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CONTINUITY WITH RESPECT TO THE INITIAL DATA
AND ABSOLUTE-CONTINUITY APPROACH

TO THE FIRST-ORDER REGULARITY

OF NONLINEAR DIFFUSIONS

ON NONCOMPACT MANIFOLDS

HEIIEPEPBHICTbD 3A IIOYATKOBUMU YMOBAMU
TA MIAXIJ TEOPII ABCOJIIOTHO HENNEPEPBHUX
®YHKIIA 0 PETYJISPHOCTI NEPIIOIO MOPSAJIKY
JIJISA HEJTHIMHAX JTU®Y3IH HA HEKOMIIAKTHHAX
PIMAHOBUX BAT'ATOBHUJIAX

We study the dependence with respect to the initial data for solutions of diffusion equations with globally
non-Lipschitz coefficients on noncompact manifolds. Though the metric distance may be not everywhere
twice differentiable, we show that under some monotonicity conditions on coefficients and curvature of
manifold there are estimates exponential in time on the continuity of diffusion process with respect to the
initial data.

These estimates are combined with methods of the theory of absolutely continuous functions to
achieve the first-order regularity of solutions with respect to the initial data. The suggested approach
neither appeals to the local stopping time arguments, nor applies the exponential mappings on tangent
space, nor uses embeddings of manifold to linear spaces of higher dimensions.

JlocimipKeHOo 3aIeKHICTh 3 MOYaTKOBUMHU YMOBAMU JIJIsl pO3B’sI3KiB AU(Y3iHHUX PIBHIHB 3 TIOOAIBHO He-
JMIIMIEBUMHA KoedillieHTaMi Ha HEKOMITAaKTHHMX OaratoBuax. Xoua (yHKIis METPUYHOI BiICTaHi MOXe
OyTH HE CKpi3b JBiYi TU(EPEHIIHOBHOIO, TOKAa3aHO, IO 32 IIEBHUX YMOB MOHOTOHHOCTI Ha Koe(iIli€H-
TH Ta KPUBHHY 0araToBH/y iICHYIOTh €KCITOHCHIIIANbHI 32 4aCOM OLIHKH Ha HEMEPepBHICTh Audy3iiiHOro
POLIECY 33 MOYATKOBUMH YMOBAMH.

V noeaHaHHI 3 METOJAMU TEOPii aOCOMOTHO HeTlepepBHUX (QYHKITIH 11i OLIHKK IPUBOIATH JO MEPIIOrO
HOPSAKY PETYIAPHOCTI PO3B’S3KiB 3a MOYATKOBHMMHU YMOBaMH. 3alpOIIOHOBAHHMII MiIXiX He BUKOPHCTOBYE
TEXHIKy MOMEHTIB 4acy BHUXOIY IPOLECY 3 JOKAJIbHUX KOOPIMHATHHX OKOJIB, @ TAKOXK EKCIIOHEHLialb-
HMX BiZOOpa)keHb 3 JOTHYHOTO MPOCTOPY abo0 BKIAJEHHS 0araToBHAYy 10 JiHIHHOrO mpOCTOpY OLTBLIOL
PO3MIpHOCTI.

1. Introduction. In this article we study the continuous dependence and the first-order
regularity with respect to the initial data for Ito — Stratonovich diffusion

d
Syf = Ao(y)dt + Y Aa(yi)oWE, 5 ==, (1.1)

a=1

on noncompact oriented smooth complete connected Riemannian manifold M without
boundary. Here Ag, Ay, a =1,...,d, are globally defined C"*°-smooth vector fields on
M and 6W* denote Stratonovich differentials of one dimensional independent Wiener
processes W&, a=1,...,d.
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Under the solution of (1.1) it is understood a continuous adapted process yy such that
for any C'°°-function f with a compact support on manifold M the following stochastic
integral equation is satisfied

t
fly? )+ [ (Aof)(y? ds+2 A f)(y2)sWe (12)
s+ [ /i

Traditionally the continuity of diffusion process y; with respect to the initial data,
i.e., estimate

3K, BpP (7, y7) < e P (x, 2), (1.3)

is obtained using the geodesic deviations formulas and Jacobi fields approach. The natu-
rally arising conditions are related with the global Lipschitz assumptions on coefficients
of diffusion equation and semiboundedness of curvature of manifold, e.g. [1-5].

