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MUCKENHOUPT – WHEEDEN THEOREM 
FOR GENERALIZED  f -RIESZ TYPE POTENTIALS 

TEOREMA MAKENXAUPTA – VIDENA DLQ UZAHAL|NENYX

POTENCIALIV  f -RISIVS|KOHO TYPU

We obtain the Muckenhoupt-Wheeden theorem for some class of potentials.  As a consequence, we
describe the equivalent norm in the generalized Bessel potential space of negative order. 

OderΩano teoremu Makenxaupta – Videna dlq odnoho klasu potencialiv.  Qk naslidok, opysano

ekvivalentnu normu v prostori uzahal\nenyx potencialiv Besselq vid’[mnoho porqdku. 

Introduction.  The paper is devoted to the generalization of Muckenhoupt – Wheeden
theorem (see [1], Theorem 3.6.1, also [2]) to the case of potentials 

I xf µ( )  =  
µ ( )dy

x y f x yn
n − −( )−∫ 2

R

, (1)

where  µ  is any positive measure on  Rn ,  and  f  is a Bernstein function, which means
that  f  is a real-valued function defined on  ( 0, ∞  ) ,  satisfying the following conditions:

1)  f C∈ ∞∞( , )0 , 
2)  f ( x )  ≥  0, 

3)  ( ) ( )( )−1 k kf x   ≤  0  for all  k  ≥  1. 

For a positive measure  µ,  we define the  f -maximal function  M f µ  

M xf µ( )  =  sup
( ( , ))

( )/
r

n
n

n
B x r

f r r>
−

0
2

µ
ω

, (2)

where  ωn   =  dx
Sn−∫ 1   is the volume of a unit ball in  Rn .  For  f ( x )  =  x 

α,  this maxi-

mal function is called a fractional maximal function of a measure   µ   and is denoted

by  Mαµ ,  see [2], for example.  We show that the  Lp -norm of  M f µ ,  1  <  p   <  ∞  ,

is equivalent to the  Lp -norm of  I f µ .  Such an equivalence gives us the description of

an equivalent norm in the generalized Bessel potential space  Hp
f n( ),| | ( )⋅ −2 2

R ,  which is

the closure of the Schwartz space  S n( )R   under the norm 

u Hp
f n( ),| | ( )⋅ −2 2

R
  : =  F f Fu

Lp
n

− −+ ⋅ ⋅1 2 11( ( ) )( ) ( )
( )R

,      1  <  p  <  ∞  ,

see [3, 4] for more information about the construction of such spaces.  Here  F ,  F−1

are respectively the Fourier and the inverse Fourier transforms.  Besides others the
generalized Bessel potential spaces are interesting from the analytical point of view as
they are the particular cases of the spaces of generalized smoothness, and appear as
domains of generators of  Lp -sub-Markovian semigroups:  if  f  is a Bernstein function,
then  − −f ( )∆   is the generator of an  Lp -sub-Markovian semigroup, corresponding to a

Lévy process  ( )Xt t ≥0   with Lévy exponent  f ( )ξ 2   (  i.e.,  Eei Xt〈 〉ξ,   =  e t f− ( )ξ 2

 ) .

The domain of  − −f ( )∆   is  Hp
f n( ),| | ( )⋅ 2 2

R ,  which we can identify with the dual of

Hp
f n( ),| | ( )⋅ −2 2

R .  In the case where  f  is a Bernstein function satisfying some growth
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restrictions and such that the convolution semigroup associated with it has monotone
0-potencial density, it was proved in [5], Theorem 1.1.2, that the kernel of the resolvent
associated with  − −f ( )∆   is equivalent to the kernel of  I f . 

