
UDC 517.5

B. Bojarski (Warszawa, Poland)

WHITNEY’S JETS FOR SOBOLEV FUNCTIONS 

STRUMENI U}TNI DLQ FUNKCIJ SOBOLEVA 

We present two fundamental facts of the jet theory for Sobolev spaces  W m p, .  One of them is that the
formal differentiation of  k-jets theory is compatible with the pointwise definition of Sobolev  ( )m − 1 -jet

spaces on regular subsets of Euclidean spaces  R
n .  The second result describes the Sobolev embedding

operator of Sobolev jet spaces increasing the order of integrability of Sobolev functions up to the critical
Sobolev exponent. 

Vstanovleno dva fundamental\nyx fakty teori] strumeniv dlq prostoriv Soboleva  W m p, .  Per-

ßyj iz nyx polqha[ v tomu, wo formal\ne dyferencigvannq  k-strumeniv [ sumisnym z potoçko-

vym vyznaçennqm sobolevs\kyx prostoriv  ( )m − 1 -strumenq na rehulqrnyx pidmnoΩynax evkli-

dovyx prostoriv  R
n .  Druhyj rezul\tat opysu[ sobolevs\ki operatory vkladennq sobolevs\kyx

prostoriv strumeniv, wo pokrawugt\ porqdok sumovnosti sobolevs\kyx funkcij aΩ do krytyç-

noho pokaznyka. 

1.  Introduction.  We present here two main theorems — Theorem 3.1 and 3.2 below

— as the fundamental facts of the jet theory for Sobolev spaces  W m p, .  The first one

expresses the basic fact that the formal differentiation  D 
j :  J U J Uk k j( ) ( )→ −   of  k-

jets theory is compatible with the pointwise definition of Sobolev  ( )m −1 -jet spaces

VLC ( m,  p,  U )  on regular subsets  U  of Euclidean spaces  Rn . 

Classically and in any theory describing the Sobolev spaces  W Um p, ( )   [1 – 3] by

any process of consecutive differentiations  D  

α
 f ∈  L 

p
 ,  e. g.  for  α   <   m   Theo-

rem 3.1 is essentially part of the definition.  However with the spaces  VLC (  m,  p,  U  )
defined by the pointwise inequality (1.1) the deduction of the inequalities (3.2) from
(3.1) or (1.1) is far from obvious and quite nontrivial. 

Theorem 3.2 describes the Sobolev embedding operator of Sobolev jet spaces in-
creasing the order of integrability of Sobolev functions up to the critical Sobolev expo-
nent. 

The case  VLC ( 1,  p,  U )  is identical with the Hajłasz space  M p1,   [4, 5] which has

been extended by P. Hajłasz for the general case of  M X dp1, ( , , )µ   spaces on general
measure metric spaces  ( X,  d,  µ )  satisfying the doubling condition.  The Haj łasz theo-
rem is one of the cornerstones of the analysis on general metric spaces (fractals etc.). 

Theorems 3.1 and 3.2 play a crucial role in incorporating the Sobolev space theory
into the general framework of Whitney type theory for classical function spaces, with
the full exploitation,  in a rather deep way,  of the classical Taylor approximating for-
mulas. 

The classes  VLC ( m,  p,  U )  are described in the form of a pointwise inequality 

R F y xm −1 ( , )   ≤  b x y x y m( , ) − ,    ( x,  y ) ∈ U × U, (1.1)

describing the behavior of the  ( )m −1 -order Taylor remainder  R F x ym −1 ( , )  of the
Sobolev jet  F  near the diagonal  ∆  =  {  x,  x } ,  ∆  ⊂  U ×  U ,  in terms of the distance
x y−   of the point  ( x,  y )  in the cartesian product  U × U  from the diagonal  ∆.  We

call (1.1) the  S 
m

 RC  condition — the Sobolev remainder condition — describing the

behavior of the  ( )m −1 -order Taylor remainder  R F y xm −1 ( , )  of the Sobolev  ( )m −1 -
jet  F. 
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In the literature only the “splitted” case 

b ( x,  y )  ≡  a ( x )  +  a ( y )    for some    a ∈ L 

p
 ( U ) ,    p  >  1,

was considered [4 – 6].  Our approach allows also to consider somewhat more general
case, not necessarily “splitted”. 

As methodological novelty let us mention the general idea of averaging pointwise
inequalities and systematic use of local fractional maximal and sharp maximal functi-
ons.  Markov inequality is crucial also, we refer to [7, 8].       

In the seminal papers [9, 10] of H. Whitney the space of continuously differentiable

functions  C  

m
 ( U )  on a subset  U  of  R 

n  was described by their  m-jets.  Recall that

the space  J 

m
 ( U )  of  m-jets  F — also called Whitney fields on  U — is defined as a

collection of functions, also called components (or coefficients) of the jet, 

F  =  f xj ( ){ },      x ∈ U,    j   ≤  m,

indexed by multiindices  j  =  ( , , )j jn1 … ,  jl  ≥  0,  Σl jl  =  j ,  from a linear class  A  of
some usual function space of analysis.  This can be the class of measurable, bounded,

continuous, Lebesgue integrable  L Up
loc( , )µ ,  µ — some regular Borel measure on  U, 

p  ≥  1,  etc.  The class  A  is required to admit the multiplication by polynomials in

x.∈ R 
n  (restricted to  U ). 

