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TEOREMA  LYTTLVUDA – PELI 

PRO  PROSTORY  Lp(t) n( )R   

We point out that when the  Hardy – Littlewood maximal operator is bounded on the space  Lp t( ) ( )R ,

1 < a ≤ p t( )  ≤ b  <  ∞ ,  t ∈R ,  the well-known characterization of spaces  Lp( )R ,  1  <  p  <  ∞ ,  by the

Littlewood – Paley theory extends to the space  Lp t( ) ( )R .  We show that if  n > 1,  the  Littlewood –

Paley operator is bounded on  Lp t n( ) ( )R ,  1 < a ≤ p t( )  ≤ b < ∞ ,  t n∈R ,  if and only if  p t( ) = const . 

Vstanovleno, wo koly maksymal\nyj operator Xardi – Littlvuda obmeΩenyj na prostori

Lp t( ) ( )R ,  1 < a ≤ p t( )  ≤ b  <  ∞ ,  t ∈R ,  dobre vidoma xarakteryzaciq prostoriv  Lp( )R ,  1 < p < 

< ∞,  teori[g Littlvuda – Peli poßyrg[t\sq na prostir  Lp t( ) ( )R .  Pokazano, wo u vypadku

n > 1  operator Littlvuda – Peli obmeΩenyj na  Lp t n( ) ( )R ,  1 < a ≤ p t( )  ≤ b < ∞ ,  t n∈R ,  todi i

til\ky todi, koly  p t( ) = const .

1.  Introduction.  Let  m  be a bounded function on  Rn.  The operator  T  defined by

the Fourier transform equation  ( )̂ ( )Tf x   =  m x f x( ) ˆ( ),  x ∈  R 
n,  is called a multiplier

operator with multiplier  m .  Let  ρ  be an  ( n -dimensional) rectangle and  χρ  the cha-

racteristic function of  ρ .  The operator  Sρ   having multiplier  m  =  ρ  and defined by

the equation 

( )̂ ( )S f xρ   =  χρ( ) ˆ( )x f x ,      x ∈ R 
n,

is called a partial sum operator. 
Let a collection of disjoint rectangles  ∆  =  { }ρ   be a decomposition of  R 

n  (  i.e.,

  ∪ρ∈∆   =  Rn) .  Given a function  f  in the Schwartz class    S ( )R
n ,  define 

G f x( )( )   =  
ρ

ρ
∈
∑











∆
S f x( )

/
2

1 2

,      x ∈ R 
n.

Let  { }nk k = −∞
+∞ ,  nk  >  0,  k ∈ Z ,  be a lacunary sequence  (  i.e., there is an  a  >  1  such

that  n nk k+1/   ≥   a  for  all  k ) .   Let  ∆  be the collection of all intervals of the form

[ ],n nk k+1   and  [ ],− +n nk k1 ,  k ∈ Z .   Then  ∆  is called a lacunary decomposition of  R  .

When  nk  =  2 
k,  k ∈ Z,  the resulting  ∆  is called the dyadic decomposition of  R . 
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Let  ∆i ,  i  =  1, 2, … , n ,  be  n  lacunary decomposition of  R .  Let  ∆   be the

collection of the intervals of the form  ρ  =  ρ ρ ρ1 2× × … × n   where  ρi i∈∆ .  Then  ∆
is called a lacunary decomposition of  Rn. 

The important feature of the classical Littlewood – Paley theory is that a characteri-
zation of the spaces  Lp n( )R ,  1  <  p  <  ∞ .   It is well known (see [1, 2]) that if  ∆  is a

lacunary  decomposition  of  Rn  then  G f p( )   is  equivalent  to  f p   for  1  <  p  <

<  ∞ ;  i.e., there are constants  A  and  B  such that 

A f p   ≤  G f p( )   ≤  f p .

The purpose of this paper is to obtain analogously characterizations of variable ex-
ponent Lebesgue spaces  Lp t n( )( )R . 

Given a measurable functions  p n( ) : [ , )⋅ → ∞R 1 ,  Lp t n( )( )R   denotes the set of

measurable functions  f  on  Rn  such that for some  λ  >  0 

R
n

f x
dx

p x

∫ 





( ) ( )

λ
  <  ∞  .

