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FRECHET-VALUED HOLOMORPHIC FUNCTIONS
ON COMPACT SETS IN (DFN)-SPACES

®PENIE-3HAYHI TOJIOMOP®HI ®YHKIIII
HA KOMITAKTHUX MHOXHNHAX ¥V (DFN)-ITPOCTOPAX

The aim of this paper is to give the equivalence between the weak holomorphicity and the holomorphicity
of Frechet-valued functions on compact polydiscs in (DFN)-spaces. Moreover, the relations between
separately holomorphic functions and holomorphic functions on compact polydiscs in (DFN)-spaces are
also given.

Mera wmi€i crarTi — BCTAaHOBHTH €KBIBAJCHTHICTh MK CIa0KOK rojoMop(HicTIO Ta roioMopdHicTio
Opeme-3HaqHnX (QyHKOIH HAa KommakTHHX nomiguckax y (DFN)-mpocropax. Takoxk HaBeleHO CITiB-
BIIHOIICHHA MDK Hapi3HO ronoMopHuMH (QyHKLiIMH Ta TOMOMOPGHUMH (GYHKLIIMH Ha KOMIAKTHHX
noniguckax y (DFN)-pocropax.

Introduction. Let E be a Frechet space (i.e., a complete metrizable locally convex
space) with a fundamental system of semi-norms {|| - ||x}. For each subset B of E, we

L
define || - |5 E' — [0, +00] by

Jully = sup {ju()|: = € BY,

where u € E’, E’' is the topological dual space of E.
Instead of || - ||}, we write || - ||}, where Uy = {# € E: ||lz|x < 1}. Using this
notation, we say that E has the property

(DN) 3pVgq,d> 03k C >0
lzllg* < Cllllellzlly vz € E.
(DN) 3pVg3kVd>03C >0

(Q) Vp3IqVEk3Id,C>0
) lull 3+ < Cllullillully® Yu € E'.
(Q) Vp3q,d>0VkK3IC >0

Throughout this paper, if the Frechet space E has the property (DN) (respectively,
(DN), (Q), (Q)), then we write E € (DN) (respectively, E € (DN), E € (Q),
E € (Q)). The above properties have been introduced and investigated by Vogt [1]-[3].

In this paper, for all notions concerning the theory of holomorphic functions on
locally convex spaces and the theory of nuclear locally convex spaces, we refer readers
to the books of S. Dineen [4] and A. Pietsch [S]. However, for convenience of readers,
we recall some important notions which we use frequently here.

Let (E,)acr be a collection of locally convex spaces. The locally convex space F
is the locally convex inductive limit of (E,)scr and we write E = limindFE,, if for
each «v in I, there exists a linear mapping ¢,: E, — FE such that E has theaﬁnest locally
convex topology for which each i, is continuous. A locally convex inductive limit of
normed spaces is called a bornological space.

Let X be a compact set in the Frechet space E. By H(X) we denote the space of
germs of holomorphic function on X. This space is equipped with the inductive topology

H(X) = llglll)r(ldH ),
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here, for each neighborhood U of X, we denote by H°°(U) the Banach space of bounded
holomorphic functions on U with the sup-norm

Ifllv =sup {|f(2)]: z€ U}.

A locally convex space E is called to be quasi-Montel if every closed bounded subset
of E is compact. If p is a semi-norm on the vector space E, we set £, = (E /;1?@, D)
(i.e., E, is the Banach space obtained by factoring out the kernel of p and completing the
normed linear space (F/,-1(0),p). A locally convex space E is called to be Schwartz
space if for each continuous semi-norm p on FE there exists a continuous semi-norm ¢ on
E., q > p, such that the canonical mapping (i.e., the mapping induced by the indentity
on E) from E, to E, is compact. A linear mapping T' between the Banach spaces E
and F' is nuclear if there exists a sequence (\,,)22; in Iy, a bounded sequence (z,,)52 ,
in F, and a bounded sequence (¢,)2; in E’ such that Tz = ZOO Anton (x) 2, for
every x in E. A locally convex space FE is called to be nuclear if ?ozrleach continuous
semi-norm p on E there exists a continuous semi-norm ¢ on E, g > p, such that the
canonical mapping from E, to E, is nuclear.

