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FACTORIZATION OF ONE CONVOLUTION-TYPE 
INTEGRO -DIFFERENTIAL EQUATION 
ON POSITIVE HALF LINE 

FAKTORYZACIQ ODNOHO INTEHRO-DYFERENCIAL|NOHO

RIVNQNNQ TYPU ZHORTKY NA DODATNIJ PIVOSI 

Sufficient conditions for the existence of a solution of one class of convolution-type integro-differential
equations on half line are obtained.  The investigation is based on three factor decomposition of initial
integro-differential operator. 

Otrymano dostatni umovy dlq isnuvannq rozv’qzku odnoho klasu intehro-dyferencial\nyx riv-

nqn\ typu zhortky na pivosi.  DoslidΩennq bazugt\sq na rozkladi poçatkovoho intehro-dyfe-

rencial\noho operatora na try mnoΩnyky. 

1.  Introduction.  A number of problems of physical kinetics (see [1 – 3]) are described
by the integro-differential equation 

dS
dx

AS x+ ( )  =  g x x B K x t dS
dt

dt C K x t S t dt( ) ( ) ( ) ( ) ( )+ − + −












∞ ∞

∫ ∫λ 1
0

2
0

,    x R∈ + .

(1.1)

Here,  S  is an unknown solution from a class of functions absolutely continuous on  R 
+

and of slow growth in  + ∞  ,  i.e., 

S ∈ �  df=   f AC R e f x xx∈ ∀ > → → + ∞{ }+ −( ) , ( )s.t. asε ε0 0 ,

where  AC R( )+   is the space of functions absolutely continuous  on  R 
+

 ,  A,  B,  C  are

nonpositive parameters,  0 1≤ ⋅ ≤λ( ) ,  and  λ ∈ ∞
+W R1( )   (where  W Rp

n( )+   is the So-

bolev space of functions  f  such that  f L Rk
p

( ) ( )∈ + ,  k  =  0, 1, 2, … , n ) .  The functions
g  and  Kj ,  j  =  1, 2,  satisfy the following conditions: 

0  ≤  g  ∈  L R1( )+ (1.2)

and  0  ≤  Kj ∈ L R1( )  such that 

K x dxj ( )
−∞

∞

∫   =  1,    j  =  1, 2. (1.3)

The initial condition to equation  (1.1) – (1.3)  is joined 

S( )0   =  s0  ∈  R 
+. (1.4)

In the case where 

K x1( )  ≡  0,      A  =  0,      λ( )x   =  1,      K x2( )   =  e ds
s

x s−
∞

∫ 2
1

, (1.5)

the first results of studying equation (1.1) – (1.3) appeared in the works [3 – 5].  Later,
in [6], the equation (1.1) was considered in the more general case where 
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K x1( )  ≡  0,      λ( )x   ≡  1,      0  ≤  K2  ∈  L R1( ),      K L2 1
  =  1, (1.6)

and, under some additional conditions on functions  K2 
,  g  and parameters  A,  C,  the

structural theorems on existence were obtained.  Note that in [5, 7], the solvability of
equation (1.1), (1.5) in the space  W R1

1( )+   is proved and, by means of the Ambartsu-
mian – Chandrasekhar function, analytical formulae describing the structure of obtain-
ed solution are founded. 

In the present work, structural theorems on existence are obtained by putting some
additional conditions on functions  λ  ,  K1  and  K2  for equation  (1.1) – (1.4). 

Below, we briefly describe our approach to the investigation.  First, we construct
three factor decomposition of the initial integro-differential operator  D AI BK D+ − λ

1  –

– CKλ
2   [ where   D   is a differential operator,   I    is the unit operator,   ( )( )K f xj

λ   =

=  λ( ) ( ) ( )x K x t f t dtj −
∞

∫0
,  j  =  1, 2 ]  in the form of product of one differential and two

integral operators.  Using this factorization, the problem is reduced to the successive
solution of two integtal equations and one first-order simple differential equation.  The
former is the Volterra-type integral equation  (it can be solved elementary)  and the lat-
ter is the integral equation with the kernel  λ( ) ( )x w x t− ,  where  w L R( ) ( )⋅ ∈ 1   if  A   >
>  0  and  w x( )  =  ρ ρ0 1( ) ( )x x+   if  A  =  0  ( here,  ρ0 1∈L R( ) ,  ρ1 ∈M R( )  ) . 