The jets  F  ⊂  J 

m
 ( U )  define the formal Taylor polynomials in  x ∈ R 

n  (centered at

y ∈ U ) 

T F y xj
k j− ( , )   =  T F xy j

k j
, ( )−   =  f y

x y

lj l

l

l j k
+

+ ≤

−∑ ( )
( )

!
,

k  ≤  m,      l  ≥  0,      l   ≤  k j− , (1.2)

T F y xk ( , )   =  T F xy
k ( )   =  f y

x y

ll

l

l k

( )
( )

!
−

≤
∑

(also called Taylor fields) and the formal Taylor remainders  R F y xj
k j− ( , )  defined by

the formulas 

f xj ( )  ≡  T F x T F y xy j
k j

j
k j

, ( ) ( , )− −+ ,      R F y xk ( , )  ≡  R F y xk
0 ( , ),

( y,  x ) ∈ U × U,      j   ≤  m .

On the jet spaces  J 

m
 ( U )  there are three basic natural operations: 

(I)  The formal jet differential 

D 
i :  J U J Um m i( ) ( )→ −

defined by the formula 

{ }Di
kF   =  fi k+     for    k   ≤  m .

Obviously  Di F   ≡  0  for  i   >  m . 

(II)  The reduction  C 
l,  l ∈ N , 

C 
l :  J U J Um m l( ) ( )→ − ,      l  ≤  m ,

( )Cl
kF   =  fk ,      k   ≤  m  –  l .
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(III)  The restriction or trace operation.  For a subset  Σ  of  U   the trace  TrS : 

J  

m
 ( U ) → J 

m
 ( Σ )  is defined componentwise 

{ }F kΣ   =  { }fk Σ .

The restriction operation is unconditionally meaningful and well understood for jet
spaces with continuous coefficients or when  Σ  is an open subset of an open domain  U

in  Rn .  For general Sobolev type jet spaces, e.  g.  VLC-spaces, defined below, the re-
striction operation is defined and understood only under very special conditions on the
set  Σ.  Classically  Σ  should be a smooth submanifold, typically a hyperplane, of  U  ⊂
⊂  R 

n
 .  In this context for Sobolev spaces the  d-sets  Σ  of  U  are an important class of

admissible subsets (see [11]). 

It is convenient to distinguish between the polynomial (or space) variables  x ∈ R 
n

and the field variables  y ∈ U  of the Taylor fields  T F xy j
k j
, ( )− .  Thus in the definition

of  m-jets in  J Um( )   the components  fj  of the jet  F  are to be considered as (local)
functions of the field variables. 

The Taylor fields (1.2)  T 

k
 F ( y,  x )  considered as functions on the product  U ×  R  

n

are polynomials in  x ∈ R 
n  with coefficients in  A .  Moreover, 

T F xy j
k j
, ( )−   =  D T F xx

j
y
k ( ),      T F xy

k ( )   ≡  T F xy
k
, ( )0 ,

where  Dx
i   are the standard differential operators acting on polynomials in  x ∈ R 

n.

Though the Taylor remainders  R F y xj
k j− ( , )  are defined on the product  U × U  as

functions of the field variables  x,  y  and are in the class  A  only, their difference 

R F y x R F z xj
k j

j
k j− −−( , ) ( , )   ≡  T F x T F xz j

k j
y j
k j

, ,( ) ( )− −−

is a polynomial in  x  for arbitrary  y,  z ∈ U × U. 

H. Whitney considered the case when  U  =  K  is a compact subset  K   of  R 
n  and

A  the ring of continuous functions on  K,  A  =  C  ( K ) .  By definition an  m-jet  F  ⊂
⊂  J 

m
 ( K )  is in  C 

m
 ( K )  if

F  =  G K   =  D gm
K

(1.3)

is the restriction to  K  of an  m-jet  G   =  { }:D g j mj ≤   of a function  g ∈  C  

m
 ( R 

n
 ) .

Numerous natural and delicate questions related with the above definition and the in-

verse extension operators  Ext :  C  

m
 ( K )  →  C  

m
 ( R 

n
 )  have been discussed in detail in

the vast literature of the subject [9 – 13]. 
A necessary and sufficient condition for  (1.3)  was formulated and proved by

H. Whitney in the form of the famous Whitney’s remainder condition  WRC 

m
 ( K )  on

the behavior of the Taylor remainders  R F y xj
m j− ( , )  near the diagonal  ∆  ⊂  K × K :

R F y xj
m j− ( , )  =  o x y m j−( )− ,      j   ≤  m,

when  ( y,  x )  →  ( x0 ,  x0 )  uniformly on  K,  x0 ∈ K . 
Actually it is enough to require 

R F y xm ( , )  =  o x y m−( ),      j  =  0

(see [7, 14]). 
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In the present paper  U  will be mainly an open subset of  R 
n

 ,  possibly  U  =  R 
n  or

a model (closed) cube  Q   ⊂   R 
n.  Functions in the Sobolev space  W Qm p, ( ),  p  >  1,

will be described by their  ( )m −1 -jets.  The corresponding precise definition is formu-
lated below as jet spaces  VLC. 

