

In what follows, we will consider the operators A, ,, and B, defined by formulas
(1.4), for k1 # ... # k,, and as well for all k1,...,k,.

Now we want to attract attention to some special properties of the operator Hy v,
namely, to the operator Ay . If v = 0, then the subspaces of n pairs are invariant
with respect to Hp, Ay = Aa, and By, and we have considered and investigated
the eigenvalue problem in the subspaces. One can see from (1.8) that the subspaces of
n pairs are not invariant with respect to Hy ,, and Ay, because (Ap o f)n(k1,. .., kn)
contains terms with f,,_; and f, 1. Therefore, we can consider the eigenvalue problems
for Hp ,, and Ay , only in the entire subspace of pairs.

Prior to the investigation of this problem, we define the domain of definition of the
Hamiltonian Hj , and the operators Ay, and B,. If follows from formulas (3.3) and
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(3.4) of our paper [3] that the operator Ay = Ap o is well defined and bounded in the
subspaces HY of n pairs if the potential v,, v,, satisfies the above described conditions.
The operator By, according to estimates (3.9") and (3.9”) in [3], is a bounded operator

in HZ with scalar product (1.4), || B| < glvllv

1
V' — oo for arbitrary fixed n. ’

It is interesting to mention that Cooper in his famous paper [10], in fact, investi-
gated the BCS Hamiltonian in the subspace of one pair and promised to investigate the
spectrum in the subspace of an arbitrary number n of pairs. We solved this problem in
the series of our papers [1-7] and the book [8]. Thus, to define the operator Hj ,, it is
sufficient to estimate the norms of the operators of sources.

n(n — 1), and its norm tends to zero as

1.2. Estimates of the norms of the operators of sources. Consider the operators

of the sources v Zp vpaat,, and v Zp vpa_pay. It follows from (1.7) that

(Vvaa;afpf)n(kl,...,kn> = Vkaifn,l <k1,...,\z/,...,kn>,
D i=1

<VZUpa_papf)n(k1,...,kn> =V Z vpfn+1(pak17"'7kn)7 (19)

P p#(k)n
v > 0.

It is easy to obtain the following equalities:

ﬁ Z |vk1fn71(k2a-'-7k)n)|2 =

ki,....,kn

L1 2 L2 2
ZEVV;%’;’ Z |fa1(k2, ... kn) :VEHU” | fa—1ll%s
1

ki,..skn

% S0 vebaiipka, . k)| <

’ ki,ookn p?f(k)n

1. 1 2
<Ved ol D0 [fan(p k. k) = Vot DIl fasal*
p

Dk, kn

Note that we have used the norm connected with the scalar product (1.4).
From these inequalities one gets

11
v (szza;fpf) < n2Vav|olll fa-all,
P

n

1

1 1
v (vaa_,,a,,f> < (n+D2Vzvlll|| fatall
P n
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and this means that the sources are unbounded operators when V' — oo even in the
subspace of n pairs H7 .

Finally, one has

ngp

<V2u\|v||2 n+1)%]| £,

n=0

(1.10)

v Z VpQ—plp f

< V| Z (n+1)2 | fara-

n=0

Note that summation with respect to n is carried out from 0 to N, where N is the

. T D .
number of quasimomenta f(TLl,TLQ,TLg) which lie in the domain D and N tends to

infinity as V' — oo.

It follows from (1.10) that the operators of sources become unbounded in the ther-
modynamic limit as V' — oo in the whole subspace of pairs H’ .

Now estimate the norms of the operators of sources using the norm of subspace of
pairs (1.6) connected with the volume V. One has

nlvn Z |Uk1fn71(k27"'7kn)|2 =

1
n'Vz M yn—1 Vn 1 Z ‘fﬂﬂ(k‘?"“’kn)‘g:||U||%/5an71||%/a

11
nlvn Z Z Upfrr1(D, k1, .. kn)| <

ki,....kn p#(kn)

7‘/2‘/2 an+1 Z |fn+1(p7/€17~--,kn)|2=

Pkt kn

= (n+ DV2ollZ (| furallv) .

From these inequalities one gets

(St
p n

v ( Z vpapapf>
p nilv

< nzv|ollv|| fazillv,

v

< (n+1)2vVpllv [ fasallv

Finally one has

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 9



1250 D. YA. PETRINA

vy vpatat fll < vivlv > (412 fallv,
P % n=0
(1.11)
1
v vpapapf| <Vl D (4 12| farallv
p 1% n=0

It follows from (1.11) that the operator of sources becomes unbounded as V' — oo
because the volume V' is present in the second inequality in (1.11).

The unboundedness of the operators of sources has an important consequence.
Namely, this means that even for arbitrary small parameter v the operators of sources
cannot be considered as the small perturbation of the operator Hy = Hy ,|,—0. We will
show later that the eigenvalues and eigenvectors of the operators Hy ,,, which will be
calculated exactly in the thermodynamic limit (as V' — 00), do not coincide when v = 0
with the corresponding eigenvalues and eigenvectors of the operator Hp (as V — 00).