It is known that under the same global Lipschitz assumptions and semiboundedness
of curvature the process y; is first-order regular with respect to the initial data = and

there is derivative 88%, e.g. [1] (Ch. 4, § 3), [2] (Ch. VIII). The restriction on curva-

ture is related with the use of uniform exponential charts of manifold M with further
estimation of local difference expressions for derivatives

yrteh — gz oyp

€ ox
Later in [6] (Ch. 4, § 8), by application of local stopping time techniques, it was demon-
strated that the mapping M > z — y7 € M represents a diffeomorphism till the first
explosion time. However, it is still not clear, what global assumptions on coefficients and
curvature, besides global Lipschitzness and semiboundedness of curvature, may lead to
non-explosion and first-order regularity of nonlinear diffusion processes on noncompact
manifolds.
In [7] it was found a way to avoid the application of geodesic deviation’s techniques.
In [8] these results were used to prove the non-explosion of nonlinear diffusion 7, i.e.,
the existence and uniqueness of solutions of (1.1) for all ¢ > 0. The proposed conditions
on the coefficients of diffusion equation and curvature represent a manifold analogue
of coercitivity and dissipativity conditions, known previously for nonlinear monotone
equations on linear spaces [9, 10].
In this article we prove that under the same conditions process y; continuously
depends on the initial data x. Moreover, using the methods of absolute continuous

oy

[h). (1.4)

functions theory, we demonstrate that the existence of first-order derivative with

respect to the initial data is a direct consequence of the continuity estimates ( 1.33)6.

In Section 2 we formulate the main result of the article. Sections 3 and 4 are devoted
to the proof of continuous dependence of diffusion process y; with respect to the initial
data x. In comparison to the Euclidean space with C'°°-smooth square of metric distance
p*(z,y) = ||z — yl||?, for the general manifold the square of metric distance p?(z,y),
defined as a shortest geodesic distance

(6), (L.5)

paz) =inf g [BOFdE 10)=a 1) =2 for 5(0= 5
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CONTINUITY WITH RESPECT TO THE INITIAL DATA AND ABSOLUTE-CONTINUITY ... 1301

may be not twice differentiable everywhere, i.e., the following second-order operator:

d
Lf(w,2) = {Aém 9+ Z (Ah@) + Az >)2} f(z.2)

with A (x), A(z) acting correspondingly on the first  and second z variables of
function f(x, z), may be undefined.
Therefore, the direct application of Ito formula

t
B (yy7) = o, 2) + / B(LoP) (47,7 ) ds (1.6)
0

in order to obtain (1.3) from upper bounds

LpP(x,2) < KppP(x,2) (1.7)

becomes impossible.

In Section 3 we develop results of [7, 8] and replace the strong estimates (1.7) by
the weak estimates on operators of structure (1.6), acting on the metric function on the
product of manifolds M x M. The main difference from [8] is that we have to work
with two point functions p(z, z) instead of estimation of p(o, x) for some fixed 0 € M.

In Section 4, following the arguments of [11], we apply weak estimates on operators
L to show that for coercitive and dissipative diffusion there is a constant K such that
process

t
PE0) ~ K [ 02 0)ds
0
represents a supermartingale. This, in fact, replaces the Ito formula approach (1.6) and

leads to (1.3).
In Section 5 we demonstrate that the solution yzgl)(a:) of the first-order variational

oYy . -
equation represents the first-order derivative y( )( ) = % with respect to the initial
x

data.

First we construct special coordinate systems x; = p(0;, ) in small local vicinities
of manifold. The use of these particular coordinates and special transfer of relation (1.2)
from manifold M to IRY™ ™ permit to obtain the first-order regularity from continuity
estimates (1.3).

Namely, estimate (1.3) implies that for Lipschitz continuous path [a,b] > u —
— h(u) € M on manifold the mapping

[a.b] 5 u — g™ (1.8)

d h(w)

“h— with
u

|0, (u)| € L>([a,b] x [0, T], LP(2)) forall T > 0, p > 1. By definition of solution (1.2)

we have for f € C§°(M)

is Lipschitz continuous, i.e., for a.e. u € [a, b] there is derivative 6;(u) =

b
/ (0).00(w) b = (V) — (01 =
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= £(h) - F(@) + [ [(Aa$EE®) = (Aan) @) owe s

0

t
+ [ [(40n@E®) = (Aaf) i) ds =
0

t

b b
:/<Vf(h(u)),h’(u)>du+/ /<V(Aaf)(yf(“)),03(u)>du SWot

0
t T b
+/ /< (Ao f)(yh), 6, (u)>du ds. (1.9)
0 La
b
Removing the integral ... ds we obtain equation on the first-order variation for pro-

cess 0;(u). Therefore thg derivative with respect to the initial data 6;(u) must represent
solution to the first-order variational equation 6;(u) = yt(l) (h(u)). In Section 5 formal
reasoning (1.8), (1.9) is made rigorous.

Finally remark that the use of arbitrary paths h € Lip([a7 b, M ) permits to avoid the
separate conditions on the curvature of manifold, related with the existence of uniform
exponential charts, like in [1, 2]. Moreover, the application of absolute continuous func-
tions theory has also given a possibility to avoid the use of pure stochastic techniques
of local stopping times, necessary for the estimation of difference expressions (1.4) in
local coordinate systems, like in [4, 6]. Actually, we demonstrate that the first-order
regularity is a direct consequence of continuity estimates (1.3).

