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LITTLEWOOD - PALEY THEOREM ON LP®(R") SPACES*

TEOPEMA JIMTTJIBY/IA — IIEJII
PO IPOCTOPH LPO(R")

We point out that when the Hardy — Littlewood maximal operator is bounded on the space e (R),
l<a< p(t) £b < o, teR, the well-known characterization of spaces LP(R), 1 < p < oo, bythe
Littlewood — Paley theory extends to the space L” m(R). We show that if n > 1, the Littlewood —
Paley operator is bounded on me(R"), l<a< p(t) <h<e, teR", ifand only if p(¢#) = const.

BcTanoBsieHo, 1110 KOJIM MakcHUMaJibHUil onepaTop Xapai — JIiTTJ/IByJa 0OMEKeHUil Ha MpocTopi
'(R), 1<a< p(t) <b < o, teR, nobpe Binoma xapakTepusania npoctopis L’ (R), 1 < p <
< oo, Teopieto JliTTyiBya — Ilesi nommMproeThesi Ha MPOCTIip Lp(t)(R). [Toka3ano, 110 y BUMAAKy

n > 1 omeparop JlittaByna — [lesti o6mMexeHuit Ha Lp([)(]R"), l<a< pt)<b<oo, te R", Tomi i
TiJIBKM TOAL, Koyid p(t) = const.

1. Introduction. Let m be a bounded function on R". The operator T defined by
the Fourier transform equation (7f Y(x) = m(x) f(x), x e R", is called a multiplier

operator with multiplier m. Let p be an (n-dimensional) rectangle and Y, the cha-

racteristic function of p. The operator §, having multiplier m = p and defined by

the equation
(S )(x) = xp(0) f(x), xeR”,
is called a partial sum operator.
Let a collection of disjoint rectangles A = {p} be a decomposition of R" (i.e.,
Upea = R"). Given a function f in the Schwartz class S (R"), define

1/2

GH@ = | Tl r@f | . xeRr"

peA

Let {nk}Z: n, > 0, ke Z, be alacunary sequence (i.e., thereisan a > 1 such

that n;q/m, =2 a for all k). Let A be the collection of all intervals of the form
[, myq] and [-ng . m ), k€ Z. Then A is called a lacunary decomposition of R.

When n;, = 2% ke Z, the resulting A is called the dyadic decomposition of R.
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Let A;, i =1,2,...,n, be n lacunary decomposition of R. Let A be the
collection of the intervals of the form p = p; xXp, X...xp,, where p;eA;. Then A

is called a lacunary decomposition of R”".
The important feature of the classical Littlewood — Paley theory is that a characteri-

zation of the spaces LP(R"), 1 < p < . Itis well known (see [1, 2]) that if A is a
lacunary decomposition of R" then |G( D, is equivalent to | f], for 1 < p <

< oo 1.e., there are constants A and B such that
Alfl, < 16O, < 11,

The purpose of this paper is to obtain analogously characterizations of variable ex-
ponent Lebesgue spaces LPP(R").
Given a measurable functions p(-): R" — [1, ), Lp(t)(]R") denotes the set of

measurable functions f on R” such that for some A > 0

J.(f;x))pmdx < oo,
R

This set becomes a Banach function space when equipped with the norm

p(x)
Hpr([) = lnf{k >0: J’(@) dx < 1}

Given a locally integrable function f, we define the Hardy — Littlewood maximal
function M f by

1
Mf(x) = sup — [ | F()]dy,
xeQ ‘ Q‘ 0
where the supremum is taken over all cubes containing x with sides parallel to the co-
ordinate axes. For conciseness, define P (R") to be the set of measurable function

p(): R" — [1,0) such that

l<a<p(t)<sb<oeo: teR"

Let B(R") be the set of p(-)eP (R") suchthat M is bounded on LP"(R™). Con-
ditions for the boundedness of the Hardy — Littlewood maximal operator on spaces
L (’)(R") have been studied in [3 — 8]. Diening [8] studied the necessary and suffici-
ent conditions in terms of the conjugate exponent p’(:), (1/p(H)+1/p’(t) = 1, te

e R"). He has proved that p(-)eB(R") is equivalent to p’(-)eB(R"), he also

proved thatif p(-)eB(R") then p(-)/qeB(R") for some g > 1.
In harmonic analysis a fundamental operator is the Hardy — Littlewood maximal
operator. In many applications a crutial step has been to show that operator M is bo-

unded on a variable L? space. Cruz-Uribe, Fiorenza, Martell and Perez [4] have show-
ed that many classical operators in harmonic analysis such as singular integrals, com-

mutators and fractional integrals are bounded on the variable Lebesgue space L DR

whenever the Hardy — Littlewood maximal operator is bounded on L* DR").
If we consider, instead, the strong maximal operator Mg defined by

XER

My (D) = sup e [0l
R
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where R is any rectangle in R”, n > 1, with sides parallel to the coordinate axes
then the situation is different. For the strong Hardy — Littlewood maximal operator
My we prove following theorem.