For  u Lp
n∈ ( )R ,  1  ≤  p  <  ∞  ,  we can also define the potential as 

I u xf ( )  : =  u y
x y f x y

dyn
n

( )
− −( )−∫ 2

R

. (3)

Therefore in the case  µ ( )dy   =  u y dy( ) ,  u Lp
n∈ ( )R   positive, the generalization of the

Muckenhoupt – Wheeden theorem gives us the equivalence of norms: 

u Hp
f n( ),| | ( )⋅ −2 2

R
  ∼  I u uf

p p+   ∼  M u uf
p p+ ,

where 

M u xf ( )  : =  sup
( )

( )/
( , )r

n
n

n
B x rf r r

u y dy
>

− ∫
0

2
1

ω
. (4)

Here and below the relation  ⋅ ∼ ⋅1 2  means that there exist positive constants  c1
and  c2  such that  c1 1⋅   ≤  ⋅ 2  ≤  c2 2⋅ . 

The “classical” Muckenhoupt – Wheeden theorem, i.e., the equivalence of
Lp

n( )R -norms of Riesz potentials  Iαµ   of a positive measure  µ,  0  <  α   <  n,  and of
the fractional maximal function  Mα ,  is a useful tool in the theory of function spaces.
This theorem plays an important role in the proof of such a remarkable fact that the
positive cone of Triebel – Lizorkin spaces  Fpq

nα ( )R ,  1  <  p  <  ∞  ,  1  <  q   ≤  ∞  ,  α   < 

< 0,  is independent of  q,  see Corollary 4.3.9 from [2], also [6] for the original result.
Further, the Muckenhoupt – Wheeden theorem is useful for getting estimates for non-
linear potentials, in particular, it is employed to show the equivalence of different
definitions of capacities, see § 4.4 – 4.5 [2] and the reference therein.  Also, the
weighted Muckenhoupt – Wheeden inequality applied to  I1  allows to obtain some
norm inequalities for the Schrödinger operator    L = − −∆ v   for  v  of some type,
which can be used for getting the eigenvalue estimates for  L,  see [7, 8].  Therefore the
generalized version of the Muckenhoupt – Wheeden theorem may give rise to new
results in the theory of function spaces and applications. 

The main result of the paper is formulated in the following theorem.

Theorem 1.  Let  1  <  p  <  ∞  ,  n   ≥  2,  and assume that the Bernstein function   f
satisfies (6) and (7).  Then there exists a constant  c  such that for any positive
measure   µ 

c M f
p

−1 µ   ≤  I f
p

µ   ≤  c M f
p

µ . (5)

Since the left-hand side inequality is trivial, it remains to prove the right-hand side
part.  The proof is based on Lemma 1 and Lemma 2 below, see also [2, p. 73 – 74].

Assumptions and auxiliary results.  In what follows we will assume that our
Bernstein function satisfies the following assumptions:       

1.  There exists  β  >  0  such that for all  λ  ≥  1 

c1λβ   ≤  f x
f x
( )
( )
λ ,    x  >  0; (6)

2.  There exists  0  <  σ  <  n p/ 2   such that for all  λ  ≤  1 

c2λσ   ≤  f x
f x
( )
( )
λ ,    x  >  0. (7)
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Here  c1,  c2  are some positive constants, independent on  x  and  λ . 
Consider some examples.

 Examples.  1.  f x x( ) = α ,  0  ≤  α  ≤  1. 

2.  f x x x( ) ln( )= +α α1 ,  0  ≤  α  <  1 / 2. 

Indeed, (6) is satisfied with  β  ≤  α  due to monotonicity of  f x( );  to prove (7) con-

sider the function  g x x c x( ) ln( ( ) ) ln( )= + − +1 1λ λα ε α ,  0  <  α  ≤  1. 

′g x( )  =  α λ
λ

λα
α

α

ε

αx
x

c
x

−

+
−

+






1

1 1( )
  >  α λ λ

α

α
α εx

x
c

−

+
−[ ]

1

1
  >  0    if    α  <  ε .

Since  g( )0   =  0,  then  g x( )  >  0  for all  x  >  0,  and hence we have (7) with  α  <  σ  <
<  n p/ 2 .

3.  f x x e x( ) = −( )−1 4 .  Again, we have (6) with  β  ≤  1 / 2  due to monotonici-

ty.  To show (7) consider the function  g x( )  =  1 14 4− − −( )− −e c ex xλ ελ .  Then for

suitable  c  >  0 

′g x( )  =  2
x

cλ λε−( )  >  0    if    ε  <  1
2

 .