2. Main result. Let us suppose that the coefficients of equation (1.1) and curvature
tensor of manifold fulfill the following assumptions:

coercitivity: Jo € M such that VC € R, 3 K¢ € R! such that Vo € M

<fTo<>Vp<ox>+cZ||A P < Ke(1+p%(0.2)); (1)

dissipativity: VO, C’ € R, 3 K¢ € R such that Vo € M, Vh € T,M

(VAo(a)ln >+02um Ol

d
= 'Y (Rl Aa(@), ) Aa(@),h) < Kol b1, (2.2)

a=1

— 1 «—d
where Ag = Ao + 2 E . V., A, and notation VH [h] means covariant derivative
a=

in direction h

(VH(z)[h)' =V, H'(z) - 7. (2.3)
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CONTINUITY WITH RESPECT TO THE INITIAL DATA AND ABSOLUTE-CONTINUITY ... 1303

and [R(A,h)A]"™ = R, AP A"h? for (1,3) — curvature tensor with components

al"'m arm )
m o= p L pa J m
pte = Fpa  ggt T lweli T/ 0% (2.4)

nonlinear behaviour of coefficients and curvature: for any n there are constants
ko, ko, kg such that forall j =1,... , nand Vo € M:

(VY Ao(2)]| < (1 + pla, 2))ke,
(V) Aa(2)]| < (1 + p(x, 2))Ke, 2.5)
(VY R(x)|| < (1 + p(x, z))Kn.

Denote by Lip([a, b], M) the space of Lipschitz paths on [a, b] with values in M. It
is formed from continuous paths & € C([a,b], M) such that 3K, Ve, d € [a,b] there
is estimate on metric distance p(h(c), h(d)) < Kp|c — d|. In particular, by theory of
absolute continuous functions this means that ||2/|| € L>°([a, ], TM) and Lipschitzness

constant K, = sup ||A'(2)||z, ., M-
z€[a,b]
Theorem 2.1. Under conditions (2.1), (2.2), and (2.5) the solution yi of diffusion
equation (1.1) is differentiable with respect to the initial data.
() = Wt

Its derivative y; represents a unique solution to the first-order varia-

tional equation, written in local coordinates

Sy (@) = —T,m (yF) [ ()] 8(y2) T + VAT (ER) [yt ()] oW+

+V, AT (€0 [y ()]t (2.6)

with initial data y(()l) (x) = I given by identity matrix.
Moreover, for any path h € Lip([a,b], M) and f € C§°(M) a.e. integral relation is
true:

b

P ™) = £ ) = / (VI W), A D)

Under solution of (2.6) it is understood a continuous adapted integrable process

Ry xM>(t,z) —

— gV (@) € L2([0,T), LP(Q, Tye M @ TEM)),  forall T >0, p>1,
such that for any f € C§°(M), h € T,M

(VD) @) = (V@) @)

Tye M T.M
t

t

¥ / Auh) o @)W + [ (VAP0 @ )ds. @8)

0

The proof is conducted in further sections.
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3. Weak estimates on diffusion generators. Consider open set UCM with com-
pact closure U and function ¢V such that \/¢U € C§°(M,[0,1]) and ¢Y(2) = 1 for
2z €U, 0< (Y <1 otherwise. Consider differential operator on M x M

LY f(w,2) = ¢V ()¢ (2) L (x, 2).

Being a second-order differential operator with localized coefficients, £V corresponds
to the localized Stratonovich diffusion yV (z, z) on M x M

d
50 (2,2) = YA/ CC e ) { ALY + AL ) w4
a=1
+ CU(ytH’U){CU(yf’UAé(yf’U) -

d
- D S A ALt

G Ol A 611 -

d
R A . a
a=1

with initial data y (z,2) = (z,z), where y;*¥ and y; "V

are first and second com-
ponents of process yY = (ytI v ytI I’U) on the product M x M. Remark that, due to
property ¢ U|U = 1, for initial data =, 2 € U process y (z,z) coincides with process
(y#,y7) till the first exit time ¢ < 7(w) = inf {¢: yf(w) € U or yf(w) € U}.
Equation (3.1) has globally Lipschitz coefficients with all bounded derivatives, there-
fore it has unique solution that C*°-regularly depends on the initial data = [4-6, 11].
Its diffusion semigroup (P f)(z) = Ef(y (x,z)) preserves the space C§° (M x M)
of non-negative C*°-functions with compact support.
Main result of this section lies in the weak uniform with respect to U estimates on
generators LY.
Theorem 3.1. Under conditions (2.1), (2.2), and (2.5) there is K such that ¥ (Y €
C§° (M, [0,1]) with CU’U =1land vy € C5% (M x M)
(1LY} 0)p(x, 2)do(z)do () < K / p(@,2)p* (. 2)do(2)do(z).  (32)
MxM MxM