Theorem 1. Let 1 < p(t) < b < o, t € R". The strong Hardy — Littlewood

maximal operator Mi’( is bounded on Lp(')(]R") space if and only if p(t) =
=const =p and p > 1.

For function f e L(R"), the expression

Hf® = [T] ———fdy

R" i=1 'xk - yk
is said to be n-dimensional (n > 1) Hilbert operator.

Analogously we may prove following theorem.

Theorem 2. Let 1 < p(t) < b < o, te R". Then n-dimensional Hilbert ope-
rator (n > 1) is bounded on LP)(R"™) space if and only if p(t) = const = p
and p > 1.

We prove following Littlewood — Paley type characterization of L (’)(R") space.

Theorem 3. 1. Let A be a lacunary decomposition of R and p(-)€B(R).
Then there are constants c, C > O such that for all f € LPO(R)

| fllpey € TG pey < ClLF llper- (D

2. Let A be the dyadic decomposition of R", n > 1. If p(-) # const then
operator G is not bounded on LPP(R").

2. Proof of theorems. Proof of Theorem 1. According to Jessen, Marcinkiewicz
and Zygmund [9] Mg is bounded on all the L”, p > 1, spaces and first part of
Theorem 1 is trivial.

Let Mg is bounded on Lp(')(R”). Virtue of interpolation theorem (see [10]), we
have My isboundedon L’® = [LP(R™), L”(R")]s, 0 < 6 < 1, and without
restriction of generality we may assume that 1 < infRn p(t). Let 1/p@®)+1/p'(t) =

= 1, te R". Note that
1
Sl;P@HXRHP(Z) HXRHP'@) < o 2)

condition is necessary for boundedness of MR on L’ (’)(R”) (see proof below).

We will give the proof of second part of Theorem 1 for the case n = 2 for simpli-
city, since the same argument holds when n > 2.
Let infRz p@) < SUp 2 p(t). By Luzin’s theorem we can construct pairwise dis-

joint family of set F; with the following condition: 1) ‘Rz \UE

1

= 0, 2) functions
p: F, — R are continuous, 3) for every fixed i all points of F are points of densi-

ty with respect to basis X .

Note that, we can find pair of points ((xg, Y1), (Xg, ¥2))- or ((x1, ¥p), (X2, ¥p))-type
from UF suchthat p(xg, y) # p(xg, ¥2) or p(x;,yy) # p(xy,yy). Without loss of
generality, we may suppose that this pair is  ((xg, ), (X9, %2));  (xg, y) € F,
(X0, y2) € 5 and y; < y,.
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Let 0 <& < 1 be fixed We may find & > 0 such that for any rectangles
0,3 (xp, »), O 3(xg, ) with diameters loss than & the following inequalities are
valid:

IONAl > d-9|0] [&NEK]> (-], (3
Po, = sup p(x,y) < ¢ < ¢ < inf p(x,y) = p, 4)
@ = g 'T T onn e

for some constant ¢, ¢,.

Let O ., O, arerectangles with properties (3), (4) of the form (xj — 1T, xy + T) X
X (a,b), (xyg—7T,xy+T)X(c,d), where a < b < c <d.

We have continuously embedding Lp(l)(Qz’T) N (0, ;) and Lp'(’)(QM) )
o Lpé' (Q)¢), where l/p’Q1 + 1/pQl = 1 (see for example [11]). For rectangle O, =
= (xg — T, xg + T) X (a,d) we have

Ac = : HXQ HXQ —— ;HXQ NF Xo .NF >
10, |  lp(y 1+ llp(n) 21(d — a) RIRTCN VPN R RIAESY
C 1/ pg 1-1/py,
> S @td-0)" Qi -a 3
Ted —a &= e QT -a)

Note thatif T — 0 (a, b, ¢, d is fixed) A, = o and consequently (2) is not va-
lid. This completes the proof.