It should be also noted that above mentioned factorization allow us to construct
a nontrivial solution  (from class  � )  of the corresponding homogeneous equation for
A  =  C,  i.e.,      

dS
dx

AS x+ ( )  =  λ( ) ( ) ( ) ( )x B K x t dS
dt

dt A K x t S t dt1
0

2
0

− + −












∞ ∞

∫ ∫ . (1.7)

2.  Notations and auxiliary information.  Let  E 
+  be one of the following Banach

spaces:  Lp( , )0 ∞ ,  1  ≤  p  ≤  + ∞  ,  and  L1  ≡  L1(– , )∞ + ∞ .  We denote by  Ω  a class of

the Wiener – Hopf integral operators (see [8]):  W ∈  Ω   if  ( )W f   =  w x t f t dt( ) ( )−
∞

∫0
,

w ∈ L1 . 

It is easy to check that the operator  W  acts in the space  E 
+  and the following esti-

mation holds: 

W E+   ≤  w x dx( )
−∞

∞

∫ . (2.1)

The kernel  w  of the operator  W  is called conservative if 

0  ≤  w ∈ L1 ,      γ  df=   w x dx( )
−∞

∞

∫   =  1. (2.2)

We also introduce the algebra  Ω ±
 ∈  Ω  of  lower and upper Volterra-type operators:

V± ∈ Ω 
±  if 

( )( ) ( ) ( )V f x x t f t dt
x

+ += −∫ ν
0

,      ( )( ) ( ) ( )V f x t x f t dt
x

− −

∞

= −∫ ν , (2.3)

where  x ∈ ( 0, ∞  ) ,  ν±
+∈L R1( ). 

It is easy to see that  Ω  =    Ω Ω+ −� .  We denote by  Ωλ   a class of the following
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integral operators:  Qλ λ∈Ω   if 

( )( )Q f xλ   =  λ( ) ( ) ( )x q x t f t dt−
∞

∫
0

, (2.4)

where  0 1≤ ⋅ ≤λ( ) ,  λ ∈ ∞
+W R1( ) ,  q L R∈ 1( ) . 

It is known that if  W ∈ Ω ,  V±
±∈Ω ,  then  V W− ∈Ω   (see [9]).  Below, we prove

one generalization of this fact and make essential use of it in the further reasoning. 

Lemma 2.1.  If  Qλ λ∈Ω ,  then the following possibilities take place: 

a)  Q Vλ λ
+ ∈Ω ,  where   V+

+∈Ω , 

b)  V Q− ∈λ λΩ ,  where   V−
−∈Ω ,  if and only if there exists a real function   r  ( t )

on  R+ ,  for which 

λ ( )x t+   =  λ ( ) ( )x r t ,      r t t L R( ) ( ) ( )ν−
+∈ 1 .

 Proof.  Let  f E∈ +   be an arbitrary function.  We have 

( )( )Q V f xλ
+   =  λ τ τ τ( ) ( ) ( ) ( )x q x t t f d dt

t

0 0

∞

+∫ ∫− −v . (2.5)

Changing the order of integration in (2.5), we obtain 

( )( )Q V f xλ
+   =  λ τ τ τ

τ

( ) ( ) ( ) ( )x f q x t t dt d
0

∞ ∞

+∫ ∫ − −v   =

=  

  

λ τ τ τ( ) ( ) ( ) ( )x f q x z z dz d
0 0

∞ ∞

+∫ ∫ − − v   =  λ τ τ( ) ( ) ( )x P x t f d
0

∞

∫ − ,

where

P x( )  =  

  0

∞

+∫ −q x z z dz( ) ( )v . (2.6)

It follows from Fubin’s theorem (see [10]) that P L R∈ 1( ).  Now let  V−
−∈Ω ,  Qλ λ∈Ω .

In this case, analogous discussions reduce to the following formula: 

( )( )V Q f x−
λ   =  

  0 0

∞ ∞

−∫ ∫ + − +f z x z q x z dz d( ) ( ) ( ) ( )τ λ τ τv   =  
0

∞

∫ ρ τ τ τ( , ) ( )x f d ,

where 

ρ τ( , )x   =  
0

∞

−∫ + − +v ( ) ( ) ( )z x z q x z dzλ τ .