Proof. As [LY]* = [¢Y(z)CY (2)L]* = L£*¢Y(2)¢Y(2), estimate (3.2) will follow
from the weak estimate on operator £: 3K Vi € C5% (M x M)

/([,*w(x,z))pQ(m,z)da(x)da(z)SK / Y(z, 2)p* (2, 2)do(z)do(2)  (3.3)

M x M M xM

if one substitutes first ¢ (z, z) = (Y (2)¢Y (2)p(z, z) and then applies 0 < ¢V < 1.
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Similar to [8] (ff. (16)—(18)) the following representation for the left-hand side of
(3.3) is fulfilled

/ (L7 (2, 2))0 (2, 2)do (x)do () =

MxM

. ¢(m){p2(778(x)ﬂ78(§))—pQ(w7z)+

e—0+
MxM

£2

d 2
;Z: (na( ) na( ))+p (7705 ( ) Mo ( ))—Qp (l‘,Z) }da(x)da(z) (34)

Here 7§, 15 denote the shifts along vector fields A, A, and 7°(z) = z. Operator
L* has representation £L* = %szl(Az)Q + Aj in terms of adjoint fields X*f =
—(divX)f — X f to vector field X.
Now let us estimate fractions in the right-hand side of (3.4). In the vicinity of
geodesic y(¢), ¢ € [0,1] from (0) = x to y(1) = z that minimizes (1.5) consider
smooth vector field H. Introduce a family of paths

[0,1) x (=6,9) > (¢,s) — v(£,8) € M

such that at s = 0 path (¢, s) |s:0 = ~(¢) gives geodesic y above. Parameter s
corresponds to the evolution along field H:

Sa(t:s) = HO (65)). 63)

In the following lemma we find estimates on the first- and second-order differences in
(3.4). Field H will be chosen later to be H (¢, s) = Ag(y(¢,s)) or H(¢,s) = Ao (v(4,s))
correspondingly.

Lemma 3.1 ([8], Lemma 2). The following estimates on difference operators on
metric function are fulfilled

pQ(V(O’ 8)’ ’Y(lv 5)) — 02(0, Z‘)

3

e 1
) 0? .
0|’y(€7s)‘2d€+//‘w|7(€,s)’2

0 0

<
18
g/f el ds, (3.6)
0s
0

pQ(’Y(O,&),’Y(l,é‘)) + P2(7(0,5),’Y(1, 75)) — 2p2(0a ‘T) <

g2 -
1 5 1
/57 Es]%+ //bdh ?|deds, (3.7)
0 0
S 0
where we used notation y({, s) = @’y(f, s).
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The right-hand side terms in (3.6), (3.7) have the following representations in terms
of field H :

” = 2(%, VH[]), (3.8)

0.

%f—;w,s)lz = [VHRI" — (3. RUHAH) + (3,V(Va DR (39)

’2 = (¥, D[¥]) with operator D that
depends on the field H up to its third-order covariant derivative and on curvature tensor
and its covariant derivative.

Next we use Lemma 3.1 to find weak estimates on operator £. Due to (3.3), this
ends the proof of Theorem 3.1.

Lemma 3.2. Under conditions (2.1), (2.2), and (2.5) there is constant K such that
Vip € C§° (M x M)

93
The third derivative has representation 958 h(ﬁ, s)
s

/ (L (x,2))p* (x, 2)do(2)do(z) < K / Wz, 2)p (2, 2)do(x)do(z). (3.10)
MxM MxM

Proof. Coincides with the proof of [8] (Lemma 3). It is only necessary to choose
fields H to be H(y(¢,s)) = Ao(v(¢, s)) or H(y(¢,s)) = Aa(v(¢,s)) for the first- and
second-order differences in (3.4).

In [8] (Lemma 3) we used additional factor (1 —¢) in field H, i.e., the choice of field
H was H(v(¢,8)) = (1 = 0)Ap(y(¢,s)) or H(y(¢,5)) = (1 —0)Aa(y(¢, s)), this made
point (1, s) = z to be the same for all s. Therefore, in calculation [8] (ff. (30)—(33))
does not appear additional multiple ¢ and it is a little simpler.

4. Estimates on the continuity with respect to the initial data. Now we apply
weak estimates (3.2) to show, similar to [11], that some process on manifold represents
a supermartingale. Thus we overcome the difficulties, related with the direct application
of the Ito formula arguments (1.6), (1.7).

Recall that process X is supermartingale with respect to the flow of o-algebras F; if
forall 0 < s < ¢ itis fulfilled E(X;|Fs) < X, where E(-|F;) denotes the conditional
expectation with respect to o-algebra F.

