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FACTORIZATION OF ONE CONVOLUTION-TYPE
INTEGRO -DIFFERENTIAL EQUATION
ON POSITIVE HALF LINE

OAKTOPUBANIA OAHOT'O IHTETPO-TUOEPEHIIAJIBHOI'O
PIBHAHHA TUITY 3T'OPTKH HA TOJATHIN ITIIBOCI

Sufficient conditions for the existence of a solution of one class of convolution-type integro-differential
equations on half line are obtained. The investigation is based on three factor decomposition of initial
integro-differential operator.

OTpuMaHo AOCTATHI YMOBH [1J1s iCHYBaHHs PO3B’ 53Ky OJIHOTO KJIacy iHTerpo-audepeHiaJbHux piB-
HsIHb TUITy 3rOpPTKH Ha miBoci. [locJlifixkeHHs 6a3yI0ThCs Ha PO3KJIa/li MOYaTKOBOI'O iHTerpo-aude-
PEHIiaJIbHOT0 ONepaTopa Ha TPU MHOKHUKH.

1. Introduction. A number of problems of physical kinetics (see [1—-3]) are described
by the integro-differential equation

45 L AS() = g(x) + Mx) BJ’Kl(x—r)@dt + chz(x—t)S(t)dt , xeR'.
dx 0 dt 0

(1.1)
Here, S is an unknown solution from a class of functions absolutely continuous on R*
and of slow growth in +oo, i.e.,

SeM £ {feACR") st.Ve >0, ™ f(x) >0 as x — +oof,

where AC(R+) is the space of functions absolutely continuous on R*, A, B, C are
nonpositive parameters, 0 < A(-) <1, and Ae WL(R") (where W) (R") is the So-
bolev space of functions f such that f(k) € Lp(R+), k=0,1,2,...,n). The functions
g and K;, j = 1,2, satisfy the following conditions:

0<ge L(R" (1.2)

and 0 < K; e L|(R) such that

jKj(x)dx =1, j=1,2 (1.3)

The initial condition to equation (1.1) —(1.3) is joined
S(0) = spe R (1.4)

In the case where

oo

K@x) =0, A=0 AMx) =1 Kk = je—‘)“ffdj, (1.5)
S
1

the first results of studying equation (1.1) — (1.3) appeared in the works [3 — 5]. Later,
in [6], the equation (1.1) was considered in the more general case where
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Ki(x) =0, Mx)=1, 0<K,e L(R), |K HLI =1, (1.6)
and, under some additional conditions on functions K,, g and parameters A, C, the
structural theorems on existence were obtained. Note that in [5, 7], the solvability of
equation (1.1), (1.5) in the space Wl](R+) is proved and, by means of the Ambartsu-
mian — Chandrasekhar function, analytical formulae describing the structure of obtain-

ed solution are founded.
In the present work, structural theorems on existence are obtained by putting some

additional conditions on functions A, K; and K, for equation (1.1) —(1.4).
Below, we briefly describe our approach to the investigation. First, we construct
three factor decomposition of the initial integro-differential operator D + Al — BK;{D -

- CK;% [where D is a differential operator, I is the unit operator, (K}{ x) =
= AMx) j:Kj(x—r) f()dt, j = 1,2] in the form of product of one differential and two

integral operators. Using this factorization, the problem is reduced to the successive
solution of two integtal equations and one first-order simple differential equation. The
former is the Volterra-type integral equation (it can be solved elementary) and the lat-
ter is the integral equation with the kernel A(x)w(x —r), where w(-)e Li(R) if A >

> 0 and w(x) = py(x)+py(x) if A =0 (here, pye Li(R), pje M(R)).

It should be also noted that above mentioned factorization allow us to construct
a nontrivial solution (from class M) of the corresponding homogeneous equation for
A = C, ie.,

ds T ds T
CLHAS) = k(x){B'(‘;K](x—t)dtdt + A{Kz(x—t)S(t)dt}. (1.7)

2. Notations and auxiliary information. Let E* be one of the following Banach
spaces: Lp(O, o), 1 £ p < +oo, and L; = Lj(—oo,+o0). We denote by € a class of

the Wiener — Hopf integral operators (see [8]): We Q if (Wf) = f:w(x -1 f(@)dt,
we L] .