Let  λ ( )x z+   =  λ ( ) ( )x r z ,  where  r z z L R( ) ( ) ( )v−
+∈ 1 .  Then 

ρ τ( , )x   =  

  

λ τ( ) ( ) ( ) ( )x z r z q x z dz
0

∞

−∫ − +v   df=   λ ρ τ( ) ( )x x0 − ,

where  ρ0 1∈L R( ). 
The inverse statement is proved by analogy. 
The lemma is proved. 
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Let us consider the following homogeneous equation on half line: 

B x( )   =  λ ( ) ( ) ( )x K x t B t dt
0

∞

∫ − (2.7)

with respect to an unknown function  B L R∈ 1
loc( ),  where  0 ≤ K ∈ L R1( ),  K L1

,  0  ≤ 

≤  λ  ( ⋅ )  ≤  1  is a measurable function. 
Below, we need the following theorem proved in [11]: 

Theorem [11].  1.  If  0  ≤  λ  ( x )  ≤  1,  1 1− ∈ +λ( ) ( )x L R ,  ν( )K   df=   xK x dx( )
−∞

∞

∫   <

<  0,  then equation (2.7) possesses  a nontrivial bounded solution  B  ( x )  ≠  0  and
B ( x )  =  O ( 1 )  as  x  →  + ∞  . 

2.  If  0  ≤  λ  ( x )  ≤  1,  x x L R( ( )) ( )1 1− ∈ +λ ,  ν( )K   =  0,  then equation (2.7) pos-
sesses a solution   B ( x )  ≥  0,  B ( x )  ≠  0,  and besides,  

 
0

x

B t dt∫ ( )   =  O ( x 
2

 )   as  x  →  + ∞  . 

3.  Factorization problem.  We rewrite equation (1.1) in the operator form 

D AI BK D CK S+ − −( )1 2
λ λ   =  g . (3.1)

We consider two possibilities:  1)  A  >  0,  and  2)  A  =  0. 
1.  Let  A  >  0.  We consider the following factorization problem:  For operators  D

and  Kj
λ λ∈Ω ,  j  =  1, 2,  and for arbitrary  α  >  0,  it is necessary to find operators

Wλ λ∈Ω   and  Uα ∈ +Ω   such that the factorization 

D AI BK D CK+ − −1 2
λ λ   =  I W I U D I−( ) −( ) +( )λ

α α (3.2)

holds as an equality of integral operators acting in  W R1
1( )+ . 

2.  Let  A  =  0.  For operators  D  and  Kj
λ λ∈Ω ,  j  =  1, 2,  and for arbitrary  α  >  0,

it is necessary to find operators  Vα ∈ +Ω ,  Hλ λ∈Ω   such that the factorization 

D BK D CK− −1 2
λ λ   =  I H V D I− −( ) +( )λ

α α (3.3)

takes place as an equality of integral operators acting in  W R1
1( )+ . 

The following lemma holds: 

Lemma 3.1.  Suppose that  A   >  0,  Kj
λ λ∈Ω ,  j  =  1, 2.  Then for each   α   >  0,

the factorization (3.2) takes place.  Kernel functions of the operators   Wλ λ∈Ω
and   Uα ∈ +Ω   have the forms  

w x tλ( , )  =  λ( ) ( )x w x t− ,

where  

w ( x )  =  BK x cK t ABK t e dt
x

A x t
1 2 1( ) ( ) ( ) ( )+ −{ }

−∞

− −∫ , (3.4)
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and 

u xα( )   =  ( ) ( )α θα− −A e xx ,    where     θ( )x   =  
1 0

1 0

, ,

, .

if x

if x

≥

<





(3.5)

Moreover,   if  K W R1 1
1∈ ( ) ,  then  w W R∈ 1

1( ) . 
 Proof.  We denote by  Γα   an inverse operator of the differential operator  D I+ α

in the space    W R f f1
1 0 0( ) : ( )+ ={ }∩ .  It is easy to verify that  Γα   belongs to  Ω+

and has the following form: 

( )( )Γα f x   =  
0

x
x te f t dt∫ − −α( ) ( ) ,    α  >  0. (3.6)

It follows from Lemma 2.1 that  Qλ   
df=   Kj

λ Γα  ∈  Ω+ ,  j  =  1, 2,  and kernels of the

operators  Qj
λ   are given by formulae 

     q x tj
λ( , )  =  λ( ) ( )x q x tj − ,    q xj( )  =  

−∞

− −∫
x

j
x tK t e dt( ) ( )α

 ∈ W R1
1( ),    j  =  1, 2. (3.7)

We have 

D AI BK D CK+ − −1 2
λ λ   =  D I I AI BK D CK+ − + − −α α λ λ

1 2   =  ( )( )I P D I− +α α ,
(3.8)

where 

Pα   =  BK D CK A1 2
λ

α
λ

α ααΓ Γ Γ+ + −( ) . (3.9)

It is easy to see that  DΓα   =  I − α αΓ ,  hence,  Pα   =  R Uα
λ

α+ ,  where  Rα
λ

 ∈  Ωλ ,

Rα
λ   =  BK CK BK1 2 1

λ λ λ
αα+ −( )Γ   and  Uα ∈ +Ω ,  the kernel of which is given by (3.5).