Theorem 4.1. Under conditions (2.1), (2.2), and (2.5) there is an independent of
UCM constant K such that process

AV (@, 2) - K / P20 (@, 2))ds @)
0

represents an integrable supermartingale with respect to the canonical flow of o-algebras
F, related with d-dimensional Wiener process W, o = 1,...,d, in (1.1). Notation
0% (yY (z,2)) means the geodesic distance between first and second components of pro-
cess yY (z,2) (3.1) on the product M x M.

Moreover, the solution of equation (1.1) continuously depends on the initial data,
i.e., estimate (1.3) is true.

Proof follows lines of proofs of Lemma 4 in [8]. Since we work below with the
components of process yV (x, z) and have to make several relevant modifications, we
outline its main steps.
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Recall, that semigroup PU, generated by localized process y¢ (x, z) (3.1), preserves
the space CF5° (M x M ) of non-negative C'*°-functions with compact support, so the
integrals below are finite. The application of weak estimate (3.10) leads to

Ve 5 (M x M): % / o(z,2) {PYp*(-,)} (z,2)do(z)do(z) =
MxM

- % / {[PtU}*QD} (xvz):oz(x,z))dd(ic)do(z) =

Mx M

= [ 1P (0206 2 o (@) () =

MxM

- / ] (Y @)CY (2) {[PY) 0} (2, 2) o2 (2, 2)dor () dor (=) <

MxM

<K / ([PY) 0} (2, 2)0%(, 2)do (x)do(z) =

M x M

— K / (@, 2) {PY 0%( )} (&, 2)do(x)do(2)
M x M

where we applied £1 = 0, used that due to the compactness of support of function
¢Y > 0 the integrand ¢ = ¢Y(2)¢Y(2) {[PY]*¢} belongs to space C§° (M x M),
then applied (3.10) and property ¢V < 1.

Therefore for all ¢ € CF°, (M x M) we have estimate

/ (@, 2) {BY ()} (z, 2)do (2)do(z) <

M x M

< / o(w.2) | PP, 2) + K / {PYp(, )Y@, 2)ds | do(z)do(z)
0

M x M

and, removing ¢, conclude its pointwise consequence
t
(PUR(} @2) < 2@ 2) 4 K (P60} s 42
0

The Markov property of process y¢ (x, z) implies for its semigroup PU that

(PP WY (2,2)) = E(f(ylys(2,2)) | Fs), t.s>0, (4.3)

which permits to substitute instead of z, z initial data y¥ (z, z) in (4.2). From (4.3) we
have

E(0*(yiyr(2,2)) | Fr) = (P ()7 (2, 2)) <
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< P20V (x.2) + K / [PV )} (4 (. 2))ds =
0

t+T
— (4 (2,2) + KE / Y (2, 2))ds

T

7. (44)

which means that process (4.1) is supermartingale. Indeed, the supermartingale property
t+71
E (208 .2) - K [ 200 @ 2)ds| 7 | <

T

<P @)~ K [ 220 (@ 2)ds
0
coincides with (4.4). The integrability of process (4.1) follows from the compactness of
the closure of set {z: ¢Y(z) > 0}.
Next suppose that initial data =, z € U. Introduce stopping time

V(W) =inf {t > 0: y/ (z,2) ¢ U x U}.

The Doob—Meyer free choice theorem, e.g. [12] (Ch. VI, § 2), permits to substitute
any finite stopping times .S, T" such that 0 < S < T into the supermartingale property
E(X7|Fs) < Xg. Let’s apply it with S = 0 and 7' = t A 7Y to supermartingale (4.1).
Due to E(:|Fy) = E(-) we have

tArY

e = B0 0 (0,2)) < 2°0,2) + KB [ 9200 (0,2))ds <
0

t

t
<mg+ KE/pQ(ngU (z,2))ds = my + K/msds,
0 0

where y¥, . (z,2) = y% (x,z) for s > 7Y is a stopped process on the boundary of U

and we enlarged the upper limit of integral.
From Gronwall - Bellmann inequality we conclude

Ep*(yih v (2,2))) < eXp? (2, 2). (4.5)

Let U,, denote the open ball at point o with radius n, then for sufficiently large n
points z, z € U,,. Consider measurable random set V,,(t) = {w: Vs € [0,t] yf (w) € Uy
and y7(w) € U,} that corresponds to paths of processes yf (w), y7(w) (1.1), staying
inside of set U, till time ¢. Then (yf (w),yf(w)) = th/\TU (x,z,w) for all w € V,,(t)
and (4.5) leads to

Ely, 10*(yf,yi) = Elv, (0> (Yr v, (z,2)) <
<Ep*(ylr v, (2,2)) < ' p%(, 2), (4.6)

with characteristic function 1y, ;) of set V().
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Due to the non-explosion lim 7Y (w) = oo [8], for ae. w both paths

n—oo

y¥ (w), yf(w) sooner or later completely lie in all sets U,, for n > ng with sufficiently
large ng. Therefore sequence V,,(¢) is increasing to the full probability space, i.e., lower

limit lim 1y, 4)(w) = 1 a.e. The application of Fatoux lemma { i.e., that for f,, > 0

n—oo

the lower limits fulfill / lim f,dpy < lim [ f.du ) to the left-hand side of (4.6)
leads to the statement
Ep*(yF,y7) < lim Epg(yg\"TUn (z,2)) < eXp?(x, 2). 4.7)
n—oo

The theorem is proved.