Remark.  Most of our concepts and results are meaningful and hold when  U   is

considered to be a regular subset of  R 
n,  e. g. bounded John domain or extension do-

main for Sobolev spaces. 
The notation throughout this paper is either standard in the literature on Sobolev

spaces or self-explanatory.  As a general reference for the Sobolev spaces  W Gm p, ( ) ,

G  ⊂  R 
n,  we propose W. P. Ziemer’s monograph [15].  Since this paper is a continua-

tion of [4, 6, 7, 16], our notation and the basic definitions are consistent with those in
the quoted papers.  For convenience we recall that for a multiindex  α   =  ( α1 , … , αn ) ,

D 
α  is the classical or distributional differential operator,  α   =  Σi αi  .  For a locally

integrable function  g  and a measurable subset  E  ⊂  R 
n,  E   will be its Lebesgue

measure and  −∫ g
E

  =  gE  =  E g
E

− ∫1   the average value of the function  g  over  E .

B ( a,  r )  will denote the open ball in  R 
n  of radius  r  centered at  a.  The letter  Q  will

be used either for our fixed model open cube, where all our function spaces “live” or
for a generic subcube of “small” diameter  δ ( Q )  or sidelength  s ( Q ),  containing all

the points  x ,  y ,  z  of  R 
n  which appear in the considered pointwise inequality.

Usually  s  ( Q )  ≈   x y− ,  x,  y,  z ∈  Q ,  x  ≠  y  ≠  z,  2 Q  ⊂   B  ( x,  r ) ,  r  ≈   4 x y− ,
where  2Q  is the notation for the cube concentric with  Q  and of the doubled diameter.
Given two quantities  A  and  B,  we write  A  ≈  B   if  C1 A  ≤  B   ≤  C2 A  for some
positive constants  C1  and  C2 .  In the case of the Lipschitz moduli  aQ ( x )  or the local
Hardy – Littlewood maximal functions  MQ  g  ( x ) ,  the subscript  Q  indicates the local
character:  x ∈ Q ,  s ( Q )  ≈  2 x y− ,  of the pointwise estimates and the concepts used:
local maximal functions, local Riesz potentials, local Lipschitz moduli, etc.  All our
pointwise estimates are essentially local, i.e., the important information, conveyed by

the pointwise estimates of the Taylor remainders  R F x yj
k ( , ),  is relevant only when

x y−   →  0  or  x y−   <  δ,  i.e., in an open neighborhood of the diagonal  { ( x,  x ) }
of  Q × Q  for sufficiently small  δ . 

Finally we explicitly state that the constants in our formulas can change values in
the same string of estimates.  Writing  C ( n,  m,  p )  we emphasize that the constant de-
pends on the indicated parameters only. 

2.  Fractional maximal function.  The local fractional maximal function of a

locally integrable function  f :  R 
n  →  [ – ∞, ∞  ]  is defined by 

M f xα ( )   =  M f xRα, ( )  =  −
< <

∫sup ( )
( , )0 r R B x r

r f y dyα ,      0  ≤  α  ≤  n .

For  α  =  0  we obtain the local Hardy – Littlewood maximal function.  The function
M fRα,   is closely related to the Riesz potential  ( R  =  ∞ )  and its localized form 

I f xRα, ( )  =  
f y

x y
dyn

x y R

( )

− −
− ≤
∫ α .

Generally the Riesz potential  I fα   majorizes the maximal function  M fα   

M f xα ( )   ≤  C I f x1 α ( ) ,
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but for  1  <  p  <  ∞ 

I f Lpα   ≤  C M f Lp2 α

by a known result of Muckenhoupt – Wheeden [17] (with the corresponding inequali-
ties for local versions).  The constants  C1 ,  C2  are universal and depend  on  n,  p  on-
ly and possibly on  R  in some controlled way.  For  0  <  α  p  <  n  the Hardy – Little-
wood – Pólya theorem on fractional integration gives 

I f Lqα   ≤  C n p f Lp( , , )α ,      
1
q

  =  
1
p n

− α
. (2.1)

It follows that the local fractional operators  M Rα,   also increase the integrability expo-
nent 

M Rα,  :  L Qp
loc( )  →  L Qp

loc
α ( ),      pα  =  

np

n p− α
  >  p . (2.2)

The fractional maximal operator  M Rα,   is meaningful on arbitrary measure metric
space  ( X,  d,  µ ) .  If the Borel measure  µ  on  X  is an  s-measure for some real  s  >  0
in the sense that 

C rs
1   ≤  µ ( ( , ))B x r   ≤  C rs

2 , (2.3)

then (2.2) holds if the  L 

p
  spaces are understood as  L Xp( , )µ .  The real number  s  in

(2.3) is then interpreted as the Hausdorff dimension,  dimH ( X,  d,  µ )  =  s,  of the regu-
lar measure metric space  (  X,  d,  µ ) .  The mapping property (2.2) then holds with the
Euclidean dimension  n  replaced by the Hausdorff dimension  s  satisfying the conditi-
on 

α  p  <  s. (2.4)

In this paper our main concern is naturally the case of Sobolev spaces in the Eucli-

dean spaces  R 
n

 :  the explicit expressions for the remainders  R 

m
 F ( x,  y )  are meaning-

ful only in this case.  The above remarks on Sobolev spaces on measure metric spaces
are included only to see the broader perspective of the special cases of the theory  ( m  =

=  1,  d-sets in  R 
n

 ,  d  <  n  [11], etc. ) .  In this context it is important to notice that the

proof [17] of the inequality (2.2) is presented independently of the Hardy – Littlewood
– Pólya – Sobolev inequalities (2.1) and thus the inequalities (2.2) antecede the inequa-
lities (2.1). 