A sequence of vectors (e,,)52; in a locally convex space F is called a basis if for
each x in F there exists a unique sequence of scalars x,, such that

m o0
z = lim E TpCn = E TpCn-
m—0o0

n=1 n=1

If the mapping P,,: £ — E,

0o m
Pm § Tpen | = § Tp€n
n=1 n=1

are continuous for all m, the basis is called a Schauder basis. The Schauder basis
(en)22 is said to be absolute if for any semi-norm p on E there exists semi-norm ¢ on

FE such that

Z |xn |p(en) <q (Z xnen>

n=1 n=1

for any Zoo_l Tne, € E.

A compg?:t polydisc X in E’, the topological dual space of E, is called to be a
compact determining polydisc if every holomorphic function g on X such that g|x =0
then g = 0 on a neighbourhood of X in F’.

Let £ and F be locally convex spaces and let X be an open set in E. A function
f: X — F is called to be holomorphic on X if f is continuous and for every finite-
dimensional subspace G of E, f|gnx is holomorphic function of several complex
variables. If the above-mentioned request holds for all u o f, u € F’, the topological
dual space of F, then the function f is said to be weakly holomorphic on X.

By H(X, F) (respectively, H,, (X, F')) we denote the vector space of all holomorphic
(respectively, weakly holomorphic) functions on X with values in F. The aim of the
present paper is to find some conditions for which

(4) H(X7 F) = Hw(Xa F)
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This problem has been interested by some authors [6]-[10]. In [7], L. M. Hai has
shown that F € (DN) if and only if (A) holds for every L-regular compact set X in a
Frechet space E/, where a compact subset X in a Frechet space F is called z-regular if
[H(X)]" € (Q). Moreover, he also has shown that for a compact polydisc X in a dual
space of a nuclear Frechet space E with a basis, (A) holds for every Banach space F' if
and only if E € (DN).

In this paper, we shall prove the following theorems:

Theorem A. Let E be a Frechet nuclear space with a basis having a continuous
norm. Then the following statements are equivalent:

(i) E has the property (DN);,

(ii) H(X,F)="Hy(X,F) and H(X) is quasi-Montel for every compact determi-
ning polydisc X in E' and for every Frechet space F € (DN).

To state the second theorem, we give the following notion. Let X be a compact set
in a locally convex space E and let f: X — H(F') be a continuous function with values
in H(F'). The function f is called to be separately holomorphic if 6, o f € H(X) for

every « € F, where ¢,.: H(F') — C is given by

0:(¢) = p(xz) for each ¢ € H(F).

By Hs(X,H(F)) we denote the vector space of separately holomorphic functions on X
with values in H(F).

Let E’ denote the strong dual space of a Frechet space E. A holomorphic function
on E’ is said to be of bounded type if it is bounded on every bounded set in E’. By
Hy(E') we denote the metric locally convex space of entire functions of bounded type
on E’ equipped with the topology of the convergence on bounded sets in E’.

Theorem B. Let E be a Frechet nuclear space with a basis and have a continuous
norm. Then the following statements are equivalent:

(i) E has the property (DN),

(i) H(X, Hp(F")) = Hs(X, Hp(F")) holds for every compact determining polydisc
X in E' and either every Frechet—Schwartz space F € (DN) having an absolute basis
or every Banach space F.

Theorem C. Let E be a nuclear Frechet space with a basis and have a continuous
norm. Then

H(X,F') = Ho(X, F')

holds for every compact determining polydisc X in E' and for every Frechet space F' if
and only if E € (DN).

1. Proof of Theorem A. For the proof of Theorem A, we need the following two
lemmas:

Lemma 1 [6]. Let B be a Banach space and let H(Opg) denote the space of germs
of holomorphic functions at O in B. Then [H(OB)}IB € ().

Lemma 2 [11]. Every continuous linear map from a Frechet space E € (Q) into
a Frechet space F € (DN) can be factorized through a Banach space. This means
that there exists a continuous semi-norm p on E and a continuous linear map g :
E, — F, where E, is the Banach space associated to the continuous semi-norm such
that f =go®,, ¢,: E — E, is the canonical quotient map.