In the following theorem we generalize Theorem 4.1 to the polynomials of metric
function. Remark that the convex function of supermartingale should not be a super-
martingale again, so the use of coercitivity and dissipativity conditions (2.1), (2.2) is
essential for existence of appropriate constant K¢ in (4.9).

Theorem 4.2. Let QQ be a nonnegative monotone polynomial function on half-line
Ry such that

30 V220 2Q'(2) <CQ(2), =2[Q"(2)]<CQ(2). (4.8)
Under conditions (2.1), (2.2) and (2.5) there is constant Kq such that uniformly on

vicinity U the process

t

Q* (WY (x.2))) - Ko / Q(0* (Y (z, 2))) ds 49)

0

is an integrable supermartingale.
Moreover, a unique solution yi to problem (1.1) fulfills the estimate on the continuity
with respect to the initial data

EQ(p*(yf,y7)) < eX°'Q(p*(z, 2)). (4.10)

Proof is done in analogue to [8] (Theorem 5).
5. Absolute-continuity approach to the first-order regularity with respect to the
initial data. Consider arbitrary smooth path h € C°([a,b], M) that starts at point

= h(a). To obtain the equation on the first variation y." (z) [1(a)] = % yrw)
let us formally differentiate (1.2) v
(VI P @)W ()] ) =
¢
= (Vf(@), 1 (@) + / (V(Aa)w2), v (@) [ (@)] YoWe+
* 0
+ [ (o)), o0 @) [0 (0] 5.1)
0
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This leads to the equation on the first-order variation in local coordinates
e.g. [13, 14]

Sy @) = T ) [ @)] 0 () "+

J

+ZV AR D) [yt (@) 76w + VAR (1) [yt ()] e (52)

with initial data y" = I.

In next theorem we give sufficient conditions for the solvability of equation (5.2),
see also e.g. [13] (Theorem 15).

Theorem 5.1. Suppose that conditions (2.1), (2.2), and (2.5) are fulfilled. Then
equation (5.2) has unique solution, i.e., exists a continuous adapted process y( )( )R]
with values in Tyz M, such that for any f € C§°(M) and h' € T,,M relation (5.1) is
true.

In particular,

Vp>1 3K, suchthat E|y"( < et (5.3)

HT ®T*]\l

Proof. Since equation on the first variation is formally calculated as derivative of
(1.1), it also has the following equivalent form to (5.2) (see [13], (3.1)):

QA (y?) o, QAT (YY)
5( (1) Z 8y1’t ()]§5Wt +7§ypt [y,gl)(x)}?dt. (5.4)

Therefore it represents an equation with the locally Lipschitz coefficients. Standard
results about the solvability of finite-dimensional diffusion equations lead to the local
existence and uniqueness of its solutions till the first explosion time, e.g. [2, 4, 6, 11].

The non-explosion of process y( )( ) follows from the following representation of
the local differential of its norm

dlly" @)12 = 2(u" (@), Vi A [ @)] ] Yawe+
Lo o))+ 3 feasien]

_Z< avyt ))Amyt(l)(x)>}dt7

proved as a base of recurrence (for v = @) in Lemma 13 [13] (see also [13], (4.28) for

i=1).
Therefore the dissipativity condition (2.2) arises in the second line. Due to the
0 . Lo
initial data y( )( ) = a—x = Id and Gronwall - Bellmann inequality, it leads to the
x

non-explosion estimate (5.3), i.e., to the existence and uniqueness of solution y( )( ) to
(5.2), (5.4) for all t > 0.

The theorem is proved.

In the following theorem we apply the theory of absolute continuous functions to
show the first-order regularity of diffusion process.
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Theorem 5.2. Under conditions (2.1), (2.2), and (2.5) process y; is differentiable

with respect to the initial data. For any Lipschitz continuous path h € Lip([a,b], M) its
h(z)

derivative is represented by solution of the first-order variational equation (5.2)

h(z)
dyéT — D (h(2) [ (2)]

and a.e. integral relation (2.7) is fulfilled.
Proof. Let us prove relation (2.7) for functions f with sufficiently small support,
then the use of the decomposition of identity guarantees (2.7) for arbitrary f € C§°(M).
The main idea of proof is following: for any small vicinity U C M we are going to
construct the globally defined functions #* € C'(M), i = 1,...,dim M, such that

891’ T
78(%) (Step 1);
x
2) any function f € C§°(M) with compact support in U has an unique representa-
tion in terms on 6% (Step 2), i.e.,

1) the superposition with diffusion 6° o y¥ is regular, i.e., exists

3f € C®RY™M R) suchthat VzeU f(z)=f(0"(x),...,00™ M (z)).