The proof of the Hardy – Littlewood type result for the fractional operators  M fα
for measure metric spaces satisfying the doubling condition 

µ ( B ( x,  2r ))  ≤  C µ ( B ( x,  r )) (2.5)

should be presented in connection with this aspect of [17], rather than the traditional
reference to the classical Hardy – Littlewood – Pólya theorem [2, 3]. 

The result of P. Hajłasz [5] is somehow more subtle since it does not use the full
strength of the doubling condition (2.3) – (2.5). 

The local fractional sharp maximal function of a locally integrable function  f  is de-
fined by 

f xRβ,
# ( )  =  − −

< <

− ∫sup ( , )
( , )0 r R

B x r
B x r

r f f dxβ ,    β  ≥  0.

For  R  =  ∞  we simply write  f xβ
# ( ).  The case  β  =  0  is the Feffermann – Stein sharp

maximal function and instead of  f xR0,
# ( )  we write  f xR

# ( )  for the local version of the
Feffermann – Stein operator. 
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It has been understood during the last few decades that the fractional maximal func-
tions are a convenient way to describe various subtle properties of Sobolev function
spaces.  They are also intimately connected with the pointwise inequalities characteri-
zation of these spaces [6, 16, 18 – 21], etc. 

Let us briefly recall the case of first order Sobolev spaces  W Up1, ( ).  A. P. Calde-

rón characterized the  W p n1, ( )R   spaces by the pointwise condition  f  ∈  L 

p
 ,  and

f x1
# ( ) ∈ L 

p
 ( R 

n
 )  [19].  They are also characterized by the pointwise inequality 

f x f y( ) ( )−   ≤  a x a y x y( ) ( )+( ) − ,    x,  y  ∈  U ,

with  a ∈ L 

p
 ( U ) ,  p  >  1,  and the closely related averaged Poincaré inequality [4, 22] 

− −∫ f x f dyB x r
B x r

( ) ( , )
( , )

  ≤  −∫Cr g y dy
B x r

( )
( , )

(2.6)

with  g  estimated by 

g ( y )  ≤  a ( y )  +  MQ a ( y )

for some local maximal function  MQ  a  of  a ∈  L 

p
  (  g ∈ L 

p
 ) ,  Q  — cube of diameter

Q ≤ 4 x y− ,  containing  x  and  y. 
Maximizing the both sides of (2.6) we obtain [18] 

f xR
# ( )  ≤  CM g xR1, ( )

which implies, by (2.2), that  f xR
# ( ) ∈  Lp1   and consequently  M fR   and  f ∈  Lp1 .

This is the Sobolev imbedding of  W Up1, ( )  into  L Up1
∗
( ) .  This procedure is meaning-

ful for the case when  U  is replaced by a measure metric space  ( X,  d,  µ )  with the
doubling measure  µ,  and the Sobolev imbedding holds with the geometric dimension
n  replaced by the Hausdorff dimension  s  (for  p  <  s  ) [5]  (see also the proof of
Proposition 4.1 below). 

The described properties of the fractional maximal operator  M R1,   for measure me-

tric spaces lead then to an alternative proof of a weaker version of the  Hajłasz  theorem
(Hajłasz in [5] does not use the full strength of the doubling condition).  For us it will
be important to understand the integrability properties of the function  b ( x,  y  )  =
=  ( )( ) ( )a x a y x y+ −   on the product space  U × U.  They are controlled by the itera-
ted local maximal functions or iterated Steklov means 

−∫
B x r( , )

−








∫

B y r

b x y dx dy
( , )

( , )   ≤  −∫
B x r

RM b y dy
( , )

( )1   ≤  M M b xR R
2 1( )( )

or (2.7)

−∫
B y r( , )

−








∫

B x r

b x y dy dx
( , )

( , )   ≤  −∫
B y r

RM b x dx
( , )

( )1   ≤  M M b yR R
2 1( )( ),

where  M b yR
1 ( )  =  −

<
∫sup ( , )

( , )r R B y r
b x y dx   and  M b xR

2 ( )  =  −
<

∫sup ( , )
( , )r R B x r

b x y dy. 

The representation  b ( x,  y )  =  ( )( ) ( )a x a y x y+ −   implies that each of the iterated

M MR R
2 1   maximal functions is controlled by either  M M aR R( ),1   or  M M aR R1, ( )  eval-

uated at  x  and  y, respectively (see also the proof of Proposition 4.2 below).  Thus by
(2.2) we have the following proposition. 

Proposition 2.1.  The iterated Steklov means  (2.7)  of the function   b  ( x,  y )  =
=  ( )( ) ( )a x a y x y+ −   with  a ∈ L 

p
  are in  Lp1 . 
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3.  The classes  VLC (((( m, p, Q )))) .  The  ( )m −1 -jet  F ∈ J Qm−1( ),  F  =  { :f ii ≤
≤  m − 1},  fi  ∈  L 

p
 ( Q )  is said to be a  ( )m −1 -jet in  Q   with variable Lipschitz

coefficient,  F ∈ VLC ( m, p, Q )  for short, if for some function  aQ  =  aQ  ( F ) ∈  L 

p
 ( Q )

the pointwise inequality holds  

R F x ym −1 ( , )   ≤  x y a x a ym
Q Q− +[ ]( ) ( ) ,    x,  y ∈ Q. (3.1)

Intimately related with (3.1) is the a priori stronger condition requiring the inequalities 

R F x yi
m i− −1 ( , )   ≤  x y a x a ym i

Q
i

Q
i− +− [ ]( ) ( ) ,    aQ

i  ∈ L 

p
 ( Q ) , (3.2)

to be satisfied for all  i   ≤  m – 1  ( )R F R Fk k
0 ≡ .