2. Representation of Hp ,, through the approximating Hamiltonian on coherent
states of pairs. 2.1. Hamiltonian H  , on coherent states of pairs. Consider the state
of pairs (1.2) with wave functions of n pairs which are equal to the product of wave
functions of one pair, namely

f= Z > k) fi(ka)af oty al oty 0) =

n=0 """ kit

- Z Zfl kl akla*h Zfl ak a® —kn, |O> (2.1)

Then one has the following identity:

n . .
CA 7 7
= EE Y v k). Ve fukn)ad ety v a) ey |0) =
i=1 k1#...#kn

A i
:ﬁz Z Ukifl(kl)...\/...fl(kn)a;rlafkl...a;riafkl ak _k [0), (2.2)

T =1 k1, kn
where
+ ¢ o+ -+ o+ + o+ + o+ + o+
Qg Qg - V... Qp A p =0Ap QG .. .akiila_k,iilakiﬂa_,wr1 Sy aly
and

- % ZP: v f1(p). (2.3)
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Note that in (2.2) we added the terms with equal momenta which are equal to zero.
Denote by AL the part of the operator A, ,, that describes the interaction of two
particles with opposite momenta and spin. It is defined by the second term in (1.7). It
follows from (2.2) that the operator A% on the state (2.1) is defined as follows:

ALS *CAZ Z Z flk1)ag, a®y, ”kia:i“tki"'f(kn)aznatkﬁw =

n=1 1=1 k1#...#kn
=cp E g g f(ky) aklaikl g Uk, ak at ks
=1 ky

Y fkn)a) aty 10). (2.4)
kn

Note that in (2.4) only the terms with k1 # ... # k; # ... # k, are different from zero.
Consider the operator

X =ca Z vkagafk, 2.5
k

where ¢, is defined according to (2.3). By direct calculation and by analogy with the
operator v Zp vpa a’, one obtains

f—CAZ Z@kaka kal ki)af at, . Zfl ay, aty 0) =

n= O
n+1

AZ i .ZZh (k)af,at,, kaak
=1 ky

2 Flhnsnal by 10)

kn+t1

gflklaklak Evkakak

1 ki

=1
:”zkﬁ

n
n=1 =

K3

Y fika)ayl aty |0). (2.6)
kn
Comparing (2.4) with (2.6) one concludes that
ALSf = AL T 2.7)

on coherent states of pairs (2.1).
Taking into account the last equality and formulas (1.7), (1.8), one can represent the

Hamiltonian H}, ,,, on coherent states of pairs (2.1) as follows:

Hp,f = (Z(pz u)@ a’ 7+cAvaa at
D

2m
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+ I/Z vpa;afp + —H/Z Upl_pQp + B) f=
P P
»?
= ; (Qm ,u) ap0a_p +CAvaa a JrcAvaa_pap +

+ I/Z vpatat, +v Z vpa_pap) f+Bf—ca Z Vpa—_papf =
P P P

=Hj{ , f+Bf —ca Z Vpa_papf, (2.8)
P
where
2
a p
HA,VZZ(Qm_'“>a as + (ca +v) va yat, (cA+V)ZUpa_pap
p p p
(2.9)

is the approximating Hamiltonian introduced by Bogolyubov. (In formula (2.8) we
added and subtracted the operator cp Z Upa_pap.) Note that the constant cp (2.3) is
defined by the function fi(p) and varies \f)vith f(p).

2.2. Eigenvalue and eigenvector problem for the approximating Hamiltonian

HY ,. Itis well known that the operator H , can be diagonal. Namely introduce the
following operators:

Qp = Ukpar + wkafk, a; = ukaz + wga_g,
_ + + _ +
O f = UpG_f — WEAy , QO = Uga_; — Wag,
1 1 3
L 112
we = (2)” 2[1+€k(5k+(0A+V) 2y~ 2} : (2.10)

Nl

wg = (2)7 %{1—%(51@4-(0/\"‘”)2 N %} )

1
€y = — — U, Ek:(gi—&—(c,\—i—yf 2)2.

2m

Note that up, = 1,w, = 0 for k ¢ D and we consider transformation (2.10) only for
keD.