Proof of Theorem 3. The inequalities (1) are consequence of the extrapolation
theorem given by Cruz-Uribe, Fiorenza, Martell and Perez [4] and the weighted norm

inequalities for G(f) function given by Kurtz [12]. We describe this results.
Let p_ = essinf{p(x): x e R}. By a weight we mean a nonnegative, locally in-
tegrable function ®. When 1 < p < oo, wesay weA, if forevery interval Q

p—1
1 1 1—p
- dx| — P d < C < oo,
Q£(D(x) x[Qim(x) xJ <

The infimum over the constants on the right-hand side of the last inequality we de-
note by A, . By # will denote a family of ordered pairs of nonnegative, measurable

functions (f, g). We say that an inequality
j FOP o(x)dx < cjg(x)po(o(x)dx, 0 < py < oo, (5)
R R

holds for any (f,g)€ ¥ and we A, (for some ¢, 1 < g < o) if it holds for any
pairin ¥ such that the left-hand side is finite, and the constant C depends only on p,
and the A, , constant of .

Theorem 4. Given a family ¥, assume that (5) holds for some 1 < pg < oo,
for every weight ® € A,, and for all (f,g)e F. Let p(:-)eP (R) be such that
there exists 1 < p; < p_, with (p(-)/ p;) €B(R). Then

1l < Clelg
forall (f,g)e F suchthat feLPD(R).

Theorem 5 [12]. Let A be a a lacunary decomposition of R, 1 < p < oo, and
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®€ A,. Then there exist constant ¢, C depending only on p, A, and A,
such that
c[If@Pomdr < [(GAH@ o@de < C[|f(x)Po()ds.
R R R

From assumption of Theorem 3 we get that there exists 1 < p; < p_ with
(p()/ 1) €B(R) (see[8]). Let L, (R) be the set of all bounded functions with
compact support. From Theorems 4, 5 with the pairs (W f, | f|) we get right side in-
equality of (1)if fe Lffomp(R). Note that L:’(,mp(R) is dense in  LP(R) (see [11])
and consequently this inequality is also valid for all f e L? D(R). Analogously we ob-
tain left side inequality of (1).

Let n > 1. Fixarectangle R = [; X I, X...x I, andlet f be positive on R and

0 elsewhere function. Let k; be the greatest integer such that i < (4n|; D' and

p be the dyadic rectangle [2K 2kt x .. x [2%, 25 %] Note that (see [12, p. 246))
forall xe R

S, £ = ‘%‘J.f(x)dx.
R

Let the operator G is bounded on L” (l)(R"). Then for some constant C we have

@ [ redxl el < ClE - (©)
R

Note that (LP(R"))* is isomorphic to the space L”®(R"), where 1/p(t) +
+1/p'(t) = 1, te R" (see [11]). Therefore, for all rectangle R, from (6) we get

condition (2). We use Theorem 1 to obtain the desired result.

3. Applications. We now consider applications of Theorem 3. In [7] is proved
following theorem.

Theorem 6. Let p(-)eP (R) and exponent p(-) is constant outside some

large ball. Then operator M is bounded on Lp(’)(R) if and only if (2) fulfilled
for intervals.

The estimate (2) is necessary for boundedness of operator M in L” (t)(]R). Com-

bining the Littlewood — Paley type characterization of L? (’)(R) space (Theorem 3)
with the previous theorem we can obtain the following corollary.

Corollary. Let p(-)e®P (R) and exponent p(-) is constant outside some lar-
geball. Let A be the dyadic decomposition of R. The following are equivalent:

) p()eB(R);
2) there are constants ¢, C > 0 such that for all f e L? (Z)(R)

CHpr(z) < HG(f)Hp(;) < CHpr(;)'
Let {f;,} be asequence of functions defined on R. By Zk feell @ (R) we me-

an the partial sums Ziv fi convergein L (’)(R). We now will generalize Theorem 6
of Stein [13].
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Theorem 7. Let p(-)eB(R), and S, be any collection of lacunary partial
sum operators. Then feLp(t)(R) if and only if ZkSkSkf converges in
LPD(R) for any sequence {eel”. Moreover, Hpr(z) is equivalent to
SUP| (e, =1 szgkskap(;)'

Proof. Let p(-)eB(R) and S, be any collection of lacunary partial sum. For

1/2
fel’@®) we have (Zk\sk f\z) e L’(R). Note that if {g,}el” then

(2 lerSefP) " e XO®) and

12 12
(zgkskfzj < {Ek}l“’(zskfz) .