Functional coefficients  a xQ( ) ,  a xQ
i ( )   in (3.1) and (3.2) will be called  the Lip-

schitz moduli of the jet  F.  The Lipschitz moduli in (3.1) and (3.2) are obviously not
defined uniquely.  The equivalence relation  aQ  ≈  bQ  in the sense of the pointwise
inequality  C1 aQ ( x )  ≤  bQ ( x )  ≤  C2 aQ ( x ) ,  C1 ,  C2 — positive constants, preserves all
essential information contained in (3.1) and (3.2). 

The concepts of  the Taylor algebra  recalled above give a convenient tool to for-

mulate the pointwise inequalities satisfied by the  ( )m −1 -jet  F  =  { :f D fα
α α≡ ≤

≤  m − 1}  of a function  f  in the Sobolev class  W m n
loc

, ( )1
R . 

Indeed, the pointwise inequalities from [4] (Theorem 2) and [6] (formulas (3.5),
(3.6)) may be stated as the following proposition. 

Proposition 3.1.  If  F  =  { }:D f mα α ≤ − 1 ,  f ∈ W m n
loc

, ( )1
R ,  then 

R F x ym −1 ( , )   ≤  C x y a x a ym
Q Q− +( )( ) ( ) ,    aQ  ≡  aQ

0 (3.3)

and 

R F x yi
m i− −1 ( , )  ≤  C x y a x a ym i

Q
i

Q
i− +− ( )( ) ( ) ,    i   ≤  m – 1. (3.4)

The local Lipschitz moduli  aQ  ,  aQ
i   in the right-hand side of (3.3) and (3.4) in

view of [4, 6, 7, 16] can be chosen as dominated by the local Hardy – Littlewood maxi-

mal function  M f xQ
m( )( )∇   of the highest gradient  ∇m f   of  f.  Also the constants

C  in (3.3) and (3.4) are universal and depend on  n  and  m  only.  Q  is a model cube,
containing  x  and  y  of the  diam Q  ≈  δ

 
,  δ  ≥  x y−   ( usually  δ  ≤  5 x y−  ) . 

The jet spaces  VLC ( m, p, Q )  can be supplied with Banach space norms in a natu-
ral way.  For instance, the  ( m – 1 ) -jet space  VLC ( m, p, Q )  can be given the norm 

F   =  max , inf( )( ) ( )
f i m ai L Q Q L Q

p p≤ − +1

where the  inf  is taken over all admissible moduli in (3.3)  ( or  aQ
i

L Qi k p ( )≤∑   for

the space      VLC
##

( , , )m p Q   defined by the inequalities (3.2) ) . 

For simplicity we use the same notation  VLC ( m, p, Q )  for spaces of jets or spaces
of functions generating the jets.  The actual object is defined by the context.  The aris-
ing normed spaces are complete Banach spaces. 

The space  VLC ( 0, p, Q )  is identified with jet space  J 

0
 ( Q )  ≡  L 

p
 ( Q ) . 

The space  VLC ( 1, p, Q )  is the space  M  

1, p
 ( Q )  of  P.  Hajłasz whose immediate

natural generalizations to the case of measure metric spaces  ( X, d, µ  )  were studied by
P. Hajłasz [5] in an original and profound way. 
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For  m  =  1  and the jet space  J 

0
 ( Q )  =  L 

p
 ( Q ) ,  R 

0
 f ( x, y )  ≡  f ( x )  –  f ( y )  .  Inequa-

lity (3.3) has the form 

f x f y( ) ( )−   ≤  x y a x a y− +( )( ) ( ) ,    a ∈ L 

p
 ( Q ) .

This makes sense for the general measure metric space  ( X, d, µ )  as 

f x f y( ) ( )−   ≤  d x y a x a y( , ) ( ) ( )[ ]+ ,    a ∈ L 

p
 ( X, dµ ) ,

f X d( , , )µ   =  f aL X Lp p( ) inf+

and produces the Banach space  M X dp1, ( , , )µ . 
The jet spaces  VLC ( m, p, Q )  as Banach spaces have been identified with the clas-

sical Sobolev spaces  W Qm p, ( ),  Q  — a cube in  R  
n.  This is Theorem 9.1 in [16],

which we recall here referring for the detailed proof to [16]. 

Theorem.  Let  F  be a  ( m – 1 ) -jet,  F  =  { }:f mα α ≤ − 1 , 

F ∈ VLC ( m, p, Q ) ,    p  >  1,    m  ≥  1.

Then in any cube  Q0  �  Q   there exists a function  f  in the Sobolev class  W Qm p, ( )0

such that the  ( m – 1 ) -jet  J fm−1  ∈ J Qm−1
0( )  coincides with  F Q0

  or 

D f
Q

α
0
  =  f Qα 0

    for    α   ≤  m  –  1

and the extended  m -jet,  F̃   =  { }:D f mα α ≤  ∈ J Qm( )0 ,  satisfies the inequality 

˜
( )

F
L Qp

0
  ≤  C F m p QVLC( , , )

or 

D F
L Qp

α ˜
( )0

  ≤  C F m p QVLC( , , )     for    α   =  m.