These properties guarantee that for any f € C§°(U) expression f(yf) =

= f(6"(yF),...,09™M(yr)) is again regular with respect to the initial data.

Finally, in Step 3 we will use the last property to derive the equation on deriva-
. Oyp
tive .

Steg 1. Construction of special coordinate system and use of continuity esti-
mates (4.10) to guarantee the existence of derivative with respect to the initial data.

First note that for any point o € M there is a sufficiently small vicinity U =
= U(0) 2 o and points outside of this vicinity o; = 0;(0) € U, i = 1,...,dim M, such
that they generate the smooth local coordinate’s mapping in U

0(z) = (Hi(x))?:[llM: U — RI™M by rule 0%(z) = p(os, x).
Recall that above 0°(z) = p(o0;, =) denotes the shortest geodesic distance from = € U
to point 0;, ¢ = 1,...,dim M.
Vicinity U must be also chosen so that for any point € U there is no point z € U
such that it has the same coordinates () = (z). Last assumption actually means that
the points o;(0) are sufficiently far from U, so that the “phantom” images of U

Ph(U)={2¢U:0(z) =60(z) forsome z €U}

do not intersect with U. Moreover, by varying the size of U (o) and points o;(0) &€ U(0)
we can guarantee that “phantom” images of U are far from U:

Je>0 Yoe M dist(U(o), Ph(U(0))) > 2. (5.9

Next, since for sufficiently small U the coordinate mapping 6: U — RIMM be.
comes bijection with continuous inverse, the set 8(U) = {g(x): zelU } C RdmM
being a preimage of open set U, is open too. Moreover, due to the role of parame-
ter ¢ (5.5), i.e., the absence of equidistant points, the mapping 6 is C°°-smooth in the
e-vicinity of U with C°°-smooth inverse.
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Finally remark that 6(z) are globally defined continuous functions on the manifold
M, but only in the e-vicinity of U they form the coordinate system. In particular, due
to the triangle inequality

|p(0i7x) - p(oi,z)| < p(x, Z)v (56)

functions @ are globally Lipschitz continuous with constant 1.
Introduce processes

then from (4.10) and (5.6) we have

Vp>1, T>0: sup E|9i(y§’)—9i(yf)’p§
te[0,7]

< sup E[p(yf,97)]" < e pP(x, 2).
te[0,T]

Therefore path [a,b] € z — 0i(y)*)) € L>([0,T], LP(©2,W)) is Lipschitz continuous
for Lipschitz continuous h € Lip ([a, b], M):

Ve defat: s ]E|ei(y?<c>> — 0 (g )P < e — ST |1 || o (o). rmny-
te|0,

By theory of absolute continuous functions there exists derivative
a6’ (")
dz

with Lipschitzness constant

€ L>([a,b] x [0,T],LP(Q,W))

) p
a9’ (yr ™)
sup E Té < eKPT||h'||poo([a’b]’TM) (5.7)
z€la,b],t€[0,T Tyh,(z)M®Tf:(Z)M
and we have a.e. relation
b i h(z)
0 h(b i h(a do*(y
0 (") = 0" () :/%dz (58)

a

Above by W we denoted Wiener measure, related with process {W },.

Step 2. Construction of unique RY™ M _representations of functions in small coor-
dinate vicinities.

Next note that any function f € C§°(U) with compact support in U there is a
smooth function f € C5°(RYm M) that provides its unique coordinate representation in
terms of coordinates (x)

f(z) = 1y (z) f(O(x)), (5.9)

where 1y (x) denotes the characteristic function of U.

At the first step, function fis defined as the coordinate version of f in coordinates .
Then it is continued to all R4™ M by zero outside of the open set #(U). The character-
istic 1y () is added to avoid the “phantom” copies of function f outside of vicinity U,
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which appear at the equidistant points z such that §*(z) = p(0;, x) = p(o0;, 2) = 0(2),
1=1,...,dim M. Remark also that property (5.9) is not true for all functions f on M
because () can not form a global coordinate system on M.

However, the presence of factor 1y (z) in (5.9) does not influence further calculations
because the compact support of f completely lies in the open set U. For example, the
differential operations do not feel the factor 1y (x)

dim M

(Af)(@) = (Vaf)(z Z 0;F(0(x))V 467 () =

dim M
=) Y (B0, 7)(0(w) = 16() (A7) (7))

with local coordinates A7 (8(z)) = A7 (x) of vector field A in the vicinity U.