Since  g( )0   =  0,  we get (7) with  1 / 2  <  σ  <  n p/ 2 . 

4.  f x( )  =  x
I x
I x
ν

ν

+1( )
( )

,  see [9].  Here  Iν  is the modified Bessel function of the

first kind, see [10].  Sinse 

I xν( )  ∼  1
1 2Γ ( )ν

ν

+






x     as    x  →  0 ,

I xν( )  ∼  1
2π x

ex     as    x  →  ∞  ,

we have  f x x( ) /∼ ν 2  as  x  →  0 ,  and  f x x( ) ∼   as  x   →  ∞  ,  hence we can
choose constants  c1  and  c2  such that (6) and (7) are satisfied. 

5.  f x( )  =  x
K x
K x
ν

ν

−1( )
( )

,  see [9].  Here  Kν   is the modified Bessel function of

the third kind, see [10].  Since 

K xν( )  ∼  Γν ν

2
2
x





     as    x  →  0 ,

K xν( )  ∼  π
2x

e x−     as    x  →  ∞  ,

we have  f x( )  ∼ 
xΓ

Γ
( )

( )
ν

ν
− 1

2
 = 

x
2 1( )ν −

,  ν  >  1,  as  x  →  0 ,  and  f x x( ) ∼   as  x  → 

→  ∞  ,  hence as above we can choose constants  c1  and  c2  such that (6) and (7) are

satisfied with  β  ≥  1 / 2  and  σ  >  1. 
6.  By the same arguments, (6) and (7) are satisfied for Bernstein functions  f x( )  =

=  
xI x
I x

ν

ν

β
α
( )

( )
  and  f x( )  =  

xK x
K x

ν

ν

α
β
( )
( )

,  ν  >  0,  α  >  β  >  0  (see [9]). 

Below we will use the estimates for derivatives of a Bernstein function, see [4]: 

f xk( )( )   ≤  k f x
xk

! ( ) ,      k  ≥  1 ,    x  >  0 . (8)
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For a positive measure  µ  define the Hardy – Littlewood maximal finction  

M xµ( )   : =  sup ( )
( , )r n

n
B x r

w r
dy

>
∫

0

1 µ . (9)

In case  µ ( )dy   =  u y dy( )   for some  Lp -function  u,  1  ≤  p   ≤  ∞  ,  we will use the
notation  Mu . 

We will need the Hardy – Littlewood – Wiener theorem, see, for example, [2],
Theorem 1.1.1.  Denote by “Vol” the volume of a set. 

Theorem 2 (Hardy – Littlewood – Wiener [2]).  Let  u Lp
n∈ ( )R ,  1  ≤  p   ≤  ∞  .

There exists a constant   A  depending only on   p  and  n  such that 
a)  if  p  =  1,  then 

Vol x Mu x: ( ) >{ }λ   ≤  A u
λ 1    for all    λ  >  0;

b)  if  1  <  p  ≤  ∞  ,  then 

Mu p   ≤  A u p. (10)

Lemma 1.  Let  f  be a Bernstein function satisfying  (6) and (7),  I f   be as in
(3),  and  1  ≤  p  <  ∞  .  Then 

I u xf ( )   ≤  cMu x

f Mu x
u p

p n
( )

( )
/















2 . (11)

 Proof.  Take  0  <  δ  <  1,  split the integral: 

I u xf ( )  =  u y
x y f x y

dy
u y

x y f x y
dyn

x y
n

x y

( ) ( )
− −( ) +

− −( )−
− <

−
− ≥

∫ ∫2 2
δ δ

  =  I I1 2+ ,

and consider the terms  I1  and  I2   separately. 

Changing the variables  y  =  r ζ ,  r ∈ +R ,  ζ ∈ −Sn 1,  we obtain 

I1  =  
0

2
1

δ ζ σ ζ∫ ∫ −
−

−

u x r
r f r

d drn n

Sn

( )
( )

( ) ,

where  σ ζn d( )  is the surface measure on  Sn−1.  Let 

ρ( , )x dr   =  u x r d drn

Sn

( ) ( )−
−
∫ ζ σ ζ

1

and 

ρ( , )x r   =  
0 1

r

n

S

u x d d
n

∫ ∫ −
−

( ) ( )τζ σ ζ τ   =  u y dy
B x r

( )
( , )
∫ .