Moreover, for any  α + β,  α β+   ≤  m,  α   ≤  m,  β   ≤  m, 

D fα β+   =  D D fα β( ),      fα β+   =  D fα
β,      β   ≤  m  –  1, (3.5)

with the differential operators  Dα ,  Dβ   understood in the generalized Sobolev, or
distributional, sense. 

Remark.  The component  fα ,  α   =  m,  of the extended  m -jet  F̃   is obtained
also from  fα ,  α   =  m – 1,  by approximate differentiation [7, 8]. 

Corollary 3.1.  The reduced jets  C1( )F ,  F  ⊂   VLC ( m,  p,  Q  )  are in  VLC ( m –
– 1,  p1,  Q )  where  p1  is the Sobolev conjugate of  p,  1 1/ p   =  1 1/ /p n− . 

This is the simplest of the Sobolev imbedding theorems for the spaces  W Qm p, ( ),
for the case  mp  <  n. 

However, our general idea in this paper is to study the properties of the jet spaces

VLC  independently of the identification with the classical Sobolev spaces  W Qm p, ( ). 
We state now and prove the two main theorems of this paper  —  Theorems 3.1

and 3.2. 
Theorem 3.1.  The formal differential operator 

D 
i :  J U J Um m i( ) ( )→ −

acts as a bounded operator 

D 
i :  VLC VLC( , , ) ( , , )m p Q m i p Q→ − .
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Proof.  We have 

R Fm i i− −1( )D   ≡  R Fi
m i− −1

with  F ∈ VLC ( m, p, Q )  satisfying the pointwise inequality (3.1).  We need to assess
that the inequality (3.2) holds.  This we formulate as Lemma 3.1  below, which is the
general case of the main Lemma 8.1 in [16].  We enclose the proof from [16], because
the formulation here is simpler and explicitly drops the unnecessary assumption of qua-
sisuperharmonicity. 

Lemma 3.1.  If 

R F x ym −1 ( , )   ≤  x y a x a ym
Q Q− +[ ]( ) ( ) ,    x,  y ∈ Q,

(3.6)
diam Q  =  δ

 
,      δ  ≈  2 x y−

 
,

then 

R F y zi
m i− −1 ( , )   ≤  z y a y a zm i

Q
i

Q
i− +−

′ ′[ ]( ) ( ) ,    y,  z ∈ Q ′,

δ ′  =  diam Q ′,      Q ′  ⊂  Q,      δ ′  ≈  2 y z−   ≈  
1
2

δ
 
,

with  aQ
i

′   ≈  aQ  or 

a yQ
i

′( )  ≤  C n m a y M a yi Q Q Q( , ) ( ) ( )( )[ ]+ ′ ,    y ∈ Q ′,

for some constant  Ci   depending on  n  and  m  only. 
Proof.  From the Taylor algebra 

R F y zi
m i− −1 ( , )   =  D R F x y R F x zx

i m m
x y[ ]( , ) ( , )− −

=−1 1   ≡  D P x y zx
i

x y( ; , ) = (3.7)

with 

P x y z( ; , )  ≡  R F x y R F x zm m− −−1 1( , ) ( , ) (3.8)

which is a polynomial in  x  of order  ≤ m – 1,  with coefficients obtained by restriction
to  Q ,  of the coefficients of the local Whitney jet  F .  These are functions from

L Q1( )′δ .  For  y,  z  fixed,  y  ≠  z,  consider the balls  B ( y,  r )  and  B  ( z,  r  ) ,  r   =
=  y z−   and the spherical segment 

S  ≡  Sr  =  B ( y,  r )  ∩  B ( z,  r ) ,      Sr  =  Sr  ( y,  z ) .

By elementary geometry 

B z r( , )   =  B y r( , )   ≤  σ Sr

with  1  <  σ  <  σ ( n )  independent of  r. 
By Markov’s inequality, [7, 8, 16, 23], applied to the subset  S  of the ball  B ( y,  r ) ,

r  =  y z− ,   we obtain 

D P x y zx
i

x y
( ; , )

=
  ≤  

C n

r i
( ) − ′ ′∫ P x y z dx

S

( ; , ) . (3.9)

The integrand  P x y z( ; , )′   for  x ′ ∈ S  is estimated in view of (3.8) and (3.6) as 

P x y z( ; , )′   ≤  R F x y R F x zm m− −′ + ′1 1( , ) ( , )   ≤

≤  [ ] [ ]( ) ( ) ( ) ( )a x a y x y a x a z x zQ Q
m

Q Q
m

′ ′ ′ ′′ + ′ − + ′ + ′ − .

For  x ′ ∈ Sr  we have 

′ −x y   ≤  y z−     and    ′ −x z   ≤  y z−
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and the integral in the right-hand side of (3.9) splits into the sum  I r I r1 2( ) ( )+   with 

I r1( )  ≡  
C

r
ri

m
 − ′ + ′′ ′∫ [ ]( ) ( )a x a y dxQ Q
S

,

I r2( )  ≡  
C

r
ri

m − ′ + ′′ ′∫ [ ]( ) ( )a x a z dxQ Q
S

.