The approximating Hamiltonian Hf , (2.9) can be represented through the operators
ak, af , a_g, o, in the following diagonal form:

HY, = ZE@ ap+2[ (€2 + (ca +v)202)7 |, (2.11)

forp ¢ D,
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P2
a — =
=3 (2 - n)afor
P
Denote by ®§ the following state:
®f = H(l + f(k)ay a’,)]0),
k

—w
Fok) = —=. (2.12)
Uk
It is easy to check by direct calculation that the state ®§ is the vacuum state for the
operators ay, a;l', g, o[_"k. Indeed,

a,®2 =0,  a_,®L =0, (2.13)
because
a,® = (wp, — wy)ar Hl—i—fa Ja;at,)[0) =0,
k#p
a_p®8 = (—wp +wp)at H 1+ f%(k)afat,)|0) = 0.
k#p
Therefore
HY 5= [ep — (24 (ca+ V)%g)%} o8, (2.14)

PCD
and this means that the vacuum state @ is the eigenvector of HY , with the eigenvalue
2 2 2\3
ZPCD [5;7 — (55 + (ea +2)vy) 2]'
It follows from (2.10) that uj, > 0 because vy # 0, |ex — (7 + (e +2)%v}) 2| < 1

in D and, thus, the function f¢(k) is uniformly bounded in D, i.e., |f*(k)| < f. The
state ®F (2.12) can be represented as follows:

Z Z fek) . fo (R )ak1 J—rkl"'a’k a’y [0) =

n=0k1%#...£kn

—Z Z FoRr) o fRn)al aty o) aty |0) =

7=0 """ kAt

—Zn. Z Fok) o A Ra)af by af aty [0). (219)

In the last expression we added terms equal to zero with equal momenta. It has been
proved in our paper [3] that on the state (2.12) with |f*(k)| < f the operator B can be
estimates as follows:

|(<I>S,B<I>“ V|< U 2f4 afZ
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4
|(BoE, BDY), | < % (6 3¢ £2 + 20° f4 + o® £9), (2.16)
8w 3

Then from (2.8), (2.15) one gets

!
o4) | = g, ot | -0
14

: a a
vlgréo (‘I)Oa Ha, — Hf , —ca E UpA—pQp
P

(2.17)
Jim ([HA,V —H§, —ca vaa,,apl o5, [Ha, — HY
p
/
—ca vaa_pap] @8) = Vlim (B®g, BDG);, = 0,
» v — 00
!/
Jim lHA,V — Hj, —ca Y vpa_pay | PG| =0. (2.18)
P v

Thus we note that inequalities (2.16), (2.17) are true not only for coherent states of

pairs, but for arbitrary f € HT with wave functions of n pairs f,,(k1,. .., k,) satisfying

conditions sup |fn(l<:1, cee kn)| < f™ f < oo, see [3] formulas (5.8), (5.11). We al-
(k)

ready know that the state ®§ is the eigenvector of the operator H} , with the eigenvalue
2 2,2
chp [ep — (g5 + (ca +v)?v))] (see (2.14)).

Now consider the operator CZ Vpa_pap on the state ®F. One has
p

cA g Vp_pap Pl =
P

=1
—ad = Y Y W k) f e at o af oty ),
n=0 k1#...#kn p#(k)n

Further one has

/

: 1 a a
T (CA > Upt—pap®5, ‘1>0> =
p

\%4

= im e 3wl 0Y g 3kl =

p#(k)n n=0 k1#...#kn

1 n g2
_-1.2 1 arpy(2 _ 1 2 [ |F(k)|Pdk
=g ¢ Eo"! (/f (k)| dk> =g e
n=
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because

.1 a _
lim ST o) =g

V—oo
p#(k)n
M 1 a a a "
Jin g e = ([ e wea)
k1#...#kn
n>1, lim cy, =c,
li o HaY, — f\f”(k)\Qdk_
Vgnoo( 0, 20)v =e

We have taken into account that in the integral sums one can neglect the hyperplanes
p = ki,...,p = ky in the first sum and the hyperplanes k; = ko,...,k,—1 = k, in
the second sums. (We have omitted some details of proof. It will be presented in more
complicated situation, connected with excited states of ®§, in Section 4.)

If f is a state (2.1) with an arbitrary wave function f(k) of one pair, then one has

/

1 .
Vlgnoo v (CA zp: Vpa—pap PG, f) =

%

R R R | “ a a
= Jim pen Y Do M) D0 SRS (k) S (k) S (Rn) =
n=0 p#(k)n ki1#.. Zky
— 2l I (k) f(R)dk

: : 1 a 2Ha
The last formula can be interpreted as a proof that V]lm e Zp Upa_pap Py = c*Df

— 00

in the weak sense on coherent states.
It is obvious that

/

. 1 .
vlgnoo V2 <CA vaa—papq)S,CAvaa_pap@g) = S lF (R)Pdk,
p P v

Thus, in the above described sense, the operator cy Z Upa_pay on the state ®fF tends
p

in the thermodynamic limit to the operator of multiplication by g~ 'c?V

V —oo

lim cy Y vpa_pa,®f = VL, (2.19)
P
where V' denotes the infinite volume of the entire three-dimensional Euclidean space.
The state @ is the eigenvector of the operator H} , with eigenvalue Z op |5
' P

— (24 (ca + 1/)211;)%} . If follows from (2.14) and (2.15) that the same state ®¢ is the

eigenvector of the operator Hy , — ca Z Upa_pa, in the thermodynamic limit with
’ P

the eigenvalue
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1256 D. YA. PETRINA
lim Y [ep — (24 (ca + 1)) 2] —AV | =