Using (8), we get 

I1   =  
0

2

δ ρ∫ −
( , )

( )
x dr

r f rn   =
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=  
ρ ρ

δ δ
( , )

( )
( , )

( )
( )

( )

( )

x r

r f r
x r

n

r f r
n

f r

r f r
drn n n− + −

−

+ −− − + +
′







∫2

0 0
1 2

2

3 2 22   ≤

≤  
ρ δ

δ δ
ρδ

( , )

( )

( , )

( )

x

f
n

x r

r f r
drn n− + −+ ∫2

0
1 2   ≤

≤  ω
δ

n Mu x
f r

n dr
r f r

( )
( ) ( )
1

2
0

2− −+












∫ .

Since  f  satisfies (6),  we have that the last integral is less than  
1

2 1 20

1

f

dx

x( )δ β− −∫   and

thus 

I1  ≤  c
M u x

f

( )

( )δ−2 .

Further, by Hölder’s inequality, we get 

I2   ≤  u
x y f x y

dyp n

p

x y

p

1
2

1

− −( )














−

′

− ≥

′

∫
δ

/

  =

=  u
c

r f r
r drp n

p
n

p

δ

∞

−

′
−

′

∫ 















1
2

1
1

( )

/

  =

=  u
c

f
dp n

p
n n

p

1

1
2 2

1
1∞

− −

′
−

′

∫ 










( ) ( )

/

δτ δ τ
δ τ τ   ≤

≤  c
u

f
dp

n p p

np n p

p

1

1

2
1

1 2

1
δ

δ
τ

τ σ

( )/ /

( )

− ′ ′

−

∞

′− + − ′

′

∫






  ≤  

c u

f

p
n p

2

2

δ

δ

−

−

( / )

( )
,

where (7) is used in the third line. 
For  δ  >  1  the estimates are the same due to the restricttions on  σ  and  β  (we

need not to pose the restriction  β  <  n / p ,  since  β  can be arbitrary small in (6)). 

Combining the estimates for  I1  and  I2   and choosing  δ   =  
u

Mu
p

p n





/

,  we arrive

at (11). 

Remark 1.  Let  g xp( )   =  x
f x p n( )/2 ,  x  >  0.  The function  gp

−1  is convex, mono-

tone increasing for  2p n/   ≤  1  and monotone decreasing for  2p n/   >  1.  Then we
can get the inequalities analogous to the Sobolev inequality, but under some restrictions
on the norm  u p . 

1.  If  2p n/   ≤  1,  then  cg xp
−1( )  ≤  g cxp

−1( )  if  c  ≥  1  and  then  for  u ,  u p   ≤  1,

we have, due to the Hardy – Littlewood – Wiener theorem, 

1 1

u
g I u

p
p p

f
p

p− ( )   ≤  g
I u x

up

f

p p

p
− 





1 ( )   ≤  

Mu

u
p
p

p
p   ≤  C,

or 
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g I up
f

p
−1( )   ≤  u p . (12)

2.  If  2p n/   >  1,  then we have  g cxp
−1( )  ≤  g xp

−1( )   for  c  ≥  1,  and in this case if
u p  > 1,

g I up
f−1( )  ≤  g g Mu

u
up p

p
p

− 











1   ≤  Mu

u p

,

whence (12) is satisfied if  u p   >  1. 

Remark 2.  Lemma 1 and Theorem 2a) imply weak type estimates: 

Vol x I u xf: ( ) >{ }λ   ≤  c
g u− ( )1

1λ /
, (13)

where  g x( )  =  g x1( )  =  x
f x n( )/2 .  Indeed, 

x I u xf: ( ) >{ }λ   ⊂  x Mu x u g
u

: ( ) >














−
1

1

1

λ .