This set becomes a Banach function space when equipped with the norm 

f p t( )   =  inf : ( ) ( )
λ

λ
> 



 ≤






∫0 1f x

dx
p x

.

Given a locally integrable function  f,  we define the Hardy – Littlewood maximal
function  M f  by         

M f ( x )  =  sup ( )
x Q Q

Q
f y dy

∈
∫1 ,

where the supremum is taken over all cubes containing  x  with sides parallel to the co-
ordinate axes.  For conciseness, define    P ( )R

n   to be the set of measurable function

p n( ) : [ , )⋅ → ∞R 1   such that 

1  <  a  ≤  p ( t )  ≤  b  <  ∞ :    t ∈ R 
n.

Let    B ( )R
n   be the set of   p

n( ) ( )⋅ ∈P R   such that  M  is bounded on  Lp t n( )( )R .  Con-
ditions for the boundedness of the  Hardy – Littlewood  maximal  operator  on spaces
Lp t n( )( )R   have been studied in [3 – 8].  Diening [8] studied the necessary and suffici-
ent conditions in terms of the conjugate  exponent  ′ ⋅p ( ),  ( 1 1/ /( ) ( )p t p t+ ′   =  1,  t(∈
∈ R 

n
 ) .  He has proved that    p

n( ) ( )⋅ ∈B R   is equivalent to    ′ ⋅ ∈p n( ) ( )B R ,  he also

proved that if  p n( ) ( )⋅ ∈B R   then    p q n( ) ( )/⋅ ∈B R   for some  q  >  1. 
In harmonic analysis a fundamental operator is the Hardy – Littlewood maximal

operator.  In many applications a crutial step has been to show that operator  M  is bo-
unded on a variable  Lp space.  Cruz-Uribe, Fiorenza, Martell and Perez [4] have show-
ed that many classical operators in harmonic analysis such as singular integrals, com-
mutators and fractional integrals are bounded on the variable Lebesgue space Lp t n( )( )R

whenever the Hardy – Littlewood maximal operator is bounded on  Lp t n( )( )R . 
If we consider, instead, the strong maximal operator  

  
MR   defined by 

M f xR ( )( )  =  sup ( )
x R R

R
f x dx

∈
∫1
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where  R  is any rectangle in  Rn ,  n > 1,  with sides parallel to the coordinate axes
then the situation is different.   For the strong Hardy – Littlewood maximal operator
MR   we prove following theorem. 

Theorem 1.  Let  1  ≤  p ( t )  ≤   b  <  ∞  ,  t ∈  R 
n.  The strong Hardy – Littlewood

maximal operator  
  
MR   is bounded  on  Lp n( )( )⋅

R   space  if  and only if  p  ( t )  =
=  const  =  p   and  p  >  1. 

For function  f L n∈ ( )R ,  the expression 

H f ( x )  =  
R

n i

n

k kx y
f y dy∫ ∏

= −1

1 ( )

is said to be  n-dimensional  ( )n > 1   Hilbert operator. 
Analogously we may prove following theorem. 

Theorem 2.  Let  1  ≤  p ( t )  ≤   b  <  ∞  ,  t ∈  R 
n.  Then n-dimensional Hilbert ope-

rator  ( )n > 1   is bounded on  Lp n( )( )⋅
R   space  if and only if  p  ( t )  =   const  =  p

and  p  >  1. 
We prove following Littlewood – Paley type characterization of  Lp t n( )( )R   space. 

Theorem 3.  1.  Let  ∆  be a lacunary decomposition of  R   and     p( ) ( )⋅ ∈B R .

Then there are constants  c,  C  >  0  such that for all  f Lp t∈ ( )( )R  

c f p t( )   ≤  G f p t( ) ( )  ≤  C f p t( ). (1)

2.  Let  ∆  be the dyadic decomposition of  Rn,  n  >  1.  If   p( )⋅   ≠   const  then

operator  G  is not bounded on  Lp t n( )( )R . 