We denote by  I + Φα   the inverse of the operator  I U− α   in  W R1
1( )+ .  By means of

simple calculations, it is easy to verify that  Φ Ωα ∈ +   and,  moreover,

( )( )Φα f x   =  ( ) ( )( )α − ∫ − −A e f t dt
x

A x t

0

,    A  >  0. (3.10)

Using (3.10), from (3.8) and (3.9) we have 

D AI BK D CK+ − −1 2
λ λ   =  I R I I U D I− +( ) − +α

λ
α α α( ) ( )( )Φ   =

=  ( )( )( )I W I U D I− − +λ
α α ,

where  W λ   df=   R Rα
λ

α
λ

α+ Φ . 

Using Lemma 2.1, we conclude that  W λ
 ∈  Ωλ .  It is easy to check that operator

W λ   does not depend on  α .  Actually, let  f E∈ +   be an arbitrary function.  Then 

( )( )R f xα
λ

αΦ   =  ( ) ( ) ( ) ( )( )α λ τ τα
τ− −

∞
− −∫ ∫A x r x t e f d dt

t
A x

0 0

,

where  λ α( ) ( )x r x t−   is the kernel of the operator  Rα
λ .  Changing the order of integra-

tion in the last integral and taking into account (3.7), we have 
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( )( )R f xα
λ

αΦ  =  λ τ τ τα( ) ( ) ( )x Y x f d
0

∞

∫ − ,

where 

Y xα ( ) =  
−∞

− −

−∞

− −∫ ∫− − −
x

A x
x

xCK A K e d CK A K e d{ ( ) ( )} { ( ) ( )}( ) ( )
2 1 2 1τ α τ τ τ α τ ττ α τ .

Hence, from (3.7) it follows that  W λ   does not depend on  α  ,  its kernel is given by

(3.4).  Now we show that operator  W λ   acts in the space  W R1
1( )+ .  Really, let  f  be an

arbitrary function from  W R1
1( )+ .  We have 

( )( )W f xλ   =  λ( ) ( ) ( )x w x t f t dt
0

∞

∫ −   =  λ τ τ τ( ) ( ) ( )x w f x d
x

−∞
∫ − .

We denote by  ρ( )x   the function  

ρ( )x   =  λ τ τ τ( ) ( ) ( )x w f x d
x

−∞
∫ − .

Applying Fubin’s theorem and taking into account that  0  ≤  λ  ( x )  ≤  1,  w L R∈ 1( ),

and  f W R∈ 1
1( ),  we obtain  ρ ∈L R1( ).  If  λ ∈ ∞W R1 ( ),  f W R∈ 1

1( ),  then from equality 

′ρ ( )x   =  ′ − + + ′ −










−∞ −∞
∫ ∫λ τ τ τ λ τ τ τ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x w f x d x w x f w f x d
x x

x0

it follows that  ′ ∈ρ L R1( ).   Therefore,  ρ ∈W R1
1( ).   From (3.4) it follows that if  K1 ∈

∈ W R1
1( ) ,  then  w W R∈ 1

1( ). 
The lemma is proved. 
It is simple to prove the following lemma: 

Lemma 3.2.  If  A   =  0,  then operator   D BK D CK− −1 2
λ λ   permits factorization

of type (3.3), where k ernels of operators   Vα ∈ +Ω ,  Hλ λ∈Ω   are given,
respectively,  by formulae  

να( )x   =  α θαe xx− ( ),      h x tλ( , )  =  λ( ) ( )x h x t− , (3.11)

where  

h x( )  =  BK x CK t BK t e dt
x

x t
1 2 1( ) { ( ) ( )} ( )+ −

−∞

− −∫ α α . (3.12)

Further, we essentially use the following lemma that establishes connection betwe-
en first moments of functions  w  and  K j ,  j  =  1, 2: 

Lemma 3.3.  Suppose that  

ν( )K j   df=   xK x dxj( )
−∞

+∞
∫   <  + ∞  ,    j  =  1, 2,

exists.  Then   ν( )w   <  + ∞   exists and the following formula holds: 

ν( )w   =  
C AB

A
C
A

K
− +2 2ν( )    for    A  >  0.

