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REGULARIZATION INERTIAL PROXIMAL POINT
ALGORITHM FOR UNCONSTRAINED VECTOR CONVEX 
OPTIMIZATION PROBLEMS 

∗∗∗∗
  

REHULQRYZACIJNYJ INERCIAL|NYJ ALHORYTM 

TYPU PROKSYMAL|NO} TOÇKY DLQ VEKTORNYX

OPUKLYX ZADAÇ OPTYMIZACI} BEZ OBMEÛEN| 

The purpose of the paper is to investigate an iterative regularization method of proximal point type for
solving ill-posed vector convex optimization problems in Hilbert spaces.  The application to the convex
feasibility problems and the common fixed points for nonexpansive potential mappings is also given. 

DoslidΩeno iteratyvnyj metod rehulqryzaci] typu proksymal\no] toçky dlq rozv’qzku ne-

korektnyx vektornyx opuklyx zadaç optymizaci] u hil\bertovyx prostorax.  Navedeno takoΩ

zastosuvannq metodu do zadaç opuklo] prypustymosti ta do zadaçi pro spil\ni neruxomi toçky

dlq nerozßyrnyx vidobraΩen\ potenciala. 

1.  Introduction.  Let  H  be a real Hilbert space with the scalar product and the norm
denoted by the symbols  〈⋅ ⋅〉,   and  ⋅ ,  respectively. 

Consider the problem of unconstrained vector convex optimization:  find an ele-
ment  x0 ∈ H  sych that 

ϕ j x( )0   =  inf ( )
x H

j x
∈

ϕ     ∀ j  =  0, 1, … , N, (1.1)

where  ϕ j   are the weakly lower semi-continuous and proper convex functionals on  H.
Set 

Sj  =  x H x xj
x H

j∈ =





∈

: ( ) inf ( )ϕ ϕ ,      j  =  0, 1, … , N,    S  =  

 
Sj

j

N

=0
∩ .

Here, we suppose that  S  ≠  ∅,  and  θ ∉S,  where  θ  is the zero element of  H . 
It is well known that  Sj  coincides with the set of solutions of the following in-

clusion: 

∂ϕ j x( )   '  θ , (1.2)

and is a closed convex subset in  H,  where  ∂ϕ j x( )   is the subdifferential of  ϕ j   at the

point  x ∈ H  and assummed to be bounded in the sense 

y   ≤  d1    

  
∀ ∈ ∂

∈
y xj

x B

ϕ ( )∪ ,      B  =  x H x d∈ ≤{ }: 0

in this paper, where  d0,  d1  are some positive constants. 
Without additional conditions on  ∂ϕ j   such as the strongly or uniformly monotone

property each inclusion (1.2) is ill-posed.  By this we mean that the solution set  Sj   do-
es not depend continuously on the data  ∂ϕ j .  Therefore, problem (1.1) is also ill-po-
sed.  To solve (1.1),  in [1] when  ϕ j   are Gateau differentiable with the derivative  Aj

( =  ∂ϕ j  ) ,  we have proposed an operator method of regularization describing by the
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operator equation 

α αµ j A x U xj
n

j

N

( ) ( )
=
∑ +

0

  =  θ , (1.3)

µ0  =  0  <  µj  <  µ j+1  <  1,    j  =  1, 2, … , N – 1,

depending on the regularization parameter  α,  where  Aj
n   are the monotone hemi-con-

tinuous approximations for  Aj  in the sense   

A x A xj j
n( ) ( )−   ≤  h g xn ( ),

with  hn  →  0,  as  n  →  + ∞ ,  g ( t )  is a positive bounded (image of bounded set is bo-
unded) function, and  U  is the normalized duality mapping of Banach space which is
the identity operator  I  in  H .  Equation (1.3) has a unique solution  xn

α   for each fixed

α  >  0,  and the sequence  { }xn
α   converges strongly to the solution  x0  with

x0   =  min
x S

x
∈

,

as  hn /α ,  α  →  0,  n  →  + ∞ . 
In this paper, we consider the regularization inertial proximal point algorithm,

where  zn+1  is defined by

   c A z z z zn n
j

j
n

n
j

N

n
N

n n nα α( )+
=

+
+ +∑ +









 + −1

0

1
1 1   '  γ n n nz z( )− −1  ,    z0, z1 ∈ H, (1.4)

where  { }cn   and  { }γ n   are the sequences of positive numbers, and  Aj
n   are the maxi-

mal monotone approximations for  ∂ϕ j   in the sense 

ρ ϕ( )( ), ( )A x xj
n

j∂   ≤  h g xn ( ), (1.5)

where  ρ ( P,  Q )  is the Hausdorff metric for the set  P  and  Q. 

