UDC 517.5

T. S. Kopaliani (Tbilisi Univ., Georgia)

LITTLEWOOD – PALEY THEOREM ON $L^{p(t)}(\mathbb{R}^n)$ SPACES^{*} ТЕОРЕМА ЛИТТЛВУДА – ПЕЛІ ПРО ПРОСТОРИ $L^{p(t)}(\mathbb{R}^n)$

We point out that when the Hardy – Littlewood maximal operator is bounded on the space $L^{p(t)}(\mathbb{R})$, $1 < a \le p(t) \le b < \infty$, $t \in \mathbb{R}$, the well-known characterization of spaces $L^{p}(\mathbb{R})$, $1 , by the Littlewood – Paley theory extends to the space <math>L^{p(t)}(\mathbb{R})$. We show that if n > 1, the Littlewood – Paley operator is bounded on $L^{p(t)}(\mathbb{R}^{n})$, $1 < a \le p(t) \le b < \infty$, $t \in \mathbb{R}^{n}$, if and only if p(t) = const.Встановлено, що коли максимальний оператор Харді – Літтлвуда обмежений на просторі $L^{p(t)}(\mathbb{R})$, $1 < a \le p(t) \le b < \infty$, $t \in \mathbb{R}$, добре відома характеризація просторів $L^{p}(\mathbb{R})$, $1 , теорією Літтлвуда – Пелі поширюється на простір <math>L^{p(t)}(\mathbb{R})$. Показано, що у випадку n > 1 оператор Літтлвуда – Пелі обмежений на $L^{p(t)}(\mathbb{R}^{n})$, $1 < a \le p(t) \le b < \infty$, $t \in \mathbb{R}^{n}$, тоді і тільки тоді, коли p(t) = const.

1. Introduction. Let *m* be a bounded function on \mathbb{R}^n . The operator *T* defined by the Fourier transform equation $(Tf)(x) = m(x)\hat{f}(x)$, $x \in \mathbb{R}^n$, is called a multiplier operator with multiplier *m*. Let ρ be an (*n*-dimensional) rectangle and χ_{ρ} the characteristic function of ρ . The operator S_{ρ} having multiplier $m = \rho$ and defined by the equation

$$(S_{\rho}f)(x) = \chi_{\rho}(x)\hat{f}(x), \quad x \in \mathbb{R}^{n},$$

is called a partial sum operator.

Let a collection of disjoint rectangles $\Delta = \{\rho\}$ be a decomposition of \mathbb{R}^n (i.e., $\bigcup_{\rho \in \Lambda} = \mathbb{R}^n$). Given a function f in the Schwartz class $\mathcal{S}(\mathbb{R}^n)$, define

$$G(f)(x) = \left(\sum_{\rho \in \Delta} \left|S_{\rho}f(x)\right|^{2}\right)^{1/2}, \quad x \in \mathbb{R}^{n}.$$

Let $\{n_k\}_{k=-\infty}^{+\infty}$, $n_k > 0$, $k \in \mathbb{Z}$, be a lacunary sequence (i.e., there is an a > 1 such that $n_{k+1}/n_k \ge a$ for all k). Let Δ be the collection of all intervals of the form $[n_k, n_{k+1}]$ and $[-n_{k+1}, n_k]$, $k \in \mathbb{Z}$. Then Δ is called a lacunary decomposition of \mathbb{R} . When $n_k = 2^k$, $k \in \mathbb{Z}$, the resulting Δ is called the dyadic decomposition of \mathbb{R} .

^{*} The author was supported by grant GNSF / STO 7 / 3-171.

[©] T. S. KOPALIANI, 2008

ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 12

Let Δ_i , i = 1, 2, ..., n, be *n* lacunary decomposition of \mathbb{R} . Let Δ be the collection of the intervals of the form $\rho = \rho_1 \times \rho_2 \times ... \times \rho_n$ where $\rho_i \in \Delta_i$. Then Δ is called a lacunary decomposition of \mathbb{R}^n .