We now prove Theorem A.
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Sufficiency. Assume that E € (DN), F € (DN), and X is a determining compact
polydisc in E’ of the form

X = {w = (wn) € E': sup|lwpan| < 1},
n>1
where {o, }n>1 18 a sequence of positive numbers. Since H(X) is regular [4], H(X) is
quasi-Montel. It suffices to show that H,, (X, F') C H(X, F). Let f € H,,(X, F). Since
X is compact, a, # 0 for every n > 1. Note that H(X) is regular because F € (DN)
[4] and since X is determinating then we can consider the linear map f F' — H(X)
given f(u) = vjc} , a holomorphic extension of uf to a neighbourhood of X.
By [4], on a neighbourhood (depending on u) of X, we have

fww = 3 bu(ww™,

meN )
where
1 Flw)(\er + ... 4 Aned)
by (1) = nl ax
() = Gy / A
Mil=my Pnl=raky
and

N = {m = (my)y2q; My is a nonnegative integer for all n

and m, =0 forall n sufficiently large},

{ej}j>1 and {e}};>1 are bases of E and E’, respectively.
We check that b,, (u) are continuous on F”. Fix m € N) and put

1 _
Xm = X Nspan{e],..., e} = {(wl,...,wn): |wi| < ol i= l,n}.
Q;

Consider f,, = f|x,,. By the hypothesis, f,, € Hy(Xm, F). By [7] and by the
L-regularity of X,,, in span{ej,...,e%}, we have f,, € H(X,,, F). Thus, there
exists a neighbourhood V;,, of X,, in span{ej,...,e%} for which f,, is extended
to a holomorphic function f,,: V,,, — F. Hence,

_ ! Fu) Mt + .4 Anel)
(1) = (e / . / s i
‘)\1|:\Tll| |>‘n‘:m
1 Fn(w) (i€} + ...+ Aner)
(2mi)™ / 1 d, (1)
[A1|=r2 An|= =t

T laal fan]

where A"+ = X7t Ama+tl s continuous on F.
We now prove that f: i . — H(X) is continuous, where Fy  means that the space
F’ is equipped with the bornological topology. Take arbitrary p € [H(X)] = H(U)
[12], where
<1f

Zn

n

Uz{z:(zn)EE: sup

is an open polydisc in F.
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By [4], we can write

NN
and
(Fl)u) = 3 b (wam(p). )
N(N)
From
sup{ me(u)am(p) cJC NN T s ﬁnite} < 00,
J

for u € F', we infer that

sup {

for all bounded sets B’ C F’.
This implies the continuity of f: F, . — H(X). By the regularity of H(X), there
exists an increasing sequence of bounded sets { By} in E such that f maps continuously

F/ . into limkindHoo(Bg). Choose {e} | 0 such that B = |J By is bounded in

bor

:J c N J s finite, uEB'}<oo

S b (w)an (1)
J

k=1
E. Let P and @ denote the space £’ /i |z, equipped with the topology generated by
{l I, } and || [|;; respectively. Note that

id: (B fxerl 13 Q) = (E' /et 1135 P)
is continuous. It follows that
limkindH“(B,g) =H(Op)

which is continuously embedded into H(Og). Lemmas 1 and 2 imply that there exists a

~

neighbourhood W of O in F{ , and a neighbourhood U of X such that f(W) C H™(U).
Define a holomorphic function

g:U—=F
given by
9(@)(u) = f(u)(x)
forx € U, x € F’. We have

9(@)(u) = fu)(@) = f(u)(@)

forx € X, uw € F'. Thus, g|x = f and f is extended holomorphically to U.
Necessity. Let {e;} be a basis of E' with the dual basis {ej} C E. Since E has a
continuous norm, there exists an open polydisc in E of the form

oo
U= z:szej € E: suplzjlp; <1,
= j>1

where p; > 0 for all j > 1.
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Hence,

oo
X=UM=Jw=3 we: | <p; for j21p=pBxY
Jj=1

is a compact determining polydisc in E’; here A = {w; € C: |wy| < 1} and ¥ =
= {(w))j>2: lwj| < pj for j > 2}.