Since  Aj
n   are maximal monotone,  then the operators  in  (1.4)  are maximal mo-

notone (see [2]) and coercive.  Hence, (1.4) has a unique solution denoted  by  zn+1  for
n  ≥  1. 

To solve the inclusion  A ( x )  '  f  involving the maximal monotone operator  A  in
H,  in [3] the proximal point algorithm 

c A z f zn n n( )( )0 1 1+ +− +   '  zn ,    z0 ∈ H , (1.6)

where  cn  >  c0  >  0,  is studied.  Under some conditions  { }zn   converges weakly to a
solution of (1.1),  if this solution is unique.  R. T. Rockafellar in [3] posed an open qu-
estion whether (or not) the proximal algorithm (1.6) always converges strongly.  This
question was resolved in the negative by  O. Güler [4] and after by  H. H. Bauschke et
al. in [5].  To obtain the strong convergence  M. V. Solodov  and  B. F. Svaiter in [6]
have combined the proximal algorithm with simple projection step onto intersection of
two halfspaces containing solution set.   Recently, to obtain the strong convergence
I. P. Ryazantseva in [7] has combined the proximal point algorithm with Tikhonov re-
gularization in the form 

c A z U z f U zn
n

n n n n n( )( ) ( ) ( )+ + ++ − +1 1 1α   '  U zn( )  ,    z0 ∈ X ,

for the case of reflexive Banach space  X ,  where  f fn −   ≤  δn   →  0,  as  n  →  + ∞ .
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The strong convergence  of  { }zn   of this algorithm is guaranteed by it boundedness

which is followed from the same property of the solution set of  A ( x )  '  f  (see [7]).
There is an open question for the case where the solution set is not bounded.  For
example, the system of linear algebraic equations  A x  =  b  with a nonnegative matrix
A ,  det A  =  0,  and  r ( A )  =  r ( [ A , b ] )  has the unbounded solution set. 

Notice that for the simple case  N  =  0,  the algorithm (1.4) without the regularizati-
on term was proposed to solve the monotone inclusions in [8] when  An

0   ≡   ∂ϕ0.  Fur-

ther, this algorithm was generalized for the case  An
0   =  A n

0
ε ,  the enlargement of the

operator  ∂ϕ0  in [9, 10]. 
In this paper, for the more general case  N  ≥  0,  in Sectoin 2 we shall show that the

boundedness of the sequence  { }zn   is automatically confirmed by combiniting the in-
ertial proximal algorithm with regularization in form (1.4).  An application for the con-
vex feasibility problems and the problem of common fixed points for nonexpansive po-
tential operators is given in Section 3. 

Above and below, the symbols  Æ  and  →   denote the weak convergence and
convergence in the norm, respectively. 

2.  Main result.  First, consider the inclusion

α αn
j

j
n

j

N

n
NA x x( )

=

+∑ +
0

1   '  θ . (2.1)

Since  Aj
n   are  the maximal monotone operators defined on  H  ,  then  the operator

α αn
j

j
n

j

N
n
NA I=

+∑ +
0

1   is maximal monotone (see [3] and coercive.   Hence, (2.1) has a

unique solution denoted by  xn . 
We have a result. 

Theorem 2.1.   If   0  <  αn  ≤  1,   hn n
N/α +1,   α n  →  0,    as     n  →   + ∞ ,    then

limn nx→+∞   =  x0 ∈ S  with 

x xn n+ −1   =  O
h hn n

n
N

n n

n
N

+

+
+

+

+
+

+ + −





1

1
1

1

1
1α

α α
α

.

Proof.  When  ∂ϕ j   =  Aj   and  Aj
n   are hemi-continuous monotone operators, the

proof of the first part is given in [1].  For convenience, we do it here again. 
From (2.1) it follows 

α αn
j

j
n

n n
j

N

n
N

n nA x x x x x x( ), ,− + −
=

+∑
0

1   =  0    ∀ x ∈ S . (2.2)

On the base of (1.2), (1.5) and the monotone property of  Aj
n   we obtain 

xn   ≤  x
h

g x Nn

n
N+ ( ) ++α 1 1( ). (2.3)

Hence,  { }xn   is bounded.  Let  xnk
  Æ  x H∈   as  k  →   + ∞ .  First, we prove that

x S∈ 0.  Indeed, by virtue of the monotone property  of  Ank
0   and (2.1) we can write  

A x x xn
n

k
k0 ( ), −   ≥  A x x xn

n n
k

k k0 ( ), −   ≥

≥  α αn
j

j
n

n n
j

N

n
N

n nk
k

k k k k k
A x x x x x x( ), ,− + −

=

+∑
1

1   ≥

ISSN  1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 9



1278 NGUYEN BUONG

≥  α αn
j

j
n

n
j

N

n
N

nk
k

k k k
A x x x x x x( ), ,− + −

=

+∑
1

1     ∀ x ∈ H .