Remark that each function A7 can be uniquely extended to C§°-function over all
RE™ M for points O(x) € RYU™M with x € M such that dist(z, U) < ¢ it is defined by
formula

A7 (0(2)) = xe (dist(z, U)) A0 (z)

and by zero at all other points of R4™ A fixed and independent on o € M function
Xe € C*(R4,[0,1]) is such that x.(0) = 1 and x.(A) = 0, A\ > &, parameter ¢
appeared in (5.5). In other words, we take the coordinates A7 in the image of e-vicinity
of U, leave them unchanged in #(U) and crop them to zero outside of f-image of the
e-vicinity of U. Since the mapping 6 is C°°-smooth in the e-vicinity of U with C°°-
smooth inverse, we obtain C§°-regularity of Aj. However, due to f € C3°(U) the
function Af € C5°(U), i.e., the values of field A outside of U do not play a role.

Remark also that the representation (5.9) is more comfortable than, for example, the
use of embeddings of manifold M into Euclidean spaces M C R"™ of higher dimensions
n > dim M. In this case one should use the global coordinates of R™ instead of the local
coordinates of M, e.g. [6, 11] and references therein. In particular, such approach leads
to complicate work with the continuation of coefficients of equation from embedded
submanifold M C R"™ to R™ and forces to enter additional projectors from R™ to M for
embedded R™-versions of (1.1).

One more advantage is that for functions inside of U we have their unique represen-
tations f in terms of local coordinates #(z), i.e., a unique function f on R4MM | Thig
property will permit us below to make all calculations for local functions f € C§°(U)

in linear coordinate space R4m M
d?( h,(u))

Step 3. Derivation of stochastic equation for derivative and its relation

u
with the first-order variation process yd )(h( ).

Since the superposition of smooth finite function and Lipschitz continuous function
is also Lipschitz continuous, we have from (5.8)

b
FOMY = ) = 10 () FOMD)) | =

b dim M

h(z)
:/ h(z Z 6f h(z )%z)dz (5.10)
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From another side, the definition of solution ¥y (1.2) leads to the representation for
difference

Fr®) = F() = £(h(b) — f(h(a))+

+Z/ (AaP) (B2 ®) = (Aaf) (4h) | 67+

t
+ [ [(A0n(2®) = (o) ()] ds =
0

= 1u(h()f (B(h(b))) — 1u(h(a)) f (B(A(b)))+

t

+3 [ [1oh®) (AP @) - 10 (62) (AaF) @2)] oWt

“ 0

+ [ [106®) (Raf) @62©) ~ 10 (62 (Aa]) @b ds. (S0

Again applying that the superposition of smooth function Af € Cs°(R%) and Lip-
schitz continuous map [a, b] — 6° (y?(z)) is also Lipschitz continuous, we obtain from
(5.10) and (5.11) that

b dlmM (z)
2) 2o dB7
/ (s Z 5,7 (0 W),

dz
b dim M HJ(h(z))
/ Z 8;f (0 sz+
t [ b dim M dﬂj( h(z))
| oS 0 a0 dd] e
(0% 0 a 1=

t[e dim M ()
z T N(o dej( )
+0/ a/1U( yh=)) ; (8;40f) (B(y2)) dzdz] ds.

Due to (5.3) and (5.7) the terms under integrals above are in Loo([a, b x 0,7,

t
LP(Q,W)), p > 1,T > 0. So the order of integrals / and / can be changed. As
a 0

h € Lip([a, b], M) and [a, b] were arbitrary, the integrands under / must coincide: for

almost all z € [a, b]
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dim M . h(z)
z (D z do’
@) Y 0, FEw) P
j=1

=15(h(=)) Y 9 F(O(h(=) w N
L dim M i h(z)
+ X [ w6 Y @A) @) T awes
> o0 L j=1 |
tr dim M o ; h(z) E
[ i) Y @A) @0k0) T s
0 L j=1 ]

Turning back to the invariant notations and fields on M we obtain

h(z) .
<vf(y?(z)), dyd> _ <Vf<h<z>>, e )>+

. t
dyh ) e
+Z/<V(Aaf)(y?(z))7ydz>5W3+/<V(A°f)(y?('2))’ydz>d5'
@ 0

0
(5.12)

Here we used that when y?(z) € U all terms with index j represent coordinates of
corresponding tensor-invariant objects. From another side, when yg(z) ¢ U terms with
index j are no more coordinates, but as the multiple 1U(yg(z)) = 0 and supports of f,
Ao f, Aof lie in U, these terms are also invariant, being defined by zero outside of U.

Relation (5.12) is a further advantage of relation (5.9): it is fulfilled for the process
y7 that may many times enter and leave vicinity U. Therefore we do not need to restrict
the consideration till the first exit times and use local arguments.

Finally notice that equations (5.12) and (5.1) have the same structure. Due to the co-

d6? (h(z))
dz

(5.1), the first variation coincides with the derivative with respect to the initial data

inciding initial data = [W'(2)]” and the uniqueness of solutions for equation

h(z)
WD) ()] = 2

After substitution of this relation into (5.10) we come to (2.7).
The theorem is proved.
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