 Proof.  As  ν( )K j   <  + ∞  ,  j  =  1, 2,  then by Fubin’s theorem we have 
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ν( )w   =  
−∞

+∞

∫ xw x dx( )   =

=  B K AB x K t e dt dx c x K t e dt dx
x

A x t
x

A x tν( ) ( ) ( )( ) ( )
1 1 2− +

−∞

∞

−∞

− −

−∞

∞

−∞

− −∫ ∫ ∫ ∫   =

=  B K AB K t e xe dx dt C K t e xe dx dtAt

t

Ax At

t

Axν( ) ( ) ( )1 1 2− +
−∞

∞ ∞
−

−∞

∞ ∞
−∫ ∫ ∫ ∫   =

=  
C AB

A
C
A

K
− +2 2ν( ).

The lemma is proved. 

Remark.  If  C Kν( )2   ≤  B
C
A

− ,  A  >  0,  then  ν( )w   ≤  0.  

4.  Solution of problem  (1.1) – (1.4)  for  A   =  0.  Let us consider equation (1.1)
when  A  =  0.  Using factorization (3.3), the equation  (1.1)  (for  A  =  0 )  we can write
in the following form: 

( )( )I H V D I S− − +λ
α α   =  g. (4.1)

The solution of (4.1) is reduced to successive solution of the following equations:

( )I H V− −λ
α ϕ   =  g, (4.2)

( )D I S+ α   =  g. (4.3)

We denote by  I + Φ  the resolvent of operator  I V− α   in the space  L R1
loc( )+ .  It is

easy to check that  ( )( )Φ f x   =  α f t dt
x

( )
0∫ .  From representation of operator  Φ   it

follows that the operator  Φ  transfers the space  L R1( )+   to the space  M R( )+ ,  where

M R( )   is the space of bounded functions  on  R+ .   We represent the operator

I H V− −λ
α   in the following form: 

I H V− −λ
α   =  ( )( )I G I V− − α , (4.4)

where  G  =  H Hλ λ+ Φ .  It is easy to check that the operator  ( )( )Gf x   is determined
as

( )( )Gf x   =  λ( ) ( ) ( )x G x t f t dt
0

0

∞

∫ − ,

where

G x0( )  =  B K x C K t dt
x

1 2( ) ( )+
−∞
∫ ,    K L R1 1∈ ( ),    

−∞
∫ ∈
x

K t dt M R2( ) ( ).

Using factorization (4.4), the solution of equation (4.2) is reduced to successive
solution of the following equations: 

( )I G− Ψ   =  g, (4.5)

( )I V− α ϕ   =  ψ . (4.6)

We rewrite the equation (4.5) in the open form 
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ψ( )x   =  g x G x t t dt( ) ( ) ( )+ −
∞

∫λ ψ
0

0

and consider the following iteration process: 

ψ( )( )n x+1   =  g x x G x t t dtn( ) ( ) ( ) ( )( )+ −
∞

∫λ ψ
0

0 ,      ψ( )0   =  0,    n  =  0, 1, 2 … .

(4.7)

It is easy to see that  g x( )  ≤  ψ( )n   ↑  by  n  .  We note that if  λ ∈ +L R1( ) ,  then

ψ( ) ( )n L R∈ +
1 ,  n  =  0, 1, 2 … .  Really, for  n  =  0,  we have  ψ( )1   =  g x( ) ∈  L R1( ).

Assume that  ψ( )n  ∈ ∈ L R1( )+   and prove that  ψ( )n+1
 ∈  L R1( ).  Then for arbitrary

r  >  0  we have 

0

1
r

n x dx∫ +ψ( )( )   ≤  
0 0 0

0

∞ ∞ ∞

∫ ∫ ∫+ −g x dx x G x t t dt dxn( ) ( ) ( ) ( )( )λ ψ   =

= g x dx B t K x t x dx dt C t K d x dx dtn n
x t

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

0 0
1

0 0 0
2

∞ ∞ ∞ ∞ ∞

−∞

−

∫ ∫ ∫ ∫ ∫ ∫+ − +ψ λ ψ τ τλ  ≤

≤  
0 0 0 0

∞ ∞ ∞ ∞

∫ ∫ ∫ ∫+ +g x dx B t dt C t dt x dxn n( ) ( ) ( ) ( )( ) ( )ψ ψ λ   ⇒  ψ( )n+1  ∈ L R1( )+ .

It is also easy to check that 

0

1
∞

+∫ ψ( )( )n x dx   ≤  g x dx t G d t dt
t R t

n( ) ( ) ( ) ( )( )

0
0

0

1
∞

∈ −

∞ ∞
+∫ ∫ ∫+ +vrai max

+
λ τ τ τ ψ . (4.8)

Now we suppose that 

q0  df=   vrai max
+t R t

t G d
∈ −

∞

∫ +λ τ τ τ( ) ( )0   <  1. (4.9)

Then from (4.8), taking into account (4.9), we receive 

0

1
∞

+∫ ψ( )( )n x dx   ≤  ( ) ( )1 0
1

0

− −
∞

∫q g x dx .