By tending  k  →  + ∞  in the last inequality we have 

∂ −ϕ0( ),x x x   ≥  0    ∀ x ∈ H .

Since  ∂ϕ0  is maximal monotone, then  x S∈ 0.  Now, we shall prove that  x Sj∈ ,  j  =

=  1, 2, … , N .  Indeed, from (1.2), (2.1) and the monotone property of  Ank
0   it implies

that 

A x x x A x x xn
n n n

j
j
n

n n
j

N
k

k k k
k

k k1
1

2

( ), ( ),− + −−

=
∑α   +

+  αn
N

n nk k k
x x x, −   ≤  0    ∀ x ∈ S0 

or 

A x x x A x x x x x xn
n n

j
j
n

n
j

N

n
N

n
k

k k
k

k k k1
1

2

( ), ( ), ,− + − + −−

=
∑α α   ≤  0.

After passing  k  →  + ∞ ,  it gives 

∂ −ϕ1( ),x x x   ≤  0    ∀ x ∈ S0 .

Thus,  x   is a local minimizer for  ϕ1  on  S0 .  Since   S S0 1∩   ≠   ∅,  then  x   is also a
global minimizer for  ϕ1,  i.e.,  x S∈ 1. 

Set  S̃i   =  
  

Sll

i

=0∩ .  Then,  S̃i   is also closed convex, and  S̃i   ≠  ∅. 

Now, suppose that we have proved  x Si∈ ˜ ,  and need to show that  x   belongs to

Si+1.  Again, by virtue of (2.1) for  x Si∈ ˜   we can write 

A x x x A x x xi
n

n n n
j i

j
n

n n
j i

N
k

k k k
k

k k+
− +

= +
− + −∑1

1

2

( ), ( ),( )α   +  αn
N i

n nk k k
x x x− −,   ≤  0,

or 

A x x x A x x x x x xi
n

n n
j i

j
n

n
j i

N

n
N i

n
k

k k
k

k k k+
− +

= +

−− + − + −∑1
1

2

( ), ( ), ,( )α α   ≤  0.

After passing  k  →  + ∞ ,  it is clear that 

∂ −+ϕi x x x1( ),   ≤  0    ∀ ∈x Si
˜ .

So,  x Si∈ +1.  It means that  x S∈ .  S  is a closed convex subset in  H ,  because each
Sj   is closed convex.  Hence, from (2.3) and  

  
x xnk

Æ   it deduces that  x   is the mini-

mal norm element of  S .  This element is unique.  Consequently, all sequence  { }xn
converges weakly to  x .  Again, from (2.2),  x S∈ ,  and the weakly convergent
property of  { }xn ,  we have  x x≤   ∀ ∈x S .  Therefore,  limn nx→+∞   =  x ,  and
x x= 0. 

Now, because of (2.1), 

α αn
N

n
Ny x y x+

+ +− −1
1 1 ,   =  α α αn

N
n
N

n
Ny x x y x+

+
+
+ +− + − 〈 − 〉1

1 2
1
1 1( ) , ,

α αn
j

j
n

n
j

j
nA y A x y x+

+ − −1
1( ) ( ),   =  αn

j
j
n

j
nA y A x y x+

+ +− −1
1 1( ) ( ),   +
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+  α α αn
j

j
n

j
n

n
j

n
j

j
nA x A x y x A x y x+

+
+− − + − −1

1
1( ) ( ), ( ),( ) ,

A x A x y xj
n

j
n+ − −1( ) ( ),   ≤  ( )h h g x y xn n+ + ( ) −1

for  x d≤ 0,  and 

a bj j−   =  ( )( )a b a a b ab bj j j j− + +…+ +− − − −1 2 2 1 ,

we obtain the estimation 

x xn n+ −1   ≤  
d

n
N n

j
n
j

j

N
1

1
1 1

1α
α α

+
+ +

=
−∑   +

+  d
h h

g xn
N

n
N

n
N

n n

n
N n

j

j

N

0
1
1 1

1
1

1

1
1 1

0

α α
α α

α+
+ +

+
+

+

+
+ +

=

−
+ + ( )∑   ≤

≤  M̃
h hn n

n
N

n n

n
N

+

+
+

+

+
+

+ + −





1

1
1

1

1
1α

α α
α

  : =  D̃n ,

and  M̃   is some positive constant. 
The theorem is proved. 
Theorem 2.2.   Assume that the parameters   ck ,  γ k   and    αk    are chosen such

that 
(i)  0 0 0< < <c c Cn ,    0 10≤ < <γ γn ,      αn ↘ 0, 

(ii)  α̃nn=
∞∑ 1

  =  + ∞ ,    α̃n   =  c cn n
N

n n
Nα α+ ++1 11( ), 

(iii)  γ nn n nz z=
∞

−∑ −
1 1   <  + ∞ , 

(iv)  lim ˜n n nD→+∞ α   =  lim ˜n n n n nz z→+∞ −−γ α1   =  0  where 

Dn   =  
h hn n

n
N

n n

n
N

+

+
+

+

+
+

+ + −1

1
1

1

1
1α

α α
α

.