In  I r1( )  we consider  S  as a subset of the ball  B ( z,  r )  and in  I r2( )  we consider
it as a subset of  B ( y,  r )  and we get 

I r1( )  ≤  Cr C M a z a ym i
Q Q Q

−
′ ′+( )( )( ) ( )1   ≤  CC r M a z a ym i

Q Q Q1
−

′ ′+[ ]( )( ) ( )
(3.10)

and 

I r2( )  ≤  CC r C a z M a ym i
Q Q Q2 1

−
′ ′+[ ]( ) ( )

this ends the  proof  of  the  lemma  with  the  explicit  estimates  for  the  constants
C n mi ( , )  =  max( , )CC CC1 2  

Theorem 3.2.  The reduction operators  Cl
  act as a bounded operators ( pm < n ) 

Cl  :  VLC ( m, p, Q )  →  VLC ( m – l, pl 
, Q )

with  pl  
  defined by the Sobolev relation 

1
pl

  =  
1
p

l

n
−     for    l  =  1, … , m.

For  m  =   1  Theorem 3.2 reduces to  Theorem 3.3  or  the case of the spaces

W Qp1, ( )   =  M Qp1, ( )  treated by P. Hajłasz [5].
It is convenient for us to formulate the case  m  =  1  in the form of a separate theo-

rem, which we state here in the general Hajłasz form for general measure metric spaces

M X dp1, ( , , )µ . 
Theorem 3.3 (P. Hajłasz [5]).  If  µ  is a doubling measure with the doubling

constant  C,  and  s  =  dimH ( X,  d,  µ )  the Hausdorff dimension  ( C  =  2 
s

 ) ,  then 

M Xp1, ( )   O  L Xp∗
( ) ,      

1

p∗   =  
1 1
p s

− ,      p  <  s,

and 

M Xp1, ( )   ⊂  Lip ( α,  X ) ,      α  =  1 − s

p
,      p  >  s.

Proof.  [5] or Proposition 4.2 below. 
Proof of Theorem 3.2.  Let  F   =   { , , }f fm0 1… −   be in  VLC ( m,  p,  Q  ) .  Then

D Fm−1   =   fm−1   and  by Theorem 3.1  fm−1  is a (vector valued) function  in
VLC ( 1,  p,  Q ) .  By the quoted Theorem 3.3, 

fm Lp−1 1   ≤  C F m p QVLC( , , ) .

We have 

R Fm−1   ≡  R F f y
x y

m
m

m

m
−

−

−
+ −

−
2 1

1

1

1
( ) ( )

( )
( )!

C

and we see that the  ( m – 2 ) -jet  C1F   satisfies the pointwise inequality 
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R F x ym−2 1( )( , )C   ≤  C x y f y a F x a F y x ym
m Q Q− + +( ) −( )−

−
1

1( ) ( )( ) ( )( )
(3.11)

with  f ym−1( )  ∈ L Qp1 ( ),  aQ ( F ) ∈ L 

p
 ( Q ) . 

Symmetrizing the right-hand side of (3.11) by adding the term  f xm−1( )  and ap-
plying the iterated maximal function operation as in Proposition 2.1 and Lemma 3.1 we
deduce from (3.11) the pointwise inequality 

R F x ym−2 1( )( , )C   ≤  C x y b x b ym
Q Q− +[ ]−1 ( ) ( )

with  b xQ( )  controlled by 

b xQ( )  ≤  C f x M M a F xm Q− + ( )( )1 1( ) ( ) ( )( )   ∈  L Qp1 ( ).

Since  Cl   may be represented as a composition of  C1,  Cl   =  ( )C1 l   and the formulas
1/ pk   =  1 11/ /p nk− − ,  k  =  1, … , l,  also respect composition, we see that the descri-
bed procedure ends the proof. 

4.  The averaging of the pointwise inequalities.  Averaging of the pointwise in-
equalities as a method of generating new inequalities out of known ones has been sys-
tematically applied probably for the first time in [16], see also [8].  The proof of Lem-
ma 8.1 in [16], in some slightly modified form reproduced also above in the proof of
our Lemma 3.1, gives a general scheme of the averaging process and is in principle ap-
plicable to the pointwise inequalities in function spaces  ( X,  d,  µ )  satisfying the doub-
ling condition for the measure  µ . 

In this context it seems proper now to formulate a following general proposition for
the simplest case of the pointwise inequalities characterizing the Sobolev space

W Qp1, ( ) ,  p  >  1,  or Hajłasz – Sobolev spaces  M X dp1, ( , , )µ . 
Proposition 4.1.  Let a real valued function  f  satisfy the pointwise estimate 

f x f y( ) ( )−   ≤

≤  x y a x a y x y a x a y x y a x a y− + + − + + − + + …[ ]( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1
2

2 2 (4.1)

for some finite sequence of nonnegative valued functions 

a ( x )  ≡  a0 ( x ) ,      a1 , a2 , … , ai ∈ Lp i− ,    
1

p i−
  =  

1
p

i

n
+ ,    i  =  1, 2, … ,

then 

f x f y( ) ( )−   ≤  C x y a x a y− +[ ]˜( ) ˜( ) (4.2)

with 

˜( )a x   ≤  C M a x M M a x M M a xi i( )( ) ( )( ) ( )( )0 0 1 1 0+ + … + + … , (4.3)

where  Mi  is the local fractional maximal function of order  i,  M f0   ≡  M fQ . 