2.  Proof of theorems.  Proof of Theorem 1.  According to Jessen, Marcinkiewicz
and Zygmund  [9]  MR   is bounded on all the  Lp,  p  >  1,  spaces and first part of

Theorem 1  is trivial. 
Let  MR   is bounded on  Lp n( )( )⋅

R .  Virtue of interpolation theorem (see [10]),  we

have  
  
MR   is bounded on  Lp( )/⋅ θ   =  [ ]( )( ), ( )L Lp n n⋅ ∞

R R θ,  0  <  θ  <  1,  and without

restriction of generality we may assume  that  1  <  inf ( )
R

n p t .   Let  1 1/ /( ) ( )p t p t+ ′   =

=  1,  t(∈ R 
n

 .  Note that 

sup ( ) ( )
R

R p t R p tR
1 χ χ ′   <  ∞ (2)

condition is necessary for boundedness of  MR   on  Lp t n( )( )R   (see proof below). 

We will give the proof of second part of Theorem 1  for the case  n  =  2  for simpli-
city, since the same argument holds when  n  >  2. 

Let  inf ( )
R

2 p t   <  sup ( )
R

2 p t .  By Luzin’s theorem we can construct pairwise dis-

joint family of set  Fi  with the following condition:  1)   R
2 \ ∪ Fi   =  0,  2)  functions

p Fi: → R   are continuous,  3)  for every fixed  i  all points of  Fi   are points of densi-

ty with respect to basis  R . 
Note that, we can find pair of points  (( , ), ( , ))x y x y0 1 0 2 -  or  (( , ), ( , ))x y x y1 0 2 0 -type

from    ∪ Fi   such that  p x y( , )0 1   ≠  p x y( , )0 2   or  p x y( , )1 0   ≠  p x y( , )2 0 .  Without loss of
generality, we may suppose that this pair is  (( , ), ( , ))x y x y0 1 0 2 ;  ( , )x y F0 1 1∈ ,
( , )x y F0 2 2∈   and  y1  <  y2 

. 
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Let  0  <  ε  <  1  be fixed.  We may find  δ  >   0  such that for any rectangles

  
Q x y1 0 1' ( , ) ,  

  
Q x y2 0 1' ( , )  with diameters loss than  δ  the following inequalities are

valid: 

  Q F1 1∩   >  ( )1 1− ε Q ,        Q F2 2∩   >  ( )1 2− ε Q , (3)

pQ1
  =  sup ( , )

Q F
p x y

1 1∩
  <  c1  <  c2  <  

  
inf ( , )

Q F
p x y

2 2∩
  =  pQ2

(4)

for some constant  c1,  c2. 
Let  Q1,τ ,  Q2,τ   are rectangles with properties (3), (4) of the form  ( , )x x0 0− +τ τ  ×

× ( , )a b ,  ( , ) ( , )x x c d0 0− + ×τ τ ,  where  a  <  b  <  c  <  d. 

We have continuously embedding  
  
L Q L Qp t pQ( )

, ,( ) ( )2 2
2

τ τO   and  L Qp t′( )
,( )1 τ   O

O  L Q
pQ′ 1

1( ),τ ,  where  1 1
1 1/ /′ +p pQ Q   =  1  (see for example [11]).   For rectangle  Qτ  =

=  ( , ) ( , )x x a d0 0− + ×τ τ   we have 

Aτ  =  1
Q Q p t Q p tτ

χ χ
τ τ( ) ( )′

  ≥  
  

1
2 2 2 1 1τ

χ χ
τ τ( ) , ,( ) ( )d a Q F p t Q F p t− ′∩ ∩   ≥

≥  C
d a

d c b a
p pQ Q

2
2 2

1 1 1
2 1

τ
τ τ

( )
( ( )) ( ( ))

/ /

−
− − −

.

Note that if  τ  →  0  ( a, b, c, d  is fixed )  Aτ  →  ∞  and consequently (2) is not va-
lid.  This completes the proof. 

Proof of Theorem 3.  The inequalities (1) are consequence of the extrapolation
theorem given by Cruz-Uribe, Fiorenza, Martell and Perez [4] and the weighted norm
inequalities for  G ( f )  function given by Kurtz [12].  We describe this results. 