It is easy to check that the operator W acts in the space E* and the following esti-
mation holds:

[Wilge < [lw(x)ldx. 2.1)

—oco

The kernel w of the operator W is called conservative if

0<wel, y< [wwd =1 2.2)

—oo

We also introduce the algebra Q* € Q of lower and upper Volterra-type operators:
Vie QF if

VN = [vie=nfwd,  (V_H) = [ve-xfod, — @3)
0 X

where x € (0,%), v, eL(R").
It is easy to see that Q = Q" @ Q™. We denote by Q" a class of the following
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integral operators: o' e if

@' NHx) = Mx) [qx -0 fr)dt, 2.4)
0

where 0 < A(-) <1, Ae WA(RY), geL(R).
It is known thatif We Q, V. e QF, then V.WeQ (see [9]). Below, we prove
one generalization of this fact and make essential use of it in the further reasoning.

Lemma 2.1. If Q)” € Qx, then the following possibilities take place:

a) 0MV, eQ*, where V,eQF,

b) V,Qx € Q}”, where V_eQ~, if and only if there exists a real function r(t)
on R, for which

AMx+1) = Mx)r@), r@)v_(H)e L(R").

Proof. Let feE" be an arbitrary function. We have
oo t
Q" Vi) = M@ g =0 [ v, -1 fD)dudr. (2.5)
0 0
Changing the order of integration in (2.5), we obtain

@'V, ) = K(X)Jf(r)'[q(x—t)v+(t—r)dtdt =
0 T

= M0 [ (0 [qx-t- v, ()dzdt = Ax) [ P(x—1) (D),
0 0 0

where

=

P(x) = [q(x-2)v,()dz. 2.6)
0

It follows from Fubin’s theorem (see [10]) that P e L;(R). Now let V_eQ", Q7b e QM
In this case, analogous discussions reduce to the following formula:

(V0" N = [fO[v-@Mx+gx—t+2)dzdr = [px, 1) f(Ddr,
0

0 0

where
p(x,T) = J v_(D)A(x+2)g(x — T+ 7)dz.
0

Let A(x+2) = A(x)r(z), where r(z)v_(z)€ Li(R"). Then
P D) = M) [r_@r@ax—t+2ds § A(0py(x—1),
0
where pge Li(R).

The inverse statement is proved by analogy.
The lemma is proved.
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Let us consider the following homogeneous equation on half line:

B(x) = x(x)jK(x— 1) B(t)dt 2.7)
0
with respect to an unknown function B e L*(R), where 0< K e L(R), |K lp,» 0 <

< A(-) £ 1 is a measurable function.
Below, we need the following theorem proved in [11]:

oo

Theorem [11]. 1. If 0 < A(x) < 1, 1-A(x)e L(R"), v(k) & ij(x)dx <

< 0, then equation (2.7) possesses a nontrivial bounded solution B(x) # 0 and
B(x)=0(1) as x > +oo.

2.If 0 < A(x) £ 1, x(1-Mx) e L(RY), V(K) = 0, then equation (2.7) pos-
sesses a solution B(x) 2 0, B(x) # 0, and besides,

[Btydt = 0(x») as x — +eo.
0

3. Factorization problem. We rewrite equation (1.1) in the operator form
(D+AI—BK17“D—CK§“)S = g. (3.1)

We consider two possibilities: 1) A > 0, and 2) A = 0.
1. Let A > 0. We consider the following factorization problem: For operators D
and K;“ € Qx, j = 1,2, and for arbitrary o > 0, it is necessary to find operators

W* e Q" and U, eQ" such that the factorization

D+ Al - BK{'D - CKy = (I - W*)(I - U,)(D + o) (3.2)

holds as an equality of integral operators acting in WII(R+).
2. Let A = 0. For operators D and K;‘ GQ)‘, j = 1,2, and for arbitrary o > 0,

it is necessary to find operators V, e Q*, H » Q" such that the factorization
D - BK'D - CKy = (I - H* = V,)(D + al) (3.3)

takes place as an equality of integral operators acting in Wll(RJr).
The following lemma holds:

Lemma 3.1. Suppose that A > 0, K]}-\GQX, j = 1,2. Then for each o > 0,

the factorization (3.2) takes place. Kernel functions of the operators wh et
and Uy, eQ*' have the forms

whe ) = M) w(x—1),

where

w(x) = BK(x) + j {cK,(t) — ABK, (1)} e 20Dt (3.4)

—oo
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and
I, if x=20,
Uy (x) = (00— Ae ™0(x), where 0O(x) = 3.5
I, if x<O.
Moreover, if K, e Wll(R), then we WII(R).