k k
If N > M using Theorem 3,
N N 1/2
Sess) = el X Isf)
M+1 p(t) M+1

p(t)

which implies {Zivek S f } is Cauchy in L”(R). From this follows

()"

k

1

> eSS

k

< el

P p(®)
Assume that S, be any collection of lacunary partial sum operators and

1/2
> &S f € IPO(R) forall {eg}el”. We will prove that (Zk\Sk f\z) e L"O(R)
and there exists a constant ¢ > 0 independent of f such that

Bl

First we will prove that M = SUP (e, )~ =1 sz &S f Hp(t) is finite. Indeed, consi-

Y &S f )

k

< c sup
e} =1

p(t) p()

der the collection of maps {GN: I~ - Lp(')(R)} defined by Gy({g;}) = Z;Ijzlgkskf-

Let G = G,,. Each Gy is continuous and by assumption Gy({€;}) converges to

G({e}) in LPO(R) foreach {g,}e!”. Therefore {HGN({ek})Hp(Z)} is bounded

N=1
for each {g,}e€/”. By the principle of uniform boundedness, there exists a constant
¢ > 0 such that |Gy| < ¢ forall N. It follows that |G| < c.

To proof of (7) will use Khinchine’s inequality for Rademacher series. Let #,(f) =

sgn(sin2”'nt), m = 0, 1,2,..., be the Rademacher functions, and set f =

Zz;amrm. Then there are constants B, and C, suchthatfor 0 < p < e

1 1/p - 172 1 1/p
Bp(ff“)”df) (2%2) SCp[If(t)Per ®)

0 m=0 0
(see [2]). Let & = n(r) for 0 <t < 1. Then |{g;}|~ = 1 and

IN
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PRI
k

p(t)

Using (8) for p = 1 and Fubini’s theorem we have

172 1
(zskf ) _[ zrk(x)skf
0

p(t)

1

G s j(j
Hng(t)—l]R
= C j.(
0

ng,, o e

p(1)

IN

dx ||g(z)|dz

3 (08 f(2)

IN

dz |dx

> ()8 f (z)g(z)J

IN
N

cClj sup j dz [dx <

0 Hqu(,)—l R

( n(X) S f (Z))g(z)

<

N RS f
k

dx < cCM
p(®)

which proves (7). This completes the proof of Theorem 7.

1.

10.

11.

Stein E. M. Singular integrals and differentiability properties of functions. — Princeton: Princeton
Univ. Press, 1970.

Zygmund A. Trigonometric series. —2nd ed. — London; New York: Cambridge Univ. Press, 1959.
Diening L. Maximal function generalized Lebesgue spaces L’ © // Math. Inequal. Appl. — 2004.
—7.-P.245-254.

Cruz-Uribe D., Fiorenza A., Martell J. M., Perez C. The boundedness of classical operators on

variable L’ spaces // Ann. Acad. sci. fenn. math. — 2006. — 31. — P. 239 — 264.

Cruz-Uribe D., Fiorenza A., Neugebauer C. J. The maximal function on variable L’ spaces //
Ibid. — 2003. — 28. — P. 223 — 238; 2004. —29. — P. 247 — 249.

Nekvinda A. Hardy — Littlewood maximal operator on  L”*(R") // Math. Inequal. Appl. — 2004.
—7.-P.255-266.

Kopaliani T. S.  Infinitesimal convolution and Muckenhoupt A, condition in variable L

spaces // Arch. Math. —2007. — 89, N° 2. — P. 185 — 192.

Diening L. Maximal function on Orlicz — Musielak spaces and generalized Lebesgue spaces //
Bull. sci. math. — 2005. — 129. — P. 657 — 700.

Jessen B., Marcinkiewicz J., Zygmund A. Note on the differentiability of multiple integrals //
Fund. Math. — 1935. — 25. - P. 217.

Diening L., Histo P., Nekvinda A.  Open problems in variable exponent Lebesgue and Sobolev
spaces // FSDONA 04 Proc. (Milovy, Czech. Rep., 2004) / Eds Drabek and Rakosnik. — P. 38 — 58.
Kovdcik O., Rakosnik J. Onspaces L’ and W*7“) // Czech. Math. J. — 1991. — 41, N° 4. —
P. 592 - 618.

. Kurtz D. S. Littlewood — Paley and multiplier theorems on weighted L’ spaces // Trans. Amer.

Math. Soc. — 1980. — 259. — P. 235 — 254.

. Stein E. M. Classes H”, multiplicateurs et fonctions de Littlewood — Paley // C. r. Acad. sci. —

1966. — 263. - P. 716 - 719, 780 - 781.
Received 15.10.07

ISSN 1027-3190. Ykp. mam. sxypn., 2008, m. 60, N° 12