7| [t - WP + 4 rroh) - )

3. BCS Hamiltonian for infinite volume (in the entire Euclidean space). 3.1. Op-
erator Ay in the thermodynamic limit. Define the operator A, for one pair (one puts
v=20in A,)

2k3
Cntib) = (50 =20 ) 409+ S owvastr)

and denote it by Hy o

2k2 g
(trafi) ) = (5 = 20) 0+ £ Souhilo)l G
P
In our previous paper [6] we have completely investigated the eigenvalue and eigenvec-
tor problem for the operator Hs 4 with finite and infinite cube A.
Now we want to explain in what sense the operator Ha 5 converges to Hy gs = Ho.
For this purpose, we restrict ourselves to a potential v, with the following compact

k .
support D (k‘ o u‘ < w> ,w > 0. Consider a continuous function f; (k) with support
m

2
D and defined for arbitrary k € D, but not only for quasidiscrete k = %(nl, ng, n3),

n; € Z, 1 =1,2,3. The norm of the function f; (k) with these quasidiscrete k is defined
as follows:

1 9 : L3
. k = . 32
1 f1lla V;'fl( )| vV (2m)3 (3.2)
The norm of the function f; (k) with continuous momenta k is defined as follows:
2
I = 11 = { [ 15s0Par} 63)

It is obvious that || f||a tends to ||f|| as V' — oo (L — o) because the expression

1
v Zk |f1(E)|? is the Riemann sum which converges to / |f1(k)’2dk, ie.,

. 1
Jm 5 S 1A = [1A0¢aE= 1A 64

For each of terms in (Hz A f1)(k) we have

2

.1 2k 2k
Jin 5|5 2e) o] = f |5 )
(3.5)
1 1
Jm 5 3 |y S oiite = [ erar [ ooyl
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It is obvious that all the integrals are convergent due to continuity of f; (k), v(k) and the
fact that they have compact support D. (We denote by v(k) potential vy, with continuous
momenta k.)

Define the operator Ho for infinite A = R? as follows:

(tafi) ) (3 = 20 ) k) + o(k) [l G

From the above obtained equalities (3.2)—(3.5) one concludes that
lim [[Hoafi1lla = [[Haf1]l (3.7)
V—oo

and in this sense the operator Hy 5 converges to the operator Hy as V — oo(A — R3).
The operator Ay = Ap | =0 is represented through the operators Hs o on wave
functions of n pairs as follows:

(AAfn)(kl, ey kn) =

- ([HQ,A®I...®I+...+I®I...®H2,A]fn)(k1,...,kn), n>1, (3.8)

where I is the identity operator.
Define the following norm for finite and infinite A

||fn||A:{V1n ) |fn<k1,...,kn>|2}7

ki, kn

N

(3.9)

ollacss = 1full = { / fn<k1,...7kn>|2dk1...dkn}2

for continuous functions with compact support D with respect to each of variables
ki,...,ky. It is obvious that

lim
V—oo
As a simple consequence one obtains that
if the operator A is defined as follows:

(Afa) (b, ky) =

- ([H2®I...®I+...+1®1...@Hz]fn)(kl,...,kn) -

— Z KZ]::L —2u> —i—v(ki)g/v(p)fn <k‘1,...,;,...kn)dp:|7 n>1. (3.12)

=1

The BCS Hamiltonian Hy = Hj ,, = 0 on states of pairs f (1.2) is represented accord-
ing to (1.7), (1.8) as the sum of two operators A, and By

ISSN 1027-3190. Vkp. mam. scypn., 2008, m. 60, Ne 9



1258 D. YA. PETRINA

Hrf=Anf+Baf. (3.13)

Taking into account estimates (2.16), (2.17) and formulas (3.9)—(3.11) one can conclude
that for finite elements f (1.2) (elements f with f,(k1,...,k,) = 0 for n > ng, ng is
finite number, and }fn(kl, ceey k‘n)| < f™ f <o)

Jim ([Haflly = lim [ Aaflly = (LA (3.14)
—00 V—oo
Note that we need a finite element f to have ||Af|| < oc.

In this sense the BCS Hamiltonian is defined directly for infinite volume as follows:

Hf =Af,
(3.15)

(Hf)nlk1y .. k)= (Ho®T... @I+ ... +1®1...@ Hy) fulky,... kn).

The last expression for the BCS Hamiltonian, directly for infinite volume, had been
obtained in our paper [1] in 1970.

Remark 3.1. By a slight modification of formulas (3.8), (3.9) from our paper [1]
one can obtain the following estimate for the operator B in the space H' with norm

1f1lv (1.6)

VIV
Bf.llv < —n
85l < g0

(n =D fllv- (3.16)
From this estimate one can conclude that Vlim |Bf|lyv = 0 for finite f € H* and the

estimate sup | f,, (K1, ..., kn)| < f*, f < oo is not imposed on f,,(k1, ..., ky). We have

formula
Jm [ HAf| = [LAFI = [ Hf]- (3.17)

Formulas (3.13)—(3.16) show in what sense Vlim Hy, =H.