Proof. We denote by I, aninverse operator of the differential operator D + o/
in the space W'(R") N {f: f(0) = 0}. Itis easy to verify that T, belongs to QF
and has the following form:

X
(T, f)(x) = je‘“““” fdt, o > 0. (3.6)
0

It follows from Lemma 2.1 that Q}‘ a K?‘ I, o, j = 1,2, and kernels of the

operators Q;-‘ are given by formulae

grn = Mog(x—1, ¢(x) = jKj(t)e‘O‘(x—’)dte W\R), j=12 3.7

—oo

We have
D+AI-BK}D-CK) = D+ol-ol+Al-BK!D-CK} = (I-P,)(D+al),
(3.8)
where
P, = BK!'DT, + CKIT, + (0.— A)T,. (3.9)

Itis easy to see that DIy, = I—al},, hence, F, = R&“ +U,, where R&‘ e Q*
R* = BK}+(CK} —aBKT, and U, eQ", the kernel of which is given by (3.5).
We denote by I+ ®,, the inverse of the operator [—U, in Wll(R+). By means of

simple calculations, it is easy to verify that ®, € Q* and, moreover,

(@ N)@) = (@-A)[e D f@ydr, A > 0. (3.10)
0
Using (3.10), from (3.8) and (3.9) we have

D+ Al -BK!'D-CK} = (I - Ry(I+®,))(I -~ Uy)(D+ol) =
= (I-WMI-U,)(D+oal),

where W* & R&‘ +R&‘CI)0(.
Using Lemma 2.1, we conclude that whe QM Ttis easy to check that operator
W does not depend on o. Actually, let f € E" be an arbitrary function. Then

o t
(R @ f)(x) = (@— AAW) [ ra(x =0 [ e f(rydrat,

0 0

where A(x)r,(x —1) is the kernel of the operator RZ; Changing the order of integra-
tion in the last integral and taking into account (3.7), we have
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(R @, f)(@) = M) [ Yolx— 1) f(D)dT,
0

where

X X
Yo (x) = j {CKy(T) — AoK (1)} e A Ddr — j {CK5(T) — AoK (1)} e .
Hence, from (3.7) it follows that W does not depend on o, its kernel is given by
(3.4). Now we show that operator W acts in the space Wll(R+). Really, let f be an
arbitrary function from Vi/ll(R+). We have

W) = M [ wex=0f@dt = M) [ wo) flx-vdr.
0 —oo
We denote by p(x) the function

X
pL) = A) | wr) f(x—T)dr.
Applying Fubin’s theorem and taking into account that 0 < A(x) < 1, we L(R),
and fe Wll(R), we obtain peLi(R). If Le Wi,(R), fe Wll(R), then from equality

X

P = K@ [ wo fx-vdt + 0w fO) + [ wo fix-1de
it follows that p”e€ Li(R). Therefore, pe Wll(R). From (3.4) it follows that if K €

e W(R), then weW/'(R).
The lemma is proved.
It is simple to prove the following lemma:

Lemma 3.2. If A = 0, then operator D — BK?‘D—CK%L permits factorization

of type (3.3), where kernels of operators v, eQ", H* Q" are given,
respectively, by formulae

Vo (x) = oe ™ 0(x), h}”(x, 1 = Mx)h(x—1), (3.11)

where

h(x) = BK(x) + j (CK,(t) — BK, (1)} e *“ . (3.12)

—oo

Further, we essentially use the following lemma that establishes connection betwe-
en first moments of functions w and K i j=12:

Lemma 3.3. Suppose that
vk & [Tk 0de < 4, j= 12,
exists. Then V(w) < +oo exists and the following formula holds:

v(w) = C;?B + %V(Kz) for A >0.