The important feature of the classical Littlewood – Paley theory is that a characterization of the spaces $L^p(\mathbb{R}^n)$, $1 . It is well known (see [1, 2]) that if <math>\Delta$ is a lacunary decomposition of \mathbb{R}^n then $||G(f)||_p$ is equivalent to $||f||_p$ for 1 ; i.e., there are constants A and B such that

$$A \| f \|_{p} \leq \| G(f) \|_{p} \leq \| f \|_{p}.$$

The purpose of this paper is to obtain analogously characterizations of variable exponent Lebesgue spaces $L^{p(t)}(\mathbb{R}^n)$.

Given a measurable functions $p(\cdot) \colon \mathbb{R}^n \to [1, \infty), L^{p(t)}(\mathbb{R}^n)$ denotes the set of measurable functions f on \mathbb{R}^n such that for some $\lambda > 0$

$$\int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx < \infty.$$

This set becomes a Banach function space when equipped with the norm

$$\|f\|_{p(t)} = \inf \left\{ \lambda > 0 \colon \int \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} dx \le 1 \right\}.$$

Given a locally integrable function f, we define the Hardy – Littlewood maximal function Mf by

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy,$$

where the supremum is taken over all cubes containing x with sides parallel to the coordinate axes. For conciseness, define $\mathcal{P}(\mathbb{R}^n)$ to be the set of measurable function $p(\cdot) \colon \mathbb{R}^n \to [1, \infty)$ such that

$$1 < a \le p(t) \le b < \infty \colon t \in \mathbb{R}^n.$$

Let $\mathcal{B}(\mathbb{R}^n)$ be the set of $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ such that M is bounded on $L^{p(t)}(\mathbb{R}^n)$. Conditions for the boundedness of the Hardy – Littlewood maximal operator on spaces $L^{p(t)}(\mathbb{R}^n)$ have been studied in [3 – 8]. Diening [8] studied the necessary and sufficient conditions in terms of the conjugate exponent $p'(\cdot)$, $(1/p(t)+1/p'(t) = 1, t \in \mathbb{R}^n)$. He has proved that $p(\cdot) \in \mathcal{B}(\mathbb{R}^n)$ is equivalent to $p'(\cdot) \in \mathcal{B}(\mathbb{R}^n)$, he also proved that if $p(\cdot) \in \mathcal{B}(\mathbb{R}^n)$ then $p(\cdot)/q \in \mathcal{B}(\mathbb{R}^n)$ for some q > 1.

In harmonic analysis a fundamental operator is the Hardy – Littlewood maximal operator. In many applications a crutial step has been to show that operator M is bounded on a variable L^p space. Cruz-Uribe, Fiorenza, Martell and Perez [4] have showed that many classical operators in harmonic analysis such as singular integrals, commutators and fractional integrals are bounded on the variable Lebesgue space $L^{p(t)}(\mathbb{R}^n)$ whenever the Hardy – Littlewood maximal operator is bounded on $L^{p(t)}(\mathbb{R}^n)$.

If we consider, instead, the strong maximal operator $M_{\mathcal{R}}$ defined by

$$M_{\mathcal{R}}(f)(x) = \sup_{x \in R} \frac{1}{|R|} \int_{R} |f(x)| dx$$

where R is any rectangle in \mathbb{R}^n , n > 1, with sides parallel to the coordinate axes then the situation is different. For the strong Hardy – Littlewood maximal operator $M_{\mathcal{R}}$ we prove following theorem.

Theorem 1. Let $1 \le p(t) \le b < \infty$, $t \in \mathbb{R}^n$. The strong Hardy – Littlewood maximal operator $M_{\mathcal{R}}$ is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$ space if and only if p(t) == const = p and p > 1.

For function $f \in L(\mathbb{R}^n)$, the expression

$$Hf(x) = \int_{\mathbb{R}^n} \prod_{i=1}^n \frac{1}{x_k - y_k} f(y) dy$$

is said to be *n*-dimensional (n > 1) Hilbert operator.

Analogously we may prove following theorem.

Theorem 2. Let $1 \le p(t) \le b < \infty$, $t \in \mathbb{R}^n$. Then n-dimensional Hilbert operator (n > 1) is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$ space if and only if p(t) = const = p and p > 1.

