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REGULARIZATION INERTIAL PROXIMAL POINT
ALGORITHM FOR UNCONSTRAINED VECTOR CONVEX
OPTIMIZATION PROBLEMS*

PET'Y JISIPU3ATIITHIN THEPIITAJILHUN AJITOPUTM

THUILY IIPOKCUMAJIBHOI TOYKH [1JIA BEKTOPHUX
OIIYKJINX 3AJAY OIITUMI3BAIII BE3 OBMEZKEHD

The purpose of the paper is to investigate an iterative regularization method of proximal point type for

solving ill-posed vector convex optimization problems in Hilbert spaces. The application to the convex
feasibility problems and the common fixed points for nonexpansive potential mappings is also given.

HocutifgKeHo iTepaTUBHUII MeTO[ peryJisipusalii TUIMY NMPOKCHUMAJIbHOI TOYKHU JJIsI PO3B’s3KY He-
KOPeKTHHMX BEeKTOPHMX OINYKJIUX 3aa4 ONTHMi3alii y risisbepToBux npocTopax. HaBegeHo Takox
3aCTOCYBaHHsI METO/ly [0 3a/ay OMyKJIOI MPUITYCTUMOCTI Ta A0 3afayi Mpo CHiJIbHI HEPYXOMi TOUKHU
U151 HEPO3LIUPHHX BiloOpa’KeHb MOTEeHIiaIa.

1. Introduction. Let H be a real Hilbert space with the scalar product and the norm
denoted by the symbols {-,-) and |||, respectively.
Consider the problem of unconstrained vector convex optimization: find an ele-

ment xy € H sych that
9;(xg) = inf @;(x) Vj=0,1,..,N, (1.1)
xeH

where @; are the weakly lower semi-continuous and proper convex functionals on H.
Set

N
S; = {ermpj(x):xigg(pj(x)}, j=0.1....,N, §=[]S5,.
j=0

Here, we suppose that S # &, and 0¢ S, where 6 isthe zero element of H.
It is well known that §; coincides with the set of solutions of the following in-

clusion:

9¢;(x) > 9, (1.2)
and is a closed convex subset in H, where 0@ ;j(x) is the subdifferential of ¢; at the
point x € H and assummed to be bounded in the sense

Iyl < d VyeJoo;(x), B = {xeH:|x|<dy}

xeB

in this paper, where d,;, d; are some positive constants.

Without additional conditions on 9@ ; such as the strongly or uniformly monotone
property each inclusion (1.2) is ill-posed. By this we mean that the solution set S; do-
es not depend continuously on the data d@ ;- Therefore, problem (1.1) is also ill-po-
sed. To solve (1.1), in [1] when ¢ j are Gateau differentiable with the derivative A y

(= do i), we have proposed an operator method of regularization describing by the
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operator equation

N
> o AN (x) + al(x) = 6, (1.3)
j=0

Ly =0 < W < Hjg < I, j=12,...,N—1,

depending on the regularization parameter o, where Af are the monotone hemi-con-
tinuous approximations for A; in the sense

|40 - Al < Byg(lx),

with h, — 0, as n — +o0, g(t) is a positive bounded (image of bounded set is bo-
unded) function, and U is the normalized duality mapping of Banach space which is
the identity operator / in H. Equation (1.3) has a unique solution x;, for each fixed

o > 0, and the sequence {x};} converges strongly to the solution x, with

= m.
x| xé?HxH’

as h,/o, oo = 0, n = 4oo.
In this paper, we consider the regularization inertial proximal point algorithm,
where z,,; is defined by

N
j N+1
Cn(zodzA]"l(ZnH)""an Zn+]] T 1~ % D Yn(zn _Zn—l)’ % % € H, (1.4)
Jj=0

where {c,} and {y,} are the sequences of positive numbers, and A} are the maxi-
mal monotone approximations for d¢; in the sense

p(A7(x), 99;(x)) < h,g(]x]), (1.5)

where p(P, Q) is the Hausdorff metric for the set P and Q.

Since A]'-’ are maximal monotone, then the operators in (1.4) are maximal mo-
notone (see [2]) and coercive. Hence, (1.4) has a unique solution denoted by z,,; for
n=1.

To solve the inclusion A(x) > f involving the maximal monotone operator A in
H, in [3] the proximal point algorithm

cn(AO(ZnH)_f) t 21 2%, € H, (16)

where ¢, > ¢y > 0, is studied. Under some conditions {z,} converges weakly to a

solution of (1.1), if this solution is unique. R. T. Rockafellar in [3] posed an open qu-
estion whether (or not) the proximal algorithm (1.6) always converges strongly. This
question was resolved in the negative by O. Giiler [4] and after by H. H. Bauschke et
al. in [5]. To obtain the strong convergence M. V. Solodov and B. F. Svaiter in [6]
have combined the proximal algorithm with simple projection step onto intersection of
two halfspaces containing solution set. Recently, to obtain the strong convergence
I. P. Ryazantseva in [7] has combined the proximal point algorithm with Tikhonov re-
gularization in the form

Cn(An(ZnH)+O€nU(Zn+l)_f;1) + U(ZnJrl) > U(Zn)’ % € X,

for the case of reflexive Banach space X, where | f, — f|| < 3, — 0, as n — +oo.
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The strong convergence of {z,} of this algorithm is guaranteed by it boundedness

which is followed from the same property of the solution set of A(x) o f (see [7]).
There is an open question for the case where the solution set is not bounded. For
example, the system of linear algebraic equations Ax = b with a nonnegative matrix
A, detA =0, and r(A) = r([A, b]) has the unbounded solution set.