Let  p−   =  ess inf{ ( ) : }p x x ∈R .  By a weight we mean a nonnegative, locally in-
tegrable function  ω .  When  1  <  p  <  ∞ ,  we say  ω ∈Ap   if for every interval  Q 

1 1 1

1

Q
x dx

Q
x dx

Q Q

p

p

∫ ∫ − ′
−







ω ω( ) ( )   ≤  C  <  ∞  .

The infimum over the constants on the right-hand side of the last inequality we de-
note by  Ap,ω .  By  F  will denote a family of ordered pairs of nonnegative, measurable

functions  ( f , g ) .  We say that an inequality 

R

∫ f x x dxp( ) ( )0 ω   ≤  C g x x dxp

R

∫ ( ) ( )0 ω ,      0  <  p0  <  ∞ , (5)

holds for any  ( f , g ) ∈ F  and  ω ∈  Aq  (for some  q,  1  <  q  <  ∞  )  if it holds for any

pair in  F  such that the left-hand side is finite, and the constant  C  depends only on  p0

and the  Aq,ω   constant of  ω . 

Theorem 4.  Given a family  F ,  assume that (5) holds for some  1  <   p0  <   ∞  ,

for every weight  ω  ∈  Ap0
  and for all  (  f , g ) ∈  F .  Let    p( ) ( )⋅ ∈P R   be such that

there exists  1  <  p1  <  p– ,  with  ( / )( ) ( )p p⋅ ′ ∈1 B R .  Then 

f p t( )   ≤  C g p t( )

for all  ( f , g ) ∈ F  such that  f Lp t∈ ( )( )R . 

Theorem 5 [12].  Let  ∆  be a a lacunary decomposition of  R  ,  1  <  p  <  ∞  ,  and
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 ω(∈ Ap 
.  Then there exist constant  c,  C    depending only on  p  ,  Ap,ω ,  and   ∆  ,

such that 

c f x x dxp

R

∫ ( ) ( )ω   ≤  
R

∫ ( ( )( )) ( )G f x x dxpω   ≤  C f x x dxp

R

∫ ( ) ( )ω .

From assumption of Theorem 3  we get that there exists  1  <   p1  <   p–  with

  ( / )( ) ( )p p⋅ ′ ∈1 B R   (see [8]).  Let  Lcomp
∞ ( )R   be the set of all bounded functions with

compact support.  From Theorems 4, 5 with the pairs    ( ),W f f   we get right side in-

equality of (1) if  f L∈ ∞
comp( )R .  Note that  Lcomp

∞ ( )R   is dense in  Lp t( )( )R   (see [11])

and consequently this inequality is also valid for all  f Lp t∈ ( )( )R .  Analogously we ob-
tain left side inequality of (1). 

Let  n  >  1.  Fix a rectangle  R  =  I I In1 2× × … ×   and let  f  be positive on  R  and

0  elsewhere function.  Let  kj  be the greatest integer such that  2
kj   ≤   ( )4 1n Ij

−   and

ρ  be the dyadic rectangle  [ ],2 21 1 1k k +  × … × [ ],2 2 1k kn n + .  Note that (see [12, p. 246])
for all  x ∈ R 

S f xρ ( )   ≥  C
R

f x dx
R
∫ ( ) .

Let the operator  G  is bounded on  Lp t n( )( )R .  Then for some constant  C  we have 

1
Q

f x dx
R

R p t∫ ( ) ( )χ   ≤  C f p t( ). (6)

Note that  ( ( ))( )Lp t n
R

∗  is isomorphic to the space  Lp t n′( )( )R ,  where  1/ ( )p t  +

+ 1/ ( )′p t   =  1,  t(∈ R 
n  (see [11]).  Therefore, for all  rectangle  R  ,  from (6) we get

condition (2).  We use Theorem 1 to obtain the desired result. 
3.  Applications.  We now consider applications of Theorem 3.  In [7] is proved

following theorem. 
Theorem 6.  Let   p( ) ( )⋅ ∈P R   and   exponent  p( )⋅   is constant outside some

large ball.  Then operator  M   is bounded on  Lp t( )( )R   if and only if  (2)  fulfilled
for intervals. 