We prove following Littlewood – Paley type characterization of $L^{p(t)}(\mathbb{R}^n)$ space.

Theorem 3. 1. Let Δ be a lacunary decomposition of \mathbb{R} and $p(\cdot) \in \mathcal{B}(\mathbb{R})$. Then there are constants c, C > 0 such that for all $f \in L^{p(t)}(\mathbb{R})$

$$c\|f\|_{p(t)} \leq \|G(f)\|_{p(t)} \leq C\|f\|_{p(t)}.$$
(1)

2. Let Δ be the dyadic decomposition of \mathbb{R}^n , n > 1. If $p(\cdot) \neq \text{const}$ then operator G is not bounded on $L^{p(t)}(\mathbb{R}^n)$.

2. Proof of theorems. *Proof of Theorem* **1.** According to Jessen, Marcinkiewicz and Zygmund [9] $M_{\mathcal{R}}$ is bounded on all the L^p , p > 1, spaces and first part of Theorem 1 is trivial.

Let $M_{\mathcal{R}}$ is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$. Virtue of interpolation theorem (see [10]), we have $M_{\mathcal{R}}$ is bounded on $L^{p(\cdot)/\theta} = [L^{p(\cdot)}(\mathbb{R}^n), L^{\infty}(\mathbb{R}^n)]_{\theta}$, $0 < \theta < 1$, and without restriction of generality we may assume that $1 < \inf_{\mathbb{R}^n} p(t)$. Let 1/p(t) + 1/p'(t) = 1, $t \in \mathbb{R}^n$. Note that

$$\sup_{R} \frac{1}{|R|} \|\chi_{R}\|_{p(t)} \|\chi_{R}\|_{p'(t)} < \infty$$
(2)

condition is necessary for boundedness of $M_{\mathcal{R}}$ on $L^{p(t)}(\mathbb{R}^n)$ (see proof below).

We will give the proof of second part of Theorem 1 for the case n = 2 for simplicity, since the same argument holds when n > 2.

Let $\inf_{\mathbb{R}^2} p(t) < \sup_{\mathbb{R}^2} p(t)$. By Luzin's theorem we can construct pairwise disjoint family of set F_i with the following condition: 1) $|\mathbb{R}^2 \setminus \bigcup F_i| = 0$, 2) functions $p: F_i \to \mathbb{R}$ are continuous, 3) for every fixed *i* all points of F_i are points of density with respect to basis \mathcal{R} .

Note that, we can find pair of points $((x_0, y_1), (x_0, y_2))$ - or $((x_1, y_0), (x_2, y_0))$ -type from $\bigcup F_i$ such that $p(x_0, y_1) \neq p(x_0, y_2)$ or $p(x_1, y_0) \neq p(x_2, y_0)$. Without loss of generality, we may suppose that this pair is $((x_0, y_1), (x_0, y_2)); (x_0, y_1) \in F_1$, $(x_0, y_2) \in F_2$ and $y_1 < y_2$.

Let $0 < \varepsilon < 1$ be fixed. We may find $\delta > 0$ such that for any rectangles $Q_1 \ni (x_0, y_1)$, $Q_2 \ni (x_0, y_1)$ with diameters loss than δ the following inequalities are valid:

$$|Q_1 \cap F_1| > (1-\varepsilon)|Q_1|, \quad |Q_2 \cap F_2| > (1-\varepsilon)|Q_2|, \tag{3}$$

$$p_{Q_1} = \sup_{Q_1 \cap F_1} p(x, y) < c_1 < c_2 < \inf_{Q_2 \cap F_2} p(x, y) = p_{Q_2}$$
(4)

for some constant c_1 , c_2 .

Let $Q_{1,\tau}$, $Q_{2,\tau}$ are rectangles with properties (3), (4) of the form $(x_0 - \tau, x_0 + \tau) \times (a, b)$, $(x_0 - \tau, x_0 + \tau) \times (c, d)$, where a < b < c < d.