Notice that for the simple case N = 0, the algorithm (1.4) without the regularizati-
on term was proposed to solve the monotone inclusions in [8] when Aj = d¢,. Fur-

ther, this algorithm was generalized for the case Aj = Aj", the enlargement of the
operator d@, in [9, 10].

In this paper, for the more general case N = 0, in Sectoin 2 we shall show that the
boundedness of the sequence {z,} is automatically confirmed by combiniting the in-

ertial proximal algorithm with regularization in form (1.4). An application for the con-
vex feasibility problems and the problem of common fixed points for nonexpansive po-
tential operators is given in Section 3.

Above and below, the symbols — and — denote the weak convergence and
convergence in the norm, respectively.

2. Main result. First, consider the inclusion

N .
> aj Al +opy x5 6. 2.1)
j=0

Since A;’ are the maximal monotone operators defined on H, then the operator

N . . .
zj—O (>L{1A}1 + (xrj:] 17 is maximal monotone (see [3] and coercive. Hence, (2.1) has a

unique solution denoted by x,,.
We have a result.

Theorem 2.1. If 0 <o, <1, h,/o)™, o, > 0, as n — +oo, then

lim X, = xy€ S with

n—>+oo 'n
h,q + o, — O
Hxn+l ) H = 0( n+1N+1hn + ‘ n:;NH n).
n+l n+l1

Proof. When 0¢ ; = A; and AJ'-' are hemi-continuous monotone operators, the

proof of the first part is given in [1]. For convenience, we do it here again.
From (2.1) it follows

N .
> o) (A (x,). x, - x) + o) (x,. x,—x) =0 VxeS. (2.2)
j=0

On the base of (1.2), (1.5) and the monotone property of A7 we obtain

h
Ix, | < [lx] + aN’:lg(HxH)(NH). (23)

Hence, {x,} is bounded. Let X, — X€H as k — +oo. First, we prove that

X €S,. Indeed, by virtue of the monotone property of A)* and (2.1) we can write
<A6”‘ (x), x— X, > > <A6”‘ (xnk), X=X, > >

>

j ny N+1
> Oty <Aj (x”k), Xn, —x> + Oty <xnk, Xy, —x> >

M=

~
|l
—_
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N
j g N+1
> zocnk<Aj (x), X, —x> + 0, <x, Xn, —x> VxeH.
j=1

By tending k — + <o in the last inequality we have
(0Qg(x), x—X) 20 VxeH.
Since B(po is maximal monotone, then x € §,. Now, we shall prove that x € § T j =

= 1,2,..., N. Indeed, from (1.2), (2.1) and the monotone property of Ag* it implies
that

N
n j-1 n
<A1"(xnk), Xy, —x> + zank <Aj"(xnk), X, —x> +
j=2

N
+ O <xnk,xnk—x> <0 Vxes,

s

or
(A0, =)+ R A0, =)+ 0 (o, ) < 0
j=2

After passing k — +oo, it gives
(00)(x), x—x) £ 0 VxeS§,.
Thus, x is alocal minimizer for ¢; on §,. Since SOﬂSl # J, then x is also a
global minimizer for @, i.e., x €.
Set S‘i = ﬂ;zoSl. Then, S‘i is also closed convex, and S‘i = .

Now, suppose that we have proved Xx e 5,-, and need to show that x belongs to

Siy1- Again, by virtue of (2.1) for xe 5', we can write

N
m J=GHD) [ amy N—i
<Ai+1(xnk), Xy, —x> + Zank <Aj (X )s Xy, =X ) + 0 (X, X, —X) S0,
J=i+2

or

<Ai'ﬂf1(x), Xy, —x> + ia{;;("”%Af" (%), X, x> + a,l:i_i<x, X, —x> < 0.
Jj=i+2

After passing k — + oo, itis clear that

(09,,,(x), X —x) <0 Vxe§,.

So, x€S;,;- Itmeansthat xe€S. S is a closed convex subset in H, because each

S; is closed convex. Hence, from (2.3) and Xy, — x itdeduces that x is the mini-

mal norm element of S. This element is unique. Consequently, all sequence {x,}
converges weakly to x. Again, from (2.2), xeS, and the weakly convergent

property of {x,}, we have |x| <|x| VxeS. Therefore, lim,_,.x, = x, and
X = XO.
Now, because of (2.1),
N+1 N+1 N+1 2 N+l N+l
<a‘n:l y_an+ X, y_x> = Ocn:i Hy_xH + (Ocn:l _an+ )()C, y_-x>»

(0] AT ) = AT (x), y—x) = oy (AT )= AT (), y—x) +
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+ o (A7 = AT, y = x) + (0 — ) (AT (), y =),

(AT ) = AN, y—x) < (B +h)g(|xID]y - x|
for | x| < dy, and

a—b = (a-b) (T +ad b+ +abl P+ b,

we obtain the estimation

dl N . .