3.2. BCS and approximating Hamiltonians for infinite volume [1, 2]. Now we
show to prove that the BCS Hamiltonian for infinite volume represented by the operator
A (3.14) coincides with the approximating Hamiltonian on coherent states of pairs. It
can be done in full analogy with calculation performed in the Section 1.

Denote by A’ the part of operator A that describes the interaction of particles with
opposite momenta and spin. It is defined as follows:

(A fn(kry . kn) = zn:v(ki)g/v(p)fn <k1, - ]%, . kn>dp.

=1

The operator A! coincides with the operator AT = ¢ / v(k)a® (k)a(—k)dk on

coherent states of pairs
p=30 L [ tat Cran [ e e Chakao) 619
n=0 n! ! . L&~ - n n nJ%n :
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SPECTRUM AND STATES OF THE BCS HAMILTONIAN WITH SOURCES 1259

with c = ¢ / v(p) f (p)dp. (For the creation and annihilation operators with continuous

momenta k we use the notation a™ (k), a(k).) Indeed,

Alf = CZ % Z/f(kl)a+(k1)a+(k1)dk1 .
. /v(kz)a+(kz)a+(_kz)dkz .. /f(kn)a+(kn)a+(_kn)dkna
At f = cz_:lﬁZ/f(kl)a+(k1)a+(—k1)dk1...

[ othat G (. [ f)a” () (b,
and thus

Alf = ATF. (3.19)

This means that the BCS Hamiltonian H = ZOO o ® Zn ) I®...® HL R...01
n= 1= 2

on the coherent states f = e/ /(K)a” (F)a™(=k)dk cqincides with the operator

k2 — -
H= / (2 - u) at(k)a(k)dk + c/v(k)a+(k)a+(—k)dk. (3.20)
m
Now introduce the approximating Hamiltonian

HEPP™ = [ c/v(k)a(—k)a(k)dk - C/”(k)a(—k)a(k)dk =

_ {/(2’“; - M) ot (B)a(k)dk + c/v(k)a+(k)a+(—kz)dk v
+ c/v(k)a(—k)a(k:)dk} —c/v(k)a(—kz)a(k)dk. (321)

Note that the operator ¢ [ v(k)a(—k)a(k)dk on the coherent states of pairs f (3.17) is

defined as follows:

c/v(k)a(—k)a(k)dkf — g 3Ty,
(3.22)

1

Vc/v(k)a(—k)a(k)dkf = c2f.

We use the formula §(0) = V.
Note that the constant ¢ = g / v(k)f(k)dk is the same for all n, because in inte-

gral / v(p)f(p)dp one can neglect behavior of the integrand v(k)f(k) in the points
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1260 D. YA. PETRINA

p = ki,...,k,. According to the Fermi statistics, the operator c/v(p)a(—p)a(p)dp

annihilates only two operators a™ (p)a™(—p) from one pair with momenta p and (—p).
Finally, on coherent states f one obtains

Hover f — (/(2’“; - u) ot (B)a(k)dk + c/v(k)a*(k)a*(—k)dk 4

+c /v(k)a(—k)a(k)dk - 0291VI>

where [ is the identity operator.

In this sense, for infinite volume, the BCS Hamiltonian H coincides with the ap-
proximating Hamiltonian H?PP" on coherent states.

The coherent state ®¢ = e/ /6 (F)a™ (Ra™(=k)dk|0) i the eigenvector of the approxi-
mating Hamiltonian as well as of the BCS Hamiltonian with the following eigenvalue:

v / () — ((0)® + ¢ + v(p)?)] dp, ¢ = / v(p) £ (p)dp.

4. Hamiltonian H , on excited states. 4.1. Excited states. Denote by f(,, (),. =
= fpr....puq1,....q, the following state:

_ 4o+ o+ v+
f(P)h(q)m =0p, -0 Qg Qg -- .aqmafqu -
=1
_ ot o4+ + 4
= 0p, -+ 0p Qg g, an=q,, Z e
n=0

x 3 falkn. ko) ety af oty (0)
kl#?ékn

where f was defined by (1.2) and f € H{/. We say that f)i.(q). 18 an excited state
with momenta p1,...,p; of [ particles and momenta (q1,—q1),. .., (¢m, —qm) of m
pairs. We assume that any two momenta (p;,p;) do not coincide with some pairs of
momenta from the set (k1, —k1,...,kn, —kn) = (K)n, n =1,2,..., k; C D or from
the set (¢1, —q1,---,9m: —Gm) = (¢)m, ¢; C D, but some p; can coincide with some
momenta from the sets (k). If some momenta from (p); coincide with some momenta
from (q)m, then fi), ()., = 0.