We have continuously embedding $L^{p(t)}(Q_{2,\tau}) \hookrightarrow L^{p_{Q_2}}(Q_{2,\tau})$ and $L^{p'(t)}(Q_{1,\tau}) \hookrightarrow L^{p'_{Q_1}}(Q_{1,\tau})$, where $1/p'_{Q_1} + 1/p_{Q_1} = 1$ (see for example [11]). For rectangle $Q_{\tau} = (x_0 - \tau, x_0 + \tau) \times (a, d)$ we have

$$\begin{split} A_{\tau} &= \frac{1}{|Q_{\tau}|} \|\chi_{Q_{\tau}}\|_{p(t)} \|\chi_{Q_{\tau}}\|_{p'(t)} \geq \frac{1}{2\tau(d-a)} \|\chi_{Q_{2,\tau}\cap F_{2}}\|_{p(t)} \|\chi_{Q_{1,\tau}\cap F_{1}}\|_{p'(t)} \geq \\ &\geq \frac{C}{2\tau(d-a)} (2\tau(d-c))^{1/p_{Q_{2}}} (2\tau(b-a))^{1-1/p_{Q_{1}}}. \end{split}$$

Note that if $\tau \to 0$ (*a*, *b*, *c*, *d* is fixed) $A_{\tau} \to \infty$ and consequently (2) is not valid. This completes the proof.

Proof of Theorem 3. The inequalities (1) are consequence of the extrapolation theorem given by Cruz-Uribe, Fiorenza, Martell and Perez [4] and the weighted norm inequalities for G(f) function given by Kurtz [12]. We describe this results.

Let $p_{-} = \text{ess inf} \{ p(x) \colon x \in \mathbb{R} \}$. By a weight we mean a nonnegative, locally integrable function ω . When $1 , we say <math>\omega \in A_p$ if for every interval Q

$$\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} \omega(x) dx \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} \omega(x)^{1-p'} dx \right)^{p-1} \leq C < \infty.$$

The infimum over the constants on the right-hand side of the last inequality we denote by $A_{p,\omega}$. By \mathcal{F} will denote a family of ordered pairs of nonnegative, measurable functions (f, g). We say that an inequality

$$\int_{\mathbb{R}} f(x)^{p_0} \omega(x) dx \leq C \int_{\mathbb{R}} g(x)^{p_0} \omega(x) dx, \quad 0 < p_0 < \infty,$$
(5)

holds for any $(f, g) \in \mathcal{F}$ and $\omega \in A_q$ (for some q, $1 < q < \infty$) if it holds for any pair in \mathcal{F} such that the left-hand side is finite, and the constant *C* depends only on p_0 and the $A_{q,\omega}$ constant of ω .

Theorem 4. Given a family \mathcal{F} , assume that (5) holds for some $1 < p_0 < \infty$, for every weight $\omega \in A_{p_0}$ and for all $(f, g) \in \mathcal{F}$. Let $p(\cdot) \in \mathcal{P}(\mathbb{R})$ be such that there exists $1 < p_1 < p_-$, with $(p(\cdot)/p_1)' \in \mathcal{B}(\mathbb{R})$. Then

$$||f||_{p(t)} \leq C ||g||_{p(t)}$$

for all $(f,g) \in \mathcal{F}$ such that $f \in L^{p(t)}(\mathbb{R})$.

Theorem 5 [12]. Let Δ be a a lacunary decomposition of \mathbb{R} , 1 , and

 $\omega \in A_p$. Then there exist constant c, C depending only on p, $A_{p,\omega}$, and Δ , such that

$$c\int_{\mathbb{R}} |f(x)|^{p} \omega(x) dx \leq \int_{\mathbb{R}} (G(f)(x))^{p} \omega(x) dx \leq C\int_{\mathbb{R}} |f(x)|^{p} \omega(x) dx.$$

From assumption of Theorem 3 we get that there exists $1 < p_1 < p_-$ with $(p(\cdot)/p_1)' \in \mathcal{B}(\mathbb{R})$ (see [8]). Let $L^{\infty}_{\text{comp}}(\mathbb{R})$ be the set of all bounded functions with compact support. From Theorems 4, 5 with the pairs $(\mathcal{W} f, |f|)$ we get right side inequality of (1) if $f \in L^{\infty}_{\text{comp}}(\mathbb{R})$. Note that $L^{\infty}_{\text{comp}}(\mathbb{R})$ is dense in $L^{p(t)}(\mathbb{R})$ (see [11]) and consequently this inequality is also valid for all $f \in L^{p(t)}(\mathbb{R})$. Analogously we obtain left side inequality of (1).