Applying Theorem 2a), we get (13). Moreover, (13) is valid for finite measures on  Rn ,
u 1  =  µ ( )R

n . 
Remark 3.  Note that the statements of Lemma 1 and Remark 2 can be naturally

generalized to the case of finite measures on  Rn . 

Remark 4.  For the case of Riezs potentials, i.e.  when  f ( x )  =  x 
α,  0  <  α   <  1,

see [2], Proposition 3.1.2 and Theorem 3.1.4. 
Lemma 2.  There exists   a  >  1,  b  >  0,  such that for all  λ   >  0,  for all  ε  ,  0  <

<  ε  <  1, 

Vol x I x af: ( )µ λ>{ }  ≤

≤  b
g

x I x x M xf f
− − >{ } + >{ }1 1( )

: ( ) : ( )
ε

µ λ µ ελVol Vol . (14)

 Proof.  Since  µ  is a positive measure, by Fatou’s Lemma the potential (1) is lo-

wer semicontinuous.  Then the set  x I f: µ λ>{ }  is open.  By Whitney decompositi-

on theorem there exists a set of dyadic cubes  Qi{ }  with disjoint interior such that for
all  Qi  there exists

x :  dist ( x ,  Qi  )  ≤  4 diam Q
 i 
. (15)

For such  x  we  have  I xf µ( )  ≤  λ  .  Assume that  Q Qi∈{ },  a   >  1  and consider the

set  x Q I x af∈ >{ }: ( )µ λ . 

1.  Suppose    Q x M xf∩ : ( )µ ελ≤{ }  ≠  ∅.  Let  P  be a ball concentric with  Q,

with  radius  6 diam Q .  Let  µ1  : =  µ P ,  µ2   : =  µ µ− 1.  By Remark 2, 

Vol x I x
af: ( )µ λ

1 2
>{ }  ≤  c

g a dn
− −

∫( )





1
1

1
λ µ

R

.

Let  x Q0 ∈   be such that  M xf µ( )0  ≤ λε  and let  B x( )0  = B x Q( , )0 8diam  ( then  P   ⊂ 

⊂  B x( )0 ) .  Then 
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d
n

µ1

R

∫   ≤  d
P

µ∫   ≤  d
B x

µ
( )0

∫   ≤  M x g B xf µ( ) ( ( ))0 0Vol( )  ≤  λε g B xVol( ( ))0( ).

By definition,  f  is increasing.  Then for  δ  >  0  there exists  cδ  >  0  such that for all

δ  ≤  λ  ≤  1,  x  ≥  1, 
f x( )λ   ≤  c f x fδ λ( ) ( ).

Since for  n  ≥  2,  g  =  g2  is also increasing, for such  x  and  λ  we get  g g x( ) ( )λ  ≤
≤ c g xδ λ( ) ,  and hence due to monotonocity ( take  λ =   g

−1( )v ,  x = g w−1( ) ) ,  we have

  g w−1( )v   ≤  
 
g c g g g w− − −( )1 1 1

δ ( )( ) ( )v   ≤

≤  
  
g g c g g w− − −( )1 1 1( )( ) ( )δ v   ≤    g c g w− −1 1( ) ( )δ v .

Further, for small diameters of  Q  we have  dn µ1
R∫   ≤  1,  and  g B xVol( ( ))0( )   <  1.

Then from 

1
ε

  <  
g B x

dn

Vol( ( ))0

1

( )
∫ µ
R

,

for  a  >  1  such that  λ  a  >  0,  we get

g a− 





1

ε
  ≤  g

a g B x

dn

− ( )







∫

1 0

1

λ
µ

Vol( ( ))

R

  ≤  g
a

d
c B x

n

−

∫










1

1
0

λ
µ δ

R

Vol( ( )),

where the constant  cδ   depends on the size of the cubes  Qi{ }  but is independent of
the choice of  Qi  (i.e., we may assume that the size of  Qi{ }  is bounded from below

by  2−M   with  M   fixed and large enough). 
Then by covering 

Vol x Q I x
af∈ >{ }: ( )µ λ

1 2
  ≤  b

g
Q− −1 1( )