Then, the sequence  { }zn   defined by (1.5) converges strongly to the element  x0 ,

as  n  →  + ∞ . 

Proof.  From (1.5) and (2.1), it follows 

µ αn n
j

j
n

n
j

N

nA z z( )+
=

+∑ +1
0

1  '  β β γn n n n n nz z z+ − −( )1 ,

µ αn n
j

j
n

n
j

N

nA x x( )
=
∑ +

0

  '  βn nx ,

µn   =  cn nβ ,      βn   =  1 1 1( )+ +cn n
Nα .

Hence, 

µ αn n
j

j

N

j
n

n j
n

n n n n n n nA z A x z x z x z x
=

+ + + +∑ − − + − −
0

1 1 1 1( ) ( ), ,   =

=  β β γn n n n n n n n n n nz x z x z z z x− − + − −+ − +, ,1 1 1 .

Therefore, 

z xn n+ −1   ≤  β β γn n n n n n nz x z z− + − −1 .

Consequently, 
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z xn n+ +−1 1   ≤  z x x xn n n n+ +− + −1 1   ≤

≤  β γn n n n n n nz x z z D− + − +−1
˜   ≤  ( ˜ ) ˜1− − +αn n n nz x d ,

since  βn   <  1,  where  d̃n   =  γ n n n nz z D− +−1
˜ .  Therefore,  z xn n+ +−1 1   →  0,  as

n  →  + ∞  is followed from the lemma. 
Lemma.  Let  { }un ,  { }an ,  { }bn   be the sequences of positive numbers satisfying

the conditions 
(i)  un+1  ≤  ( )1− +a u bn n n ,    0  ≤  an   ≤  1, 

(ii)  ann=
∞∑ 0

  =  + ∞ ,    lim
n

n

n

b
a→+∞

  =  0. 

Then,  lim
n

nu
→+∞

  =  0. 

On the other hand,  x xn − 0   →  0,  as  n  →  + ∞ .  In final, we have  xn  →  x0 ,  as

n  →  + ∞ . 
The theorem is proved. 

Remark.  The sequences  { }αk   and  { }γ k   which are defined by 

hn  =  ( )1+ −n h ,      αn   =  ( )1+ −n p ,      0  <  2 1p N( )+   <  h  <  1,

γn  =  
( ) , ,

, ,

1
1

0

0 0

1

1
2 1

1

+ −
+ −

− ≠

− =







− −

−
−

−

n
z z

z z
z z

z z

n n

n n
n n

n n

τ if

if

with  τ  >  1 1+ +p N( )   satisfy all conditions in Theorem 2.2. 

3.  Application.  Given a finite family of weakly lower semi-continuous convex
functionals  fj ,  j  =  0, 1, … , N,  find an  x0 ∈ H  such that 

f xj ( )0   ≤  0,    j  =  0, 1, … , N.

Denote by  Cj   =  x f xj: ( ) ≤{ }0 ,  j  =  0, 1, … , N.  Then,  Cj   are closed convex.  The

problem of finding  x Cjj

N
0 0
∈ =∩   is the convex feasibility one.  It is intensively

studied for the last time (see [11 – 13] and references therein), and can be rewritten in
the form of unconstrained vector convex optimization as follows.  Define 

ϕ j x( )  =  max , ( )0 f xj{ }.

Then  Cj   is coincided with the set  Sj . 
It is easy to see that every convex program with the objective function  f  and the

constrain described by the functions  fj ,  j  =  0, … , N – 1,  can be also  rewritten in the
form of unconstrained vector optimization with  fN  =  f . 

The problem of common fixed point is formulated as follows.    Find  x0  ∈  C  =

=  Cjj

N

=0∩ ,  where  Cj   =  F Tj( ),  j  =  0, … , N,  where  F Tj( )  is the fixed point set of

the nonexpansive operator  Tj .  It is intensively studied in recent under condition 

C  =  F T T TN N( )− …1 0   =  F T T TN N( )− …1 0   =  …  =  F T T T TN N( )0 1 1… −

(see [14 – 16]).   After, this results are generalized to Banach spaces in [17 – 19].   Evi-
dently, this condition can be replaced by the potential property of  Tj ,  i.e., there exists

a  functional  f xj ( )  such  that  ′f xj ( )  =  T xj ( )  for  each  j .   Then,  ϕ j x( )  =  x 2 2  –
– f xj ( )  is convex, since its derivative  I Tj−   are monotone.  Moreover,  Sj   =   Cj ,
and the presented method in this paper can be applied to solve the problems. 
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