Hxn+l X H < N+1 2 ‘aiﬁl - O('{z +

an+l j=1

N+1 N+1 N

‘OC +1 O ‘ hyq th j

+ dO : N+1n + n+lN+1 "g(HxH)Z(XiH_] <

Oy Ol j=0

< M(hnHN':lhn + ‘anHN:lan ) = bn’

Oytq Oyt

and M is some positive constant.

The theorem is proved.

Theorem 2.2. Assume that the parameters ¢, Y, and 0 are chosen such
that

1 0<c<e, <G, 0=y, <7<l a,\0,

.. o~ ~ N+1 N+1

(i) D 0, =+, &, = 0" /(1+c,0,7),

(111) zn:] Y}lHZ}’l ~ Zn H < +oo,

@iv) limn—>+<>o Dn/&'n = limn—>+oo’YnHZn ~ Zp—1 H/(xn = 0 where

D = hn+l + hn + ‘(xn+l — O(n‘
n = N+1 N+1 :
O] Ot

Then, the sequence {z,} defined by (1.5) converges strongly to the element x,,
as n — +oo.

Proof. From (1.5) and (2.1), it follows
N .
WUy zo{‘ijzA/’?(ZnH) t Zp 3 ann + BnYn(Zn - Zn—l)’
j=0
N .
M, ZO%A;_:(X”) +x, 3 ann’
j=0

l“'l’n = ann’ Bn = ]‘/(1+cn(xll’lv+l)'

Hence,

N .

Wy ZOC{1<AJ"1(Z,1+1) _A}q(xn)’ pl — xn> + <Zn+l X Zpl _xn> =
j=0
= Bn<zn ~ Xps Lpl _xn> + Bn’Yn<Zn ~ 1> 4l _xn>'
Therefore,
Hzn+1 — H < BnHZn ) H + Bn’YnHZn ~ -1 H

Consequently,
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HZnJrl — X+l H < HZnJrl — H + Hanrl — H <

< BnHZn - an + ’YnHZn - Zn—lH + [)n p (l_dn)HZn - an + c}n’

since Bn < 1, where &n = ’YnHZn_Zn—lH + [)n' Therefore, ‘Zn+l - xn+1H — 0, as

n — +oo is followed from the lemma.

Lemma. Ler {u,}, {a,}, {b,} be the sequences of positive numbers satisfying
the conditions

1 upyy < (d=-a)u,+b,, 0< a, <1,

(ii) z:zoan = 400, lim by~ g,

Then, lim u, = 0.
n—>+oo

On the other hand,

n — 4oo,
The theorem is proved.

Remark. The sequences {0} and {y,} which are defined by

|x, — x|l & 0, as n — +oo. Infinal, we have x, — x,, as

h,= A+, o, = A+n)", 0< 2p(N+1) < h < 1,

B L e I L EEE P
n n~ <n-1
0, if Hzn ~ Zp-1 H =0,

with T > 1+ p(N +1) satisfy all conditions in Theorem 2.2.
3. Application. Given a finite family of weakly lower semi-continuous convex
functionals fj, j=0,1,...,N, find an xy € H such that

fj(x()) <0, j=0,1,...,N.
Denote by C; = {x: fi(x) < 0}’ j=0,1,...,N. Then, C; are closed convex. The

problem of finding x, eﬂj_V:OCj is the convex feasibility one. It is intensively
studied for the last time (see [11 — 13] and references therein), and can be rewritten in
the form of unconstrained vector convex optimization as follows. Define

¢;(x) = max {0, fj(x)}.
Then C; is coincided with the set ;.

It is easy to see that every convex program with the objective function f and the
constrain described by the functions fj, j=0,...,N—1, canbe also rewritten in the

form of unconstrained vector optimization with fy = f.
The problem of common fixed point is formulated as follows. Find x, e C =

= ﬂN C., where C, = FT), )= 0,...,N, where F(T}) is the fixed point set of

j=0 "7’
the nonexpansive operator 7;. Itis intensively studied in recent under condition
C= F(IyTy,..Ty)) = F(Ty_,...-TyTy) = ... = F(IyT, ... Ty_1Ty)

(see [14 — 16]). After, this results are generalized to Banach spaces in [17 — 19]. Evi-
dently, this condition can be replaced by the potential property of T;, i.e., there exists

a functional f;(x) such that fj'(x) = T;(x) for each j. Then, @;(x) = HxH2 /2 -
- fj(x) is convex, since its derivative [ —Tj are monotone. Moreover, Sj = Cj,
and the presented method in this paper can be applied to solve the problems.
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