From B. Levi’s theorem (see [10]) it follows that the sequence  ψ( )n   almost

everywhere in  R+   has a limit  ψ( )x   =  lim
n

n x
→∞

ψ( )( ),  and besides  ψ ∈ +L R1( ). 

We prove that  ψ( )x   is the solution of equation (4.5).  Actually, from (4.7) we
have 

ψ( )( )n x+1   ≤  g x x G x t t dt( ) ( ) ( ) ( )+ −
∞

∫λ ψ
0

0 ,    n  =  0, 1, 2 … . (4.10)

Passing to the limit in the last inequality, we obtain 

ψ( )x   ≤  g x x G x t t dt( ) ( ) ( ) ( )+ −
∞

∫λ ψ
0

0 . (4.11)

On the other hand, 
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g x x G x t t dtn( ) ( ) ( ) ( )( )+ −
∞

∫λ ψ
0

0   ≤  ψ( )x . (4.12)

From Lebeg’s theorem it follows that 

g x x G x t t dt( ) ( ) ( ) ( )+ −
∞

∫λ ψ
0

0   ≤  ψ( )x . (4.13)

Combining inequalities (4.11) and (4.12), we get  

ψ( )x   =  g x x G x t t dt( ) ( ) ( ) ( )+ −
∞

∫λ ψ
0

0 . (4.14)

Now we pass to the solution of the equation (4.6): 

ϕ( )x   =  ψ α ϕα( ) ( )( )x e t dt
x

x t+ ∫ − −

0

. (4.15)

It is obvious that 

ϕ( )x   =  ψ α ψ( ) ( )x t dt
x

+ ∫
0

. (4.16)

Finally solving equation (4.3) and taking into account (1.4), we obtain

S x( )   =  s e e t dtx
x

x t
0

0

− − −+ ∫α α ϕ( ) ( ) . (4.17)

Using formula (4.16), we have 

S x( )   =  s e t dtx
x

0
0

− + ∫α ψ( ) . (4.18)

In its turn, it follows that 

0

∞

∫ g x dx( )   ≤  S( )+ ∞   =  
0

∞

∫ ψ( )t dt   ≤  
g x dx

q

( )
0

01

∞
∫

−
. (4.19)

The following theorem holds: 
Theorem 4.1.  Let  0  ≤  λ  ( x )  ≤  1,   λ ∈ +

∞
+L R W R1

1( ) ( )∩ ,  and let the following
estimation be true : 

vrai max
+t R t

t G d
∈ −

∞

∫ +λ τ τ τ( ) ( )0   <  1,

where   G x0( )  =  BK x C K t dt
x

1 2( ) ( )+
−∞
∫ .

Then problem   (1.1) – (1.4)  for   A   =  0  in the class     � ( )R+   possesses a
positive solution of the type  (4.18) and inequality (4.19) is true. 

5.  Solution of equation  (1.1) – (1.4)  for  A   >  0.  In this section, we study
equation  (1.1) – (1.4)  for  A   >  0.  In this case, we consider the following three
possibilities:  1)  A  >  C  ≥  0,  2)  A  =  C  >  0,  3)  0  <  A  <  C. 

5.1.  Equation  (1.1) – (1.4)  in case  A   >  C   ≥≥≥≥  0.  The following theorem is
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true: 

Theorem 5.1.  Suppose that  a) w x( ) ≥ 0,  x R∈ ,  b) 0  ≤  λ  ( x )  ≤   1,  λ &∈ W R∞
+1 ( ) .

Then the problem  (1.1) – (1.4) for  A  >  C   ≥  0  in the space   W R1
1( )+   has a posi-

tive solution of the type  

S x( )  =  s e e F t dtx
x

x t
0

0

− − −+ ∫α α( ) ( ) , (5.1)

where   α  >  0  is the constant,  0 1≤ ∈ +F L R( ). 
 Proof.  Using factorization (3.2), the equation (1.1) may be written in the form 

( )( )( )I W I U D I S− − +λ
α α   =  g . (5.2)

Solution of (5.2) is reduced to successive solution of the following equations:

( )I W F− λ   =  g , (5.3)

( )I U− α χ  =  F , (5.4)

( )D I S+ α   =  χ  . (5.5)