The estimate (2) is necessary for boundedness of operator  M   in  Lp t( )( )R .   Com-

bining the Littlewood – Paley type characterization of  Lp t( )( )R   space  (Theorem 3)
with the previous theorem we can obtain the following corollary. 

Corollary.  Let  p( ) ( )⋅ ∈P R   and exponent  p( )⋅   is constant outside some lar-
ge ball.  Let  ∆  be the dyadic decomposition of  R .  The following are equivalent: 

1)    p( ) ( )⋅ ∈B R ; 

2)  there are constants  c,  C  >  0  such that for all  f Lp t∈ ( )( )R  

c f p t( )   ≤  G f p t( ) ( )  ≤  C f p t( ).

Let  { }fk   be a sequence of functions defined on  R .  By  f Lkk
p t∑ ∈ ( )( )R   we me-

an the partial sums  fk
N

1∑   converge in  Lp t( )( )R .  We now will generalize Theorem 6

of Stein [13]. 
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Theorem 7.  Let     p( ) ( )⋅ ∈B R ,  and   Sk   be any collection of lacunary partial

sum operators.   Then  f Lp t∈ ( )( )R   if and only if  εk kk
S f∑   converges in

Lp t( )( )R   for  any  sequence  { }εk l∈ ∞ .    Moreover ,   f p t( )   is equivalent  to

sup { } ( )ε ε
k l

k kk p t
S f∞ = ∑1 .

 Proof.  Let    p( ) ( )⋅ ∈B R   and  Sk   be any collection of lacunary partial sum.   For

f Lp t∈ ( )( )R   we  have  S f Lkk
p t2 1 2∑( ) ∈

/ ( )( )R .   Note that  if  { }εk l∈ ∞   then

εk kk
p tS f L2 1 2∑( ) ∈

/ ( )( )R   and 

εk k
k

S f 2
1 2

∑





/

  ≤  { }
/

εk l k
k

S f∞ ∑





2
1 2

.

If  N  >  M  using Theorem 3, 

εk k
M

N

p t

S f
+

∑
1 ( )

  ≤  C S fk l k
M

N

p t

{ }
/

( )

ε ∞

+
∑







2

1

1 2

which implies  εk k
N

S f
1 1

∑{ }∞
  is Cauchy in  Lp t( )( )R .  From this follows 

εk k
k p t

S f∑
( )

  ≤  c S fk l k
k p t

{ }
/

( )

ε ∞ ∑





2
1 2

.

Assume that  Sk   be any collection of lacunary partial sum operators and

εk kk
S f∑  ∈ Lp t( )( )R   for all  { }εk l∈ ∞ .  We will prove that  S f Lkk

p t2 1 2∑( ) ∈
/ ( )( )R

and there exists a constant  c  >  0  independent of  f  such that 

S fk
k p t

2
1 2

∑





/

( )

  ≤  c S f
k l

k k
k p t

sup
{ } ( )ε

ε
∞ =

∑
1

. (7)

First we will prove that  M  =  sup { } ( )ε ε
k l

k kk p t
S f∞ = ∑1   is finite.  Indeed, consi-

der the collection of maps G l LN
p t: ( )( )∞ →{ }R  defined by GN k( ){ }ε   =  εk kk

N
S f=∑ 1

.

Let  G  =  G∞  
.  Each  GN   is continuous and by assumption  GN k( ){ }ε   converges to

G k( ){ }ε   in  Lp t( )( )R   for each  { }εk l∈ ∞ .  Therefore  GN k p t N
( ){ } ( )ε{ } =

∞

1
  is bounded

for each  { }εk l∈ ∞ .  By the principle of uniform boundedness, there exists a constant
c  >  0  such that  GN   ≤  c  for all  N.  It follows that  G   ≤  c . 