Proof. As V(Kj) < 400, j = 1,2, then by Fubin’s theorem we have
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400
v(iw) = J xw(x)dx =

—oo

=S X 4 X
= BV(K) - AB | x [ K@ Vdrdx + ¢ [ x [ Ky)e A Vdrdx =

—o0  —oo —o0  —oo

= BV(K)) - AB | Kyo)e" [ xe™dxdr + C [ Ky@)e™ [ xe™ dxdr =
—oo t —oo t

C-AB C
+ —Vv(K,).
A? 4 &)

The lemma is proved.

Remark. 1f CV(K,) < B—%, A >0, then v(w) < 0.

4. Solution of problem (1.1) - (1.4) for A = 0. Let us consider equation (1.1)
when A = 0. Using factorization (3.3), the equation (1.1) (for A = 0) we can write
in the following form:

(I-H-V,)(D+aDS = g. “.1)

The solution of (4.1) is reduced to successive solution of the following equations:
(I-H"-V,)e = g 4.2)
(D+al)S = g 4.3)

We denote by I + @ the resolvent of operator [—V, in the space L11°°(R+). It is

easy to check that (®f)(x) = ocj:f (t)dt. From representation of operator @ it

follows that the operator @ transfers the space L](R+) to the space  M(R"), where
M(R) is the space of bounded functions on R*. We represent the operator
I-H" - Vy, in the following form:

I-H-V, = I-G)(I-V,), (4.4)

where G = H + H'®. Itis easy to check that the operator (Gf )(x) is determined
as

G ) = Mx) [ Golx =) f(tydt,
0
where

Go) = BK() + C [ Kryydr, K eL(R), [ Ky()dre M(R).

—oo —oo

Using factorization (4.4), the solution of equation (4.2) is reduced to successive
solution of the following equations:

I-G)¥Y

(I - Voc)(p
We rewrite the equation (4.5) in the open form

g, 4.5)
v, (4.6)
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W) = g@) + A [ Gylx -0y dr
0

and consider the following iteration process:
@) = g + M0 [ Gy -y dr,  y© =0, n=012...
0

“4.7)
It is easy to see that g(x) < w™ T by n. We note that if LeL,(R"), then
vy eL(R"), n=0,1,2.... Really, for n = 0, we have y" = g(x) e Li(R).

Assume that \u(”) € € L,(R") and prove that \|f(”+1) € Li(R). Then for arbitrary
r > 0 we have

r

JvPwadx < [gdr + [0 [ Gox =0y wdrar =
0

0 0 0
oo oo ) oo oo X—t
= [gdx + B [y ™) [ K\ = nh@)dedr + € [y ") [ [ Kymdehedxdr <
0 0 0 0 0 —oo

< Jewdx + B[y™@ydr + C [y 0ydt [A@dy = v e LRY).
0 0 0 0
It is also easy to check that

[w™Dwydx < [gGodx + vraimax [ A +1)Go(ydn [ WD nydr.  (4.8)
0 0 teR* —t 0

Now we suppose that

go € vraimax [ A(t+1)Gy(m)dt < 1. (4.9)

teR —t

Then from (4.8), taking into account (4.9), we receive

=

Jwm™D@dy < (1- g7 [ g@)dx.
0 0

(n)

From B. Levi’s theorem (see [10]) it follows that the sequence almost

everywhere in R* has a limit y(x) = lim qf(”)(x), and besides \|IEL1(R+).
n—soo

We prove that y(x) is the solution of equation (4.5). Actually, from (4.7) we
have

v () < gx) + x(x)jc;o(x—z)q;(t)dt, n=012... (4.10)

0
Passing to the limit in the last inequality, we obtain

y(x) < g(x) + Ax) j Go(x — D) y(D)dt. @.11)
0

On the other hand,
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g@) + A [ Gox =y (dr < ().
0

From Lebeg’s theorem it follows that
g + A [ Golx = Dwydr < W),
0

Combining inequalities (4.11) and (4.12), we get

W) = g@) + @) [ Gylx —ny(ydr.
0

Now we pass to the solution of the equation (4.6):

0() = wx) + af e Vo).
0

It is obvious that

X
0() = W) + o wnydr.
0
Finally solving equation (4.3) and taking into account (1.4), we obtain

X
S() = spe ™ + [ oy,
0
Using formula (4.16), we have

X
S(x) = sge ** + Jw(t)dt.
0
In its turn, it follows that

? 2 INCL:
[swdr < S(+eo) = [y@ar < 0>——.
0 0 I-¢qy

The following theorem holds:

1563

(4.12)

4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

Theorem 4.1. Ler 0 < A(x) < 1, Ae L(RHNWLR"), and let the following

estimation be true:

vrai maxJK(I+T)GO(‘c)dT <1,
teR*

where Go(x) = BKy(x) + C [ Ky(t)dr.