We rewrite the equation (5.3) in the open form and consider the iteration 

F xn( )( )+1   =  g x x w x t F t dtn( ) ( ) ( ) ( )( )+ −
∞

∫λ
0

,      F( )0   =  0,    n  =  0, 1, 2 … . (5.6)

By induction, it is easy to check that 

g x( )  ≤  F n( )  ∈ L R1( )+ ,      n  =  1, 2, … ,    F n( )   ↑  by  n . (5.7)

Therefore, we have 

0

1
∞

+∫ F x dxn( )( )   ≤  
0 0 0

1
∞ ∞ ∞

+∫ ∫ ∫+ −g x dx x w x t F t dt dxn( ) ( ) ( ) ( )( )λ   =

=  
0 0

1
∞ ∞

+

−∞

∞

∫ ∫ ∫+ +g x dx F t w t t z dz dtn( ) ( ) ( ) ( )( ) λ   ≤  
0 0

1
∞ ∞

+∫ ∫+g x dx F t dtn( ) ( )( )γ ,

where 

γ  =  
−∞

∞

∫ w x dx( )   =  
C
A

  <  1. (5.8)

As (5.7) and (5.8) are satisfied, then form  B. Levi’s theorem it follows that the se-

quence  { }( )( )F xn+ ∞1
0   converges almost everywhere in  R+   to an integrable function

F x( ).  It is obvious that the function  F x( )  is the solution of equation (5.6).
Successively solving equations (5.4) and (5.5), we arrive to result (5.1). 

The theorem is proved. 
5.2.  Equation  (1.1) – (1.4)  in case  A  =  C  >  0.  The following theorem holds:
Theorem 5.2.  Suppose that the following conditions are satisfied:  i)  w x( ) ≥ 0,

x R∈ ,   ii)  0  ≤  λ  ( x )  ≤  1,  λ &∈ W R∞
1 ( ),   iii)  ν( )K j   <  + ∞  ,  j  =  1, 2,  exists  and

moreover,  ν( )K2   ≤  ( )B A− /1  .  Then problem   (1.1) – (1.4)  for   A   =  C   >  0  i n
the class   �  possesses the solution of the following structure : 
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S x( )   =  s e e t dtx
x

A x t
0

0

− − −+ ∫α ϕ( ) ( ) . (5.9)

Here,   0  <  α  =  const,  0 1≤ ∈ +ϕ L Rloc( ),   

0

x

t dt∫ ϕ( )   = o f t dt
x

0
∫







( )     for    x  →  + ∞  ,

where   f x( )  is the positive increasing function,   f ( )0   =  1  and  if  ν( )K2   <  (B  –
– 1) / A,  then  f x( )  =  O( )1   for   x   →   + ∞  ,   and  if  ν( )K2   =  ( )B A− /1 ,  then
f x( )  =  O x( )  for  x  →  + ∞  . 

 Proof.  From the condition  A  =  C   >  0  it follows that  γ  =  1.  Together with
(5.3), we consider the following auxiliary equation: 

˜ ( )F x   =  g x w x t F t dt( ) ( ) ˜ ( )+ −
∞

∫
0

, (5.10)

f x( )  =  
0

∞

∫ −w x t f t dt( ) ( ) . (5.11)

It was proved in [12, 13] that if  ν( )w ≤ 0,  0 1≤ ∈ +g L R( ),  then equation (5.10) in

L R1
loc( )+   has positive solution which, almost everywhere in  ( 0, + ∞   ) ,  is the limit of

the following simple iterations: 

˜ ( )( )F xn+1   =  g x w x t F t dtn( ) ( ) ˜ ( )( )+ −
∞

∫
0

,      ˜ ( )F 0   =  0,    n  =  0, 1, 2, … , (5.12)

and the asymptotic 

0

x

F t dt∫ ˜ ( )   =  o f t dt
x

0
∫







( ) ,    x  →  + ∞  , (5.13)

is true, where  f  is a positive increasing solution of equation (5.11),  f ( )0   =  1.
Mentioned solution  f  satisfies also the following conditions:  f x( )  =  O x( ),  ( x  →  ∞  )
for  ν( )w = 0   and  f x( )  =  O( )1 ,   x   →  ∞  ,  for  ν( )w < 0.  We consider the follo-
wing iteration for equation (5.3)  (in the case  A  =  C  >  0 ) :  

F xn( )( )+1   =  g x w x t F t dtn( ) ( ) ( )( )+ −
∞

∫
0

,      ˜ ( )F 0   =  0,    n  =  0, 1, 2, … . (5.14)

It is easy to show that  

i)  g x( )  ≤  F n( )   ↑  by  n ,  ii)  F n( )   ≤  ˜ ( )F n   almost everywhere in  ( 0, + ∞   ) . 