Indeed, given f € H(X) such that f|x = 0. Take a convex neighbourhood W of
X in E’ such that f € H(W). For each m > 1, put L = span{ej,e},..., e} and
consider

m
V=293 Apseg Y Nyl
1<<m j=1

Note that V' is a neighbourhood of 0 € L which is contained in X. By the hypothesis,
flv = 0. Thus, flwnz = 0. Hence,

leﬁspan{e; cj=ly — 0.

The density of W Nspan {e}: j > 1} in W and the continuity of f imply that f[w = 0.

First, we show that H(X) is regular. Since H(X) is quasi-Montel, H(X) is quasi-
reflexive.

Now given a balanced convex bounded set A in H(X). Consider the normed space
E; = H(X)(A) spanned by A and the function f: X — F} given by f(z)(c) = o(z)
forze X,0 € F;.

Since H(X) = H(X)", we infer that f is weakly holomorphic. By the hypothesis,
f can be extended to a bounded holomorphic function fon a neighbourhood V; of X
in E’. From the relation

o(z) = f(x)(0) = f(z)(o)
for every x € X and ¢ € A and from the uniqueness of X it follows that A is

contained and bounded in H°°(V}). Thus, H(X) is regular and hence, by [4], H(U) is
bornological. Since L;(F, H(p1A)) = F'&rH(p1A) contained in

HW)BrH(p1A) =2 H(W)@H(mA) = H(ptA x W) = H(U)

is a complemented subspace of one, where £ = Ce; ® F, U = p1 A x W1, it follows
that Ly (F, H(p14)) is bornological. By [3] (Theorem 4.9), F' and hence, E € (DN).

2. Proof of Theorem B. We need the following lemma:

Lemma 3 [13]. Let E, F be Frechet spaces with E € (Q), F € (DN). Assume
that F is a Schwartz space with an absolute basis. Then every E'-valued holomorphic
function on F' is factorized through a Banach space.

We now give the proof of Theorem B.

Sufficiency. Given f € Hs(X, Hy(F")).

(1) First assume that F' is a Frechet—Schwartz space with an absolute basis and
F € (DN). Consider the map f: F’ — H(X) given by f(u) = 6(u) o f for u € F’.
We use again the notations of Theorem A. By (1) and (2), for each u € [H(X)]’, the set

Zb,,l(-)am(u): J C M, J is finite
J
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is bounded in H;(F’) and hence, it is relatively compact in H;,(F”). This yields that
the function f: F' — H(X) is weakly holomorphic. Since F’ is a DFS-space, it
implies that fis holomorphic. Now, as in the proof of Theorem A, by Lemma 3, fis
holomorphically factorized through a Banach space. By the regularity of H(X), as in
Theorem A, we can extend f to an element of H (X, H,(F)).

(i) Let F' be a Banach space. As in (i), ]? F’ — H(X) is a holomorphic function of
bounded type. Again, by the regularity of H(X), it implies that f can be holomorphically
extended to an element of H (X, H,(F')).

Necessity. As in the proof of Theorem A, it suffices to show that H(X) is regular.
Given A a balanced convex closed bounded set in H(X). As in Theorem A, consi-
der the function f: X — H(X)(A). Since H(X)(A) C H([H(X)(A)]), f €
€ Hs (X, Hyp([H(X)(A)]')). By the hypothesis, f is extended to a bounded holomorphic
function f: V — Hs([H(X)(A)])). Since X is an uniqueness set, we may assume that
f:V — H(X)(A) is holomorphic. This yields that A is contained and bounded in
H*°(V). The theorem is proved.

3. Proof of Theorem C. Given f € H, (X, F’). Since f(X) is bounded, we can
find a neighbourhood V' of 0 € F such that f(X) is contained and bounded in F'(V?).
Since F/(V°) = (F(V)), where F(V) is the Banach space associated to V; it implies
that f: X — F'(V°) C Hy(F(V)) and f € Hs(X, Hy(F(V))). Theorem B yields that
f € H(X,Hy(F(V))) and as in the proof of Theorem B we infer that f € H(X, F").

The necessity follows from the proof of Theorem A.
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