—oo

Then problem (1.1) — (1.4) for A = 0 in the class IM(R") possesses a

positive solution of the type (4.18) and inequality (4.19) is true.

5. Solution of equation (1.1) — (1.4) for A > 0. In this section, we study
equation (1.1) — (1.4) for A > 0. In this case, we consider the following three

possibilities: 1) A > C=20,2) A=C>0,3)0<A<C

5.1. Equation (1.1) — (1.4) in case A > C 2 0. The following theorem is

ISSN 1027-3190. Ykp. mam. xypH., 2008, m. 60, N° 11



1564 A. KH. KHACHATRYAN, KH. A. KHACHATRYAN

true:
Theorem 5.1. Suppose that a) w(x) 20, xeR, b))0<A(x)< 1, A€ WL(RT).

Then the problem (1.1) — (1.4) for A > C = 0 in the space WII(R+) has a posi-
tive solution of the type

X
S) = spe ™ + [ e D F(ryar, (5.1)
0

where o > 0 is the constant, 0 < F e Ll(R+).
Proof. Using factorization (3.2), the equation (1.1) may be written in the form

(I-WMUI-U)D+aDs = g. (5.2)
Solution of (5.2) is reduced to successive solution of the following equations:
(I-WMF = g, (5.3)
I-Uy)x = F, (5.4)
(D+ol)S = y. (5.5)

We rewrite the equation (5.3) in the open form and consider the iteration
F"Dx) = g(x) + x(x)j wx—-FPmdt, FY =0, n=0,1,2....(5.6)
0

By induction, it is easy to check that

gx) £ Fe L(RY, n=12,.., F" T by n. (5.7)

Therefore, we have

[P P < Jetyde + [ [woe—nF"* P @drdx =
0 0 0 0

= j g(x)dx + jF("“)(r) jw(t) Mt +2)dzdt < j g(x)dx + vy j F* ) dr,
0 0 0 0

—oo

where

oo

C
= dx = — < 1. 5.8
Y L w(dr = (5.8)
As (5.7) and (5.8) are satisfied, then form B. Levi’s theorem it follows that the se-

quence {F (”“)(x)}("f converges almost everywhere in R* to an integrable function
F(x). It is obvious that the function F(x) is the solution of equation (5.6).
Successively solving equations (5.4) and (5.5), we arrive to result (5.1).

The theorem is proved.

5.2. Equation (1.1)-(1.4) in case A = C > 0. The following theorem holds:

Theorem 5.2. Suppose that the following conditions are satisfied: 1) w(x) 2 0,
xeR, i) 0 SA(x)L 1, Ae WOIQ(R), iii) V(K;) < 4o, j=1,2, exists and
moreover, V(K,) < (B—-1)/A. Then problem (1.1) - (1.4) for A = C > 0 in
the class I possesses the solution of the following structure :
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X
S@) = spe ™ + [ e o@ydr, (5.9
0

Here, 0 < o = const, 0 < @ e L(RY),

[owar = o(jf(z)dzJ for x = +eo,
0 0

where  f(x) is the positive increasing function, f(0) = 1 and if v(K,) < (B -
—-1)/A, then f(x) = OQ) for x = +o, and if V(K;) = (B—=1)/A, then
f(x) = O(x) for x = +oo.