Hence, almost everywhere in  R+ ,  there exists  F x( )  =  lim ( )( )

n

nF x
→∞

  and 

0  ≤  g x( )  ≤  F x( )  ≤  ˜ ( )F x . (5.15)

It is obvious that  F x( )  is the solution of equation (5.3)  for  A  =  C  >  0  (the proof of
last fact has analogy with Theorem 4.1).   Using (5.13), (5.15)  and  Lemma 3.3,  we
obtain 
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0

x

F t dt∫ ( )   =  o f t dt
x

0
∫







( ) ,    x  →  + ∞  .

Solving equations (5.4)  and  (5.5),  we obtain (5.9). 
The theorem is proved. 
5.3.  Equation  (1.1) – (1.4)  in case  C  >  A   >  0.  Doing analogous discussions

as in Theorems 4.1 and 5.1, we get the following theorem: 

Theorem 5.3.  Let  i)  w x( ) ≥ 0,  x R∈ ,  ii)  0  ≤  λ  ( x )  ≤  1,  λ ( )x &∈ W R∞
+1 ( ) ,

iii)  the inequality 

vrai max
+t R t

t w d
∈ −

∞

∫ +λ τ τ τ( ) ( )   <  1

takes place.   Then problem   (1.1) – (1.4)  for  C  >  A   >  0  in  W R1
1( )+   possesses

a solution of the type  (4.18). 
6.  Construction of nontrivial solution of homogeneous equation  (1.7).  The

factorization (3.2) allows us to construct nontrivial solution of corresponding homoge-
neous equation when  A  =  C   >  0.  Unfortunately, for other values of parameters  A
and  C,  up to now we were not able to construct a nontrivial solution.  It is known only

that, in the case  A  >  C  >  0,  the  homogeneous equation  F x( )  =  λ ( ) ( )x w x t−
∞

∫0
 ×

× F t dt( )   in the class  �  has no nontrivial solutions.  It is also known that the homo-
geneous equation, in the case  A  =  C   >  0  and  ν( )w   >  0,  in  �  has no nontrivial
solutions either.  On evristic level we conclude that for other values of parameters  A
and  C  nontrivial solutions do not exist. 

We consider corresponding homogeneous equation  (1.1) – (1.4)  for  A  =  C   >  0
(see (1.7)). 

Using factorization (3.2), we rewrite the equation (1.7) in the form 

( )( )( )I W I U D I S− − +λ
α α   =  0. (6.1)

The equation is equivalent to the successive solution of the following equations: 

( )I W− λ ρ1  =  0, (6.2)

( )I U− α ρ2  =  ρ1, (6.3)

( )D I S+ α   =  ρ2. (6.4)

We write equation (6.2) in the open form:  ρ1( )x   =  λ ρ( ) ( ) ( )x w x t t dt−
∞

∫0 1 . 

As  A  =  C  >  0,  then  γ  =  1.  Using Theorem from [11] (see Sec. 2 of this paper),
Lemma 3.3 and solving equations (6.3) and (6.4), we obtain the following results: 

Theorem 6.1.  A. Suppose that  i) w x( ) ≥ 0,  ii) 0  ≤  λ  ( x )  ≤  1,  λ ( )x &∈ W R∞
+1 ( ) ,

I x L R− ∈ +λ ( ) ( )1 ,   iii)  ν( )K
B

A2
1< −

. 

Then the problem  (1.7), (1.3), (1.4) for  A  =  C   >  0  in the class   �  possesses
a nontrivial solution of the type 

S x( )   =  s e e t dtx
x

A x t
0

0
1

− − −+ ∫α ρ( ) ( ) , (6.5)

where   ρ1  ≠  0  and  ρ1( )x   =  O ( )1 ,  x  →  ∞  . 
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B.  L e t  i)  w x( ) ≥ 0,  x R∈ + ,  ii)  0  ≤  λ  ( x )  ≤  1,  λ ( )x &∈ W R∞
+1 ( ) , 

x x( ( ))1 − λ  ∈ ∈  L R1( )+ ,  iii)  ν( )K2   ≤  
B

A
− 1

.   Then the problem  (1.7), (1.3), (1.4)

for  A  =  C   >  0  in the class   �  possesses a nontrivial solution of  the type   (6.5),

where    ρ1  ≥  0,  ρ1  ≠  0,  and has the asymptotic behaviour   
0 1
x

t dt∫ ρ ( )   =  O x( )2 ,

x  →  + ∞  . 
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