To proof of (7) will use Khinchine’s inequality for Rademacher series.  Let  r tk( )  =

=  sgn(sin )2m tπ ,  m   =   0, 1, 2, …  ,  be the Rademacher functions,  and  set  f  =

=  a rm m0

∞∑ .  Then there are constants  Bp   and  Cp  such that for  0  <  p  <  ∞ 

B f t dtp
p

p

0

1 1

∫








( )

/

  ≤  
m

ma
=

∞

∑



0

2
1 2/

  ≤  C f t dtp
p

p

0

1 1

∫








( )

/

(8)

(see [2]).  Let  εk   =  r tk( )  for  0  ≤  t  <  1.  Then  { }εk l∞   =  1  and 
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M  ≥  r x S fk k
k p t

( )
( )

∑ .

Using (8) for  p  =  1  and Fubini’s theorem we have 

S fk
k p t

2
1 2

∑





/

( )

  ≤  C r x S f dx
k

k k

p t

1
0

1

∫ ∑ ( )
( )

  ≤

≤  cC r x S f z dx g z dz
g

k k
kp t

1
1 0

1

sup ( ) ( ) ( )
( )′ ≤

∫ ∫ ∑










R

  =

=  cC r x S f z g z dz dx
g

k k
kp t

1
1 0

1

sup ( ) ( ) ( )
( )′ ≤

∫ ∫ ∑











R

  ≤

≤  cC r x S f z g z dz dx
g

k k
kq t

1
0

1

1
∫ ∫ ∑

≤















sup ( ) ( ) ( )

( ) R

  ≤

≤  cC r x S f dxk k
k p t

1
0

1

∫ ∑ ( )
( )

  ≤  cC M1 ,

which proves (7).  This completes the proof of Theorem 7. 

1. Stein E. M.   Singular integrals and differentiability properties of functions. – Princeton:  Princeton
Univ. Press, 1970. 

2. Zygmund  A.   Trigonometric series. – 2nd ed. – London; New York:  Cambridge Univ. Press, 1959. 

3. Diening  L.   Maximal function generalized Lebesgue spaces  Lp( )⋅   // Math. Inequal. Appl. – 2004.
– 7. – P. 245 – 254. 

4. Cruz-Uribe  D., Fiorenza A., Martell J. M., Perez C.   The boundedness of classical operators on

variable  Lp   spaces // Ann. Acad. sci. fenn. math. – 2006. – 31. – P. 239 – 264. 

5. Cruz-Uribe  D., Fiorenza A., Neugebauer C. J.   The maximal function on variable  Lp   spaces //
Ibid. – 2003. – 28. – P. 223 – 238;  2004. – 29. – P. 247 – 249. 

6. Nekvinda A.   Hardy – Littlewood maximal operator on  L Rp x n( ) ( )  // Math. Inequal. Appl. – 2004.

– 7. – P. 255 – 266.  

7. Kopaliani T. S.   Infinitesimal convolution and Muckenhoupt  Ap( )⋅   condition in variable  Lp

spaces // Arch. Math. – 2007. – 89, # 2. – P. 185 – 192.  
8. Diening  L.   Maximal function on Orlicz – Musielak spaces and generalized Lebesgue spaces //

Bull. sci. math. – 2005. – 129. – P. 657 – 700. 
9. Jessen  B., Marcinkiewicz J., Zygmund A.   Note on the differentiability of multiple integrals //

Fund. Math. – 1935. – 25. – P. 217. 
10. Diening  L., Hästö P., Nekvinda A.   Open problems in variable exponent Lebesgue and Sobolev

spaces // FSDONA 04  Proc. (Milovy, Czech. Rep., 2004)  /  Eds Drabek and Rakosnik. – P. 38 – 58.

11. Kováčik O., Rákosnik  J.   On spaces  Lp t( )   and  W k p x, ( )  // Czech. Math. J. – 1991. – 41, # 4. –
P. 592 – 618.  

12. Kurtz D. S.   Littlewood – Paley and multiplier theorems on weighted  Lp   spaces // Trans. Amer.
Math. Soc. – 1980. – 259. – P. 235 – 254. 

13. Stein E. M.   Classes  H p ,  multiplicateurs et fonctions de Littlewood – Paley // C. r. Acad. sci. –
1966. – 263. – P. 716 – 719, 780 – 781. 

Received  15.10.07

ISSN  1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 12