Let n > 1. Fix a rectangle $R = I_1 \times I_2 \times \ldots \times I_n$ and let f be positive on R and 0 elsewhere function. Let k_j be the greatest integer such that $2^{k_j} \leq (4n|I_j|)^{-1}$ and ρ be the dyadic rectangle $[2^{k_1}, 2^{k_1+1}] \times \ldots \times [2^{k_n}, 2^{k_n+1}]$. Note that (see [12, p. 246]) for all $x \in R$

$$\left|S_{\rho}f(x)\right| \geq \frac{C}{\left|R\right|} \int_{R} f(x) dx.$$

Let the operator G is bounded on $L^{p(t)}(\mathbb{R}^n)$. Then for some constant C we have

$$\frac{1}{|Q|} \int_{R} f(x) dx \|\chi_{R}\|_{p(t)} \leq C \|f\|_{p(t)}.$$
(6)

Note that $(L^{p(t)}(\mathbb{R}^n))^*$ is isomorphic to the space $L^{p'(t)}(\mathbb{R}^n)$, where 1/p(t) + 1/p'(t) = 1, $t \in \mathbb{R}^n$ (see [11]). Therefore, for all rectangle *R*, from (6) we get condition (2). We use Theorem 1 to obtain the desired result.

3. Applications. We now consider applications of Theorem 3. In [7] is proved following theorem.

Theorem 6. Let $p(\cdot) \in \mathcal{P}(\mathbb{R})$ and exponent $p(\cdot)$ is constant outside some large ball. Then operator M is bounded on $L^{p(t)}(\mathbb{R})$ if and only if (2) fulfilled for intervals.

The estimate (2) is necessary for boundedness of operator M in $L^{p(t)}(\mathbb{R})$. Combining the Littlewood – Paley type characterization of $L^{p(t)}(\mathbb{R})$ space (Theorem 3) with the previous theorem we can obtain the following corollary.

Corollary. Let $p(\cdot) \in \mathcal{P}(\mathbb{R})$ and exponent $p(\cdot)$ is constant outside some large ball. Let Δ be the dyadic decomposition of \mathbb{R} . The following are equivalent:

1) $p(\cdot) \in \mathcal{B}(\mathbb{R});$

2) there are constants c, C > 0 such that for all $f \in L^{p(t)}(\mathbb{R})$

 $c \| f \|_{p(t)} \leq \| G(f) \|_{p(t)} \leq C \| f \|_{p(t)}.$

Let $\{f_k\}$ be a sequence of functions defined on \mathbb{R} . By $\sum_k f_k \in L^{p(t)}(\mathbb{R})$ we mean the partial sums $\sum_{k=1}^{N} f_k$ converge in $L^{p(t)}(\mathbb{R})$. We now will generalize Theorem 6 of Stein [13].

Theorem 7. Let $p(\cdot) \in \mathcal{B}(\mathbb{R})$, and S_k be any collection of lacunary partial sum operators. Then $f \in L^{p(t)}(\mathbb{R})$ if and only if $\sum_k \varepsilon_k S_k f$ converges in $L^{p(t)}(\mathbb{R})$ for any sequence $\{\varepsilon_k\} \in l^{\infty}$. Moreover, $||f||_{p(t)}$ is equivalent to $\sup_{\|\{\varepsilon_k\}\|_{p^{\infty}}=1} \|\sum_k \varepsilon_k S_k f\|_{p(t)}$.