We consider f(,), (g, as an element of 1’ with respect to momenta (p);, (q),,, and
as an element of HY with respect to momenta (k),, n = 1,2,..., ie., T (@m €
€ H" @ Hi. We will use the notation (f(p),.(g)m+ 9(p):,(a)m )y fOr the scalar product of
two elements f(,), (q),. and ge), (q).,, from HE @ HY.

The scalar product of two sequences f(,), (q),. a0d g(p),,(q).. 15 €qual to the following
expression:

(F @)1 @)ms Iy (@) )V =
e 1 ! -
:ZW ST Falkrn o R)galkr . k) =

n=0 (B)n#(P)1#(@)m
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oo
/

Z* ST falky, k) gn(kr,. k). (4.1)

n=0 (k) F (PN A (@) m

!
Note that Z(k) Q) means that one considers only k1 # ko # ... # ky

and identifies (k),, that differs only by permutation. Consider the action of Hy , on
J)i.(a),. and for the sake of simplicity we consider only operators az‘f with spins H.
By analogy with (1.3) one obtains

Hy v Foy(@ym =
1 ~ (v [ 247 " 2k2
a2 {2 ) 2 “)+ 2 (5 ) )

an(klu"'7 +

l .
)

E 'Uk'Uk fn <k1,..., ,""’k")_ E 'Uki'Upjfn (k1,...,p,..,,kjn> —
j=1 J

~ 3" g, fa (klzkn>]} X
i=1 U

+ + 0+ ot + ot atat + 4
X ay, ...apaga’, ...ag al, apaly ..oap aly [0) +

%g Z Uk Oy fu (ks o k) X

J
+ + 4+ + + o+t + + o+ o+
x apl o aPlam a*lh sV aq71La7Qmak1a*kl ak)nafk)nak)n-%—la*kn-%—l‘ > +
i
+ + o4+
+v E Ok, frno1(Brs oo, Ve kn)ay, cagagal
i=1
+ o+t +  +
a’Qma_QMakla*k akna*kn|0> +
+ + 4+
+ v E vpfnﬂ(p,kl,...,kn)apl...amaqlafql...
p#(k)n#(P)17#(2)m
+ + o+t + +
cag al, apat ooap a”, |0) +
+ + o+ J PR SR RS
+ v E Vg; fru(k1,s .-, kn)ap1 coeapagal, oV =gy ag aly ak _k |0>
i=1

4.2)
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This yields

Hxw fp)(0)m =

+(Ax + By @) f @) @m T COG (Dmf o) (@)m T

_|_

v Z vpa;afp +v Z vpa_pap] f(p)h(q)m, 4.3)
P p

where Ay is defined by the third and fourth term, the operator By, (4),, s defined by

the fifth, sixth and seventh terms, the operator C,), (4),, is defined by the eighth term, the
operat +at  is defined by the ninth t d th t _
.pera or v Zp vpa, a’, is de ne' y .e n1r.1 erm and the operator I/Zp Vpl—pQp
is defined by the last two terms, [ is the identity operator.

4.2. Estimates for the operators B (p), (q),.> C(p)i,(a)m- WE restrict ourselves to
fn(k1,..., k) such that ‘fn(kl, .. .7k:n)| < f". For the operator By, (4),. one has
(see detail in [4])

lglv? = N™n(n+1+m —1)

|(Fo @ Byt For @ v | < 757 ;W . <
_ gl +m+1) i a?f2 gt mA D) s
- 14 (n—2)! — 14 ’

n=

2
<||B(p>z,(q)mf(p)l,(q)m||§/) = By @ F o)1 @mr Bo) @) f@)i(@)) <

2,4 n _ 2 2,4 X n _ 2
PN (kL m 1)) o g7 3o (n(n+1+m—1))
V2 vn n! V2

n=2 n=2

f2n.

n!

It is obvious that the last series is convergent.

For the operator C(;,), (q),, one has

|(F i@y Corer(@m Fo)is (@) )| <
1=

ngz > !fn(kl,...,kn)|2§Zl|vg_7,qj|g
iz

n=0 ki#.. . Fkn

oo
N™ 1 2nv2‘g‘m 9] 9 o
SZWE vy e 4

/

2
(€)@ m F )@ 1) = Co)1.@m o)1 @ s CoYr@m F @) v <

ISSN 1027-3190. Vkp. mam. ocypn., 2008, m. 60, Ne 9



SPECTRUM AND STATES OF THE BCS HAMILTONIAN WITH SOURCES 1263

= Z vn Zkﬁé Fkn V2 Z Z |Vk"+1’qL‘2 + Z |Vq“q1|| anqJ| x

i=1 kp41 z;éj 1

X|fn(k17"'akn>|2 S

2 a0 £2 2,4
<Zvn < o’ +v 2”4>§gevf<a”4m+mvv )

Thus, the norms of the operators B(y), (q)..> C(p)1,(q),. ON €lements f,) tend to

zero as V' tends to infinity.