( )
ε

Vol , (16)

or, covering the whole set  x I x
af: ( )µ λ

1 2
>{ } ⊂ x I xf: ( )µ λ>{ },  a  >  1,

Vol x I x
af: ( )µ λ

1 2
>{ }  ≤  b

g
x I xf

− − >{ }1 1( )
: ( )

ε
µ λVol . (17)

2.  Take  x Q1 ∉ ;  then we have (15).  Because of the choice of  P,  there exists a

constant  L   depending only on  n  and such that for all  y Pc∈ ,  ∀ ∈x Q  :  x y1 −   ≤
≤ L x y−   ( we may assume here  L  ≥  1) .  By the property of Bernstein functions 

f f x y−( )2   ≤  f L x y1
2−( )   ≤  L f x y1

2−( ) ,

and since  I xf µ( )1   ≤  λ   (due to the conditions of Whitney decomposition, we have
(15)), we get 

I xf µ2( )  ≤  L I xn f+1
2 1µ ( )   ≤  λLn+1.

Choose  a   >  2 1Ln+ ;  then if  I xf µ2( )  ≤  aλ / 2  and  I xf µ( )  >  aλ ,  we obtain

I xf µ1( )  >  aλ / 2.  Thus, for all  x Q∈   such that    Q x M f∩ : µ ελ≤{ }  ≠  ∅,  we

can write the inclusion 
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x Q I x af∈ >{ }: ( )µ λ   ⊂  x Q I x
af∈ >

: ( )µ λ
1 2

.

Let us summarize the statements proved above.  The set  x I x af: ( )µ λ>{ }   can be

covered by cubes of two types:
1)  Q :    Q x M f∩ : µ ελ≤{ }  ≠  ∅.  In the case of such  Q,  for all  x Q∈   we have

x I x af: ( )µ λ>{ }   ⊂  I x
af µ λ

1 2
( ) >{ };

2)  Q̃  :  Q̃  ⊂  x M f: µ ελ>{ } .

Covering  x I x af: ( )µ λ>{ }   by such cubes, in view of (17), we get the esti-

mate (14). 
Lemma 2 is proved.
 Proof of Theorem 1.  For any  r  >  0 

I xf µ( )  ≥  
µ ( )dy

x y f x yn
x y r

− −( )−
− ≤
∫ 2   ≥  1

2r f r
dyn

x y r
( )

( )−
− ≤
∫ µ ,

and by the definition of  M 
f  we get the lower bound. 

Let us show the upper bound.  Integrate (14): 

Vol x I x a df p
R

: ( )µ λ λ λ>{ } −∫ 1

0

  ≤

≤  b
g

x I x df p
R

− −
−>{ }∫1 1

1

0
( )

: ( )
ε

µ λ λ λVol   +

+  Vol x M x df p
R

: ( )µ ελ λ λ>{ } −∫ 1

0

.

Changing the variables, we get 

a x I x dp f p
aR

− −>{ }∫ Vol : ( )µ λ λ λ1

0

  ≤

≤  b
g

x I x df p
R

− −
−>{ }∫1 1

1

0
( )

: ( )
ε

µ λ λ λVol   +

+  ε µ λ λ λ
ε

− −>{ }∫p f p
R

x M x dVol : ( ) 1

0

.

If  µ  is compactly supported, then all the integrals are finite.  Choose  ε  so small that 

b
g− −1 1( )ε

  ≤  a p−

2
.

Then 
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a x I x dp f p
aR

− −>{ }∫ Vol : ( )µ λ λ λ1

0

  ≤

≤  2 1

0

ε µ ελ λ λ
ε

− −>{ }∫p f p
R

x M x dVol : ( ) ,

and letting  R  →  ∞  we get 

a I x dxp f p

n

− ∫ µ( )
R

  ≤  2ε µ λ− ∫p f p
M x d

n

( )
R

.

If  µ  has no compact support, approximate with  µ µn B n= ( , )0 ,  n  =  1, … .  Then 

I f
n p

µ   ≤  C M f
p

µ ,

and we get the statement of Theorem 1 by letting  n  →  ∞  . 
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