Proof. Let $p(\cdot) \in \mathcal{B}(\mathbb{R})$ and S_k be any collection of lacunary partial sum. For $f \in L^{p(t)}(\mathbb{R})$ we have $\left(\sum_k |S_k f|^2\right)^{1/2} \in L^{p(t)}(\mathbb{R})$. Note that if $\{\varepsilon_k\} \in l^{\infty}$ then $\left(\sum_k |\varepsilon_k S_k f|^2\right)^{1/2} \in L^{p(t)}(\mathbb{R})$ and

$$\left(\sum_{k} \left|\varepsilon_{k} S_{k} f\right|^{2}\right)^{1/2} \leq \left\|\left\{\varepsilon_{k}\right\}\right\|_{l^{\infty}} \left(\sum_{k} \left|S_{k} f\right|^{2}\right)^{1/2}.$$

If N > M using Theorem 3,

$$\left\|\sum_{M+1}^{N} \varepsilon_k S_k f\right\|_{p(t)} \leq C \left\|\left\{\varepsilon_k\right\}\right\|_{l^{\infty}} \left\|\left(\sum_{M+1}^{N} |S_k f|^2\right)^{1/2}\right\|_{p(t)}\right\|_{p(t)}$$

which implies $\left\{\sum_{1}^{N} \varepsilon_{k} S_{k} f\right\}_{1}^{\infty}$ is Cauchy in $L^{p(t)}(\mathbb{R})$. From this follows

$$\left\|\sum_{k} \varepsilon_{k} S_{k} f\right\|_{p(t)} \leq c \left\|\left\{\varepsilon_{k}\right\}\right\|_{l^{\infty}} \left\|\left(\sum_{k} |S_{k} f|^{2}\right)^{1/2}\right\|_{p(t)}\right\|_{p(t)}$$

Assume that S_k be any collection of lacunary partial sum operators and $\sum_k \varepsilon_k S_k f \in L^{p(t)}(\mathbb{R})$ for all $\{\varepsilon_k\} \in l^{\infty}$. We will prove that $(\sum_k |S_k f|^2)^{1/2} \in L^{p(t)}(\mathbb{R})$ and there exists a constant c > 0 independent of f such that

$$\left\| \left(\sum_{k} \left| S_{k} f \right|^{2} \right)^{1/2} \right\|_{p(t)} \leq c \sup_{\|\{\varepsilon_{k}\}\|_{p^{\infty}} = 1} \left\| \sum_{k} \varepsilon_{k} S_{k} f \right\|_{p(t)}.$$
(7)

First we will prove that $M = \sup_{\|\{\epsilon_k\}\|_{l^{\infty}}=1} \left\|\sum_k \epsilon_k S_k f\right\|_{p(t)}$ is finite. Indeed, consider the collection of maps $\{G_N \colon l^{\infty} \to L^{p(t)}(\mathbb{R})\}$ defined by $G_N(\{\epsilon_k\}) = \sum_{k=1}^N \epsilon_k S_k f$. Let $G = G_{\infty}$. Each G_N is continuous and by assumption $G_N(\{\epsilon_k\})$ converges to $G(\{\epsilon_k\})$ in $L^{p(t)}(\mathbb{R})$ for each $\{\epsilon_k\} \in l^{\infty}$. Therefore $\{\|G_N(\{\epsilon_k\})\|_{p(t)}\}_{N=1}^{\infty}$ is bounded for each $\{\epsilon_k\} \in l^{\infty}$. By the principle of uniform boundedness, there exists a constant c > 0 such that $\|G_N\| \leq c$ for all N. It follows that $\|G\| \leq c$.

To proof of (7) will use Khinchine's inequality for Rademacher series. Let $r_k(t) = sgn(sin 2^m \pi t)$, m = 0, 1, 2, ..., be the Rademacher functions, and set $f = \sum_{n=0}^{\infty} a_m r_m$. Then there are constants B_p and C_p such that for 0

$$B_p \left(\int_0^1 |f(t)|^p dt \right)^{1/p} \le \left(\sum_{m=0}^\infty |a_m|^2 \right)^{1/2} \le C_p \left(\int_0^1 |f(t)|^p dt \right)^{1/p}$$
(8)