Proof. From the condition A = C > 0 it follows that ¥ = 1. Together with
(5.3), we consider the following auxiliary equation:

=

F) = g@) + [wx -nF@yr, (5.10)
0
fo) = [wa-nf@. 5.11)
0

It was proved in [12, 13] that if v(w) <0, 0 < geLl(R+), then equation (5.10) in

l}fc(R+) has positive solution which, almost everywhere in (0, +o0 ), 1is the limit of
the following simple iterations:

F'0) = g0 + [wa-nFPwdr,  FO =0, n=012.. (12

0
and the asymptotic
X X
[Fwyar = o[jf(r)dt], X = +oo, (5.13)
0 0
is true, where f is a positive increasing solution of equation (5.11), f(0) = 1.

Mentioned solution f satisfies also the following conditions: f(x) = O(x), (x — o0)

for viw) =0 and f(x) = O(), x — o, for v(w) < 0. We consider the follo-
wing iteration for equation (5.3) (inthecase A = C > 0):

o

Fr() = g0+ [wr—nFP0dr,  FO =0, n=0,1,2,.... 5.14)
0

It is easy to show that
i) gx) < F™ T by n, i) F™ < F™ almost everywhere in (0, +oo ).

Hence, almost everywhere in R*, there exists F(x) = lim F(”)(x) and
n—oo

0 < g(x) £ F(x) < F(x). (5.15)

It is obvious that F(x) is the solution of equation (5.3) for A = C > 0 (the proof of
last fact has analogy with Theorem 4.1). Using (5.13), (5.15) and Lemma 3.3, we
obtain
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[F@yar = o[jf(r)dz], X = +oo.
0 0

Solving equations (5.4) and (5.5), we obtain (5.9).

The theorem is proved.

5.3. Equation (1.1) — (1.4) in case C > A > 0. Doing analogous discussions
as in Theorems 4.1 and 5.1, we get the following theorem:

Theorem 5.3. Let i) w(x) =0, xeR, ii) 0 < A(x) < 1, A(x)e WLRY),
iii) the inequality

vrai max [ A+ w(n)dt < 1
teR* —t

takes place. Then problem (1.1)—(1.4) for C > A > 0 in WII(R+) possesses
a solution of the type (4.18).

6. Construction of nontrivial solution of homogeneous equation (1.7). The
factorization (3.2) allows us to construct nontrivial solution of corresponding homoge-
neous equation when A = C > 0. Unfortunately, for other values of parameters A
and C, up to now we were not able to construct a nontrivial solution. It is known only

that, in the case A > C > 0, the homogeneous equation F(x) = k(x)J: w(x —1) X

X F(t)dr in the class I has no nontrivial solutions. It is also known that the homo-
geneous equation, in the case A = C > 0 and v(w) > 0, in I has no nontrivial
solutions either. On evristic level we conclude that for other values of parameters A
and C nontrivial solutions do not exist.

We consider corresponding homogeneous equation (1.1) —(1.4) for A = C > 0
(see (1.7)).

Using factorization (3.2), we rewrite the equation (1.7) in the form

(I-WMUI-U)D+aDS = 0. (6.1)
The equation is equivalent to the successive solution of the following equations:
(I-Whp, =0, 6.2)
(I-Uy)py = pr, (6.3)
(D+al)S = p,. (6.4)

We write equation (6.2) in the open form: p;(x) = k(x)J.: w(x —1)p()dt.

As A= C > 0, then y = 1. Using Theorem from [11] (see Sec. 2 of this paper),
Lemma 3.3 and solving equations (6.3) and (6.4), we obtain the following results:

Theorem 6.1. A. Suppose that i) w(x) 20, ii))0 < A(x) < 1, A(x) € WL(RT),
I—M(x)eL(R"), iii) v(K,) < BT_l.

Then the problem (1.7), (1.3), (1.4) for A = C > 0 in the class I possesses
a nontrivial solution of the type

X
S@) = spe ™ + [ e p ), (6.5)

0

where p; # 0 and pj(x) = O(), x = oo.
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B. Let i) wx) 20, xeR", i) 0 <A(x) < 1, A(x) e W.AR"),

x(1-A(x)) € € L](R+), i) v(K,) < BT_] Then the problem (1.7), (1.3), (1.4)

for A = C > 0 in the class I possesses a nontrivial solution of the type (6.5),
where p; 2 0, p; # 0, and has the asymptotic behaviour .[; pdt = O(xz),

X — +oo,

The authors express their gratitude to Professor N. B. Yengibaryan for useful dis-
cussions.
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