1(@)m T

By analogy with Section 2 we have the following representation of the operator
H\y ., through the operator HY , on the states f(;), (g

m

HAfo(P)lv(‘I)m =

2
p
= (Z (2771 - H) a;{aﬁ + cA Z vpa;afp + Z/Z vpa;'ai_p +v Z VpG_pap +
D p »

P

+ Bp)i(@)m T C(pn,(q)m) foy@m =
p2
= zp: o afaz+ (ca +u)zp:vpa;a+

+ (ea + )Y vpapap + By, gy + Cippn(am — €A D vpapap> Foyiaym =
p p

= <HX,V + By @y + Coopnt@m — €A D Upa—pap> J)1(@)m-

p

From the above obtained estimates for the operators B, (¢),.> C(p),(q),, ONE Can prove
the following theorem.

Theorem 4.1. On the states of excited pairs f one has

P)i:(Dm>

V]i_r)noo (Hap — HE, —ca Z Up@—pp) f(p), (@) || =
P 174
' !
= Jim_ H(B@)z,(q)m +Con@an) fon@n ||, =0

It is well known that the states f,), (), With f = ®§ and the operators

afat, ...af of instead of the operators al at, ...af aF

a%=a Y Y=g =g amaZq, » Where
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Z Z fo (k). fo (k >ak1a+k1 a’k —k 10) =

=0 """ kit ke

*Zm Z fo (k1) fo (R )akl ——Fkl"'azlatk"m%

are the eigenvectors of the approximating Hamiltonian H§ , with eigenvalues

ZE +22E +Z[zsp +(c+v)2 } (4.4)

From the estimates established above one obtains the following theorem.
Theorem 4.2. [If the states of pairs f = (1,0, fi(k1), ..., fa(k1,. ., kn),-..)
satisfy the conditions

‘fn(k;l,...,k‘n)| <f* f<oo, n>1,
uniformly with respect to V' and have supports in D", then the expressions

n £ £

=1 i=1

!

_ +,+
v Z Uplyp A_p — V Z vpapap] f)1.(@m
P P

tend to zero as V' — oo for arbitrary fixed | and m.
4.3. Approximating Hamiltonian on the states f (), (q),,- In this subsection, we
restrict ourselves to the state of pairs such that

£ = (107000, U)o (K)o ), | FR)] < F < o0

and define on these f(,), (q),. the following approximating Hamiltonian:

2
a p
Hf , = Z <2m - M)a as + (ca +v) vaa;a_p—i—

p p

v

+(ca +v) Z Vpa_pa, — g LAV,
P

A = %vaf{)(p)
P

By analogy with the calculations performed in Section 2, we have

I
A o) (@m = €A Z Upa;ratpf(p)z,(q)mv

p

cAvaa_papf(p)h(q)m =cp Z Zfl (k1) akla Ky -
P
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1265
0 + + 0
D SR T SR
kpn—1 p#(k)n—1,p#(P)1,p7#(9)m
m
catatat, ol at, [0)+cp Z vef
i=1 ®)1,(@)m

Vi %
where (¢)m = (q1,---, Vs -+, qm)-

4.4. Operator cp Z

VpQ_payp on excited states. Now consider in detail the
P

operator cp Z vpa—pa, on the states f,), (), - One obtains
P

CA Z Upl—plp f(p)1,()m =
p

m

= 97 AV Fr @ + ABloy (@1 fo) @ T €1 D Ve, f( |
=1 P

i bl
Vv

(@) m
where the operator B(lp)h( D is defined as follows:
Bloytaym F o) @) =
— —CAG;—:I . .a;,rlajlafql . .a;;”afqm i % Z fé‘(k:l)a;afkl e
n=1" Ik
<D [ Uknail ¥, 10) > ok f§ (k).
kn

k:(k)nxkz(p)hk:(q)?n ‘]flikZ?ék?n

One obtains the following estimates [4]:
1 1 of?
7o @m Byt for @)y | < 700 +m+ Dafie

/!

1 1 1
V(B@)z,(q)mf(p)z,(q),n»3<p),,(q>mf<p>z,<q>mf<p>z,<q>m) <

\4

< =¥l 4+m+ 1) (af* + 20z2f‘6e°‘fz)7

m m !
(zw @ ,zvqif(m,(q)m)
i=1 ®)i(Dm =1 v

From these estimates one obtains the following theorem.
Theorem 4.3. The expressions

<|~

1 2
< —v®m2ef.
-V

1
=

1 . _
v (f(p)z,(q)m» (Ha — HY , — 97 AV = eaBly, (o)) o) (@) —

m li
— CA qu‘,f i ) )
Z @) (Dm ) v

i=1

(4.5)
1

Vv

(Ha — HY, — g7 eaV = eaBly, () fo)(@m —

!

_CAZ'quf i ‘|

i=1 ®)1,(@)m

v
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tend to zero in the thermodynamic limit (as V. — oo) for arbitrary fixed numbers |
and m.