(see [2]). Let $\varepsilon_k = r_k(t)$ for $0 \le t < 1$. Then $\|\{\varepsilon_k\}\|_{l^{\infty}} = 1$ and

LITTLEWOOD – PALEY THEOREM ...

$$M \geq \left\| \sum_{k} r_k(x) S_k f \right\|_{p(t)}.$$

Using (8) for p = 1 and Fubini's theorem we have

$$\begin{split} \left\| \left(\sum_{k} |S_{k}f|^{2} \right)^{1/2} \right\|_{p(t)} &\leq C_{1} \left\| \int_{0}^{1} \left| \sum_{k} r_{k}(x)S_{k}f \right| dx \right\|_{p(t)} \leq \\ &\leq cC_{1} \sup_{\|g\|_{p'(t)} \leq 1} \int_{\mathbb{R}}^{1} \left(\int_{0}^{1} \left| \sum_{k} r_{k}(x)S_{k}f(z) \right| dx \right) |g(z)| dz = \\ &= cC_{1} \sup_{\|g\|_{p'(t)} \leq 1} \int_{0}^{1} \left(\int_{\mathbb{R}} \left| \left(\sum_{k} r_{k}(x)S_{k}f(z)g(z) \right) \right| dz \right) dx \leq \\ &\leq cC_{1} \int_{0}^{1} \left(\sup_{\|g\|_{q(t)} \leq 1} \int_{\mathbb{R}} \left| \left(\sum_{k} r_{k}(x)S_{k}f(z) \right)g(z) \right| dz \right) dx \leq \\ &\leq cC_{1} \int_{0}^{1} \left\| \sum_{k} r_{k}(x)S_{k}f \right\|_{p(t)} dx \leq cC_{1}M, \end{split}$$

which proves (7). This completes the proof of Theorem 7.

- Stein E. M. Singular integrals and differentiability properties of functions. Princeton: Princeton Univ. Press, 1970.
- 2. Zygmund A. Trigonometric series. 2nd ed. London; New York: Cambridge Univ. Press, 1959.
- Diening L. Maximal function generalized Lebesgue spaces L^{p(·)} // Math. Inequal. Appl. 2004. -7. – P. 245 – 254.
- Cruz-Uribe D., Fiorenza A., Martell J. M., Perez C. The boundedness of classical operators on variable L^p spaces // Ann. Acad. sci. fenn. math. 2006. 31. P. 239 264.
- Cruz-Uribe D., Fiorenza A., Neugebauer C. J. The maximal function on variable L^p spaces // Ibid. - 2003. - 28. - P. 223 - 238; 2004. - 29. - P. 247 - 249.
- 6. Nekvinda A. Hardy Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$ // Math. Inequal. Appl. 2004. 7. P. 255 266.
- 7. *Kopaliani T. S.* Infinitesimal convolution and Muckenhoupt $A_{p(\cdot)}$ condition in variable L^p spaces // Arch. Math. 2007. **89**, N^o 2. P. 185 192.
- Diening L. Maximal function on Orlicz Musielak spaces and generalized Lebesgue spaces // Bull. sci. math. – 2005. – 129. – P. 657 – 700.
- 9. Jessen B., Marcinkiewicz J., Zygmund A. Note on the differentiability of multiple integrals // Fund. Math. 1935. **25**. P. 217.
- Diening L., Hästö P., Nekvinda A. Open problems in variable exponent Lebesgue and Sobolev spaces // FSDONA 04 Proc. (Milovy, Czech. Rep., 2004) / Eds Drabek and Rakosnik. – P. 38 – 58.
- 11. Kováčik O., Rákosnik J. On spaces $L^{p(t)}$ and $W^{k, p(x)}$ // Czech. Math. J. 1991. **41**, N^o 4. P. 592 618.
- Kurtz D. S. Littlewood Paley and multiplier theorems on weighted L^p spaces // Trans. Amer. Math. Soc. – 1980. – 259. – P. 235 – 254.
- Stein E. M. Classes H^p, multiplicateurs et fonctions de Littlewood Paley // C. r. Acad. sci. 1966. – 263. – P. 716 – 719, 780 – 781.

Received 15.10.07