Note that the numbers ! and m can tend to infinity together with V' but in such a
way that (I +m)/V tends to zero as V' — oo. In this sense the states f(,, (4),. are the
eigenvectors of the Hamiltonian Hj in the thermodynamic limit. If m = 0, then the
states f(p), are the eigenvectors of the Hamiltonian H in the following sense:

= 0. (4.6)

Hm (Hy — HY , —ca Z Vpa_pap) f(p),
P
In this case the operator cp Z vpa_pa, on the state f(,,), can be considered as the

operator of multiplication in the thermodynamic limit

CA Z vpa_papf(p)lev_)oo\/g_lc?\ ()15

p

li =c. 4.
Vgnoo A ¢ ( 7)

It follows from the relation

1
Jm 3 o) = [ 5w —c.
p#(k)m

p#(P)

1
Thus we use the factor v in expression (4.5) mainly to neglect the operator

m
A Zi:l Vg f v

D
Now we give the proof of formula (1). The expression cy Zk vpa_rap®Pg can be
estimated as follows: The sum

A7¢O = CA Z’l)k(lfkakéo = CA kaflo(k)|0>+
k k

o0

1 n
+ ca — ZZ f?(kl)aktafkl . Z o, fY (ki) ... fo(k:n)a;nafknm%
n=2"" i=1 ki kit kon
k7'7.£k7n

should be divided into two parts 0 < n < ng and ng < n < oo, and the number ng is
of order V¢, where 0 < § < 1, i.e., ng < V?. Then one has

2
N - oL, 0
Vi, gz A e A ‘I’0>’=J£ﬂoov2"“@”’“f 1(k)> '

. = 1 / i 2
‘f‘vh_{nooc?\ZW Z ‘f{)(kl)‘Q"'v"~|f{)(kn) X

n=2 ki#...#kn

X <‘1/ Z Umf?(h)) +

ki#k1,....kiF#kn
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. 1 4 i 2
n=ng+1 k1#...#kn,

ki #kl 3oy 7£k7'n

For n < ng one has

i#kn

(k)7 ki?ékl,...,k}z
. 1
= Jim S o f0) = [ ok (k)dks = .

because

1 1n \'
im — < Zof < lim —uf =
S 77 < yof s Jim o of =0

kiFk1,....kiFkn

for n < ng < V%, 0 < § < 1. For the sum over n > ng + 1 one has the following
estimate:

N

3 SRV )|

n=no+1 k1#...#ky

Z Vn 1

n=ng+1 ) n=nog+1 (n

s wflk)| <

kiFky,....kiFkn

2
2n, 2. 2 =1 F2n,,2 n
fvn< E fvi—l)!'

The last series is convergent and tends to zero as V' — oo because ng. Thus,
Vlim — (A ®y, A~ D)}, = g2 th (®o, Po)Y
. 12 _ - a 2 a 2 _
where Vlgngo(fbo, Bo)i = ano — Zkgﬁ..#kn lfe(k)? ...V | fe (k)P =
= eJ /(R dk Using an analogous calculation one can show that
lim l(cp A" dg)y, =g ' lim (@, Pg)}
Vooo V 0 -9 Voo 0/v

for an arbitrary coherent state
P = exp (kaa;rcﬁk) 10), |ful < f<o0.
k
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1
In the above described sense the operator VA* on ®( in the thermodynamic limit is

equal to the operator of multiplication by constant g~ *c?.

By analogous calculation one can show that

lim cp vaa—pa;n(p(p)z,(q)m =
P

V—oo

_ : + + ot ot 2 : } :
=CA th Gpy -+ p Qg Qg -+ qm qm fo kl akla*’ﬁ

— 00

Zf(()l(k )ak at ke 0) Z v fo (K +CAZqu é =

kn k#(k)n, k#£(0)1,k%(q)m i=1 )i, (@)m

:gilczvq)(p)z»(q)m Jrczvqiq) i

i=1 (p)h(\é)m

1. . 1
Remark 4.1. The factor v in expressions (4.5) could be replaced by factor e
where § is arbitrary number 0 < § < 1 for arbitrary fixed m.
Remark 4.2. Consider the excitation created by the operators a,f,afk or (0.

It is easy to check that

af By = 1+(f“(p))2a;H(1+fa( aj a’,)[0),

k#p
at, @ =1+ (f2(p)%at, [J (1 + f*(k)afat,)[0),
k#p

gl o= (—f"(q) +agal,) H(1 + f (ke aZ;)|0).
k#q

It follows from the obtained formulas that the excitations

— + o+ + o+ a
P (Dm = Apy o+ O Xgy Cmgy -+ - ¥, gy, P
can be expressed via certain linear combinations of excitations f(p) W@t =01, ,m,

where expressions /1 + (f(p;))?, i = 1,...,1, f*(g;), j = 1,...,m, should be
considered as coefficients independent on momenta (k),. All results obtained above
about coincidence in the thermodynamic limit of the model BCS and approximating
Hamiltonians on the excitations f(;), (4),. also hold for the excitations ¢(,), (4),,.-
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