Proof.  Integrating inequality (4.1) over a ball  B ( x0 ,  r )  with respect to  x  and  y
we obtain 

− −∫ f y f dyB
B

( )   ≤  −


 ∫Cr a dx
B

  +  −∫r a dx
B

1   +  …  +  −



−

−∫r a dxk
k

B

1
1 . (4.4)

Hence, for  r  ≤  RQ  we conclude for some  R  >  0  the inequality 

− −∫ f y f dyB
B

( )   ≤  f xRQ

# ( )  ≤

≤  C M a M a M aR R k R kQ Q Q
( ), , ,1 2 1 1+ + … + − (4.5)

ISSN  1027-3190. Ukr. mat. Ωurn., 2007, t. 59, # 3



356 B. BOJARSKI

for the local fractional maximal functions  M a xi R i, ( )−1   and the local sharp maximal

function  fR
#   and the inequality for the local fractional sharp maximal function  f R1,

#  

− −∫1
r

f y f dyB
B x r

( )
( , )

  ≤  f xR1,
# ( )  ≤  C M a x M a M aR R k R k( )( ) , ,+ + … + − −1 1 1 1 . (4.6)

In view of (2.2) all terms in the right-hand side of (4.5) and (4.6) are in  Lp
loc

1   and  Lp
loc

respectively. 

Thus (4.5) implies  fR
#  ∈ Lp

loc
1 ,  hence  f ∈ Lp1  — which is one of the conclusions

of the Hajłasz theorem for generalized  M p1,   pointwise inequalities (4.1).  In an analo-

gous way (4.6) implies  f xR1,
# ( ) ∈ Lp

loc   and we recognize the A. Calderón [19] conditi-

on characterizing the Sobolev classes  W Qp1, ( ) . 
Application of the telescoping argument at the Lebesgue points of the function  f  to

the generalized Poincaré inequality (4.4), probably first used by L. Hedberg in [24],
allows to recover the pointwise inequality (4.2) in the same way as in the proof of
Theorem 3.2 [22] (see also [25]).  This finishes the proof of the proposition. 

By the imbedding theorem (2.2) for fractional maximal functions all terms in the

right-hand side of (4.3) are in the space  L 

p
 ( Q ) . 

Closely related with Proposition 4.1 is following proposition. 

Proposition 4.2.  Assume that a function  f ∈ L 

p
 ( Q )  satisfies instead of (4.2) the

inequality 

f x f y( ) ( )−   ≤  b x y x y( , ) − ,    x, y ∈ Q .

Then for a small concentric cube  Q0  ⊂   Q   (  e.g.  Q  ⊂   4 Q0  where  4 Q0  is the
concentric  4-times extended sube  Q0 ) , 

f x f y( ) ( )−   ≤  −



 ∫Cr

B x r( , )

b x z dz( , )   +  −



∫

B y r

b z y dz
( , )

( , )

with some constant  C  =  C ( n ) . 
Proof.  Let  x, y ∈ Q0  and  r  =  x y− .  Then the balls  B  ( x,  r )  and  B  ( y,  r )  are

both contained in  Q  and so is the spherical segment  S  =  B ( x,  r ) ∩ B  ( y,  r ) .  The ob-
vious inequality 

f x f y( ) ( )−   ≤  f x f z f z f y( ) ( ) ( ) ( )− + − (4.7)

averaged over  z ∈ S  gives 

f x f y( ) ( )−   ≤  
S

b x z x z b z y z y dz∫ − + −( )( , ) ( , )   ≤

≤  −




 ∫Cr

B x r( , )

b x z dz( , )   +  −




∫

B y r

b z y dz
( , )

( , ) (4.8)

for some constant  C  depending on  n  only. 
For  b ( x,  y )  symmetric:  b ( x,  y )  =  b ( y,  x ) ,  what we can always assume, (4.8) has

the “splitted form”, for  b ( x,  y )  “splitted”,  b ( x,  y )  =  a ( x ) + a ( y ) ,  the Steklov means

−∫ b x z dz
B x r

( , )
( , )

  have the form  a x M aQ( ) +   and we recognize the terms in the right-

hand side of (3.10) in our proof of Lemma 3.1.  If  b ( x,  y  )  does not appear in a
symmetric form, say  b ( x,  y )  =  a ( x ) + a ( y ) + c x x y( ) −  , the second integral in (4.8)
will produce the term of the form  M c z1 ( )   of a fractional maximal function of the
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coefficient  c ( x ) .  The described averaging process can be “iterated” and applied to the
pointwise inequalities (4.8).  It leads then to the iterated fractional maximal functions
appearing in (2.7) in the sketch of the proof of Proposition 2.1. 

Proposition 4.2 and its proof generalize to the higher order Taylor remainder esti-
mates 

R F y xm−1 ( , )   ≤  b x y x y m( , ) − .

Instead of the obvious inequality (4.7) the proof requires somewhat more sophisticated
formula (3.7) and the Markov inequality (3.9) for  i   =  0. 

The pointwise inequality (4.2) characterizes the behavior of the zero-order remain-

der term R f x y0 ( , )  ≡  f x f y( ) ( )−  in the neighborhood of the diagonal  ∆  of the carte-
sian product  Q × Q.  Inequality (4.1) can be viewed as a more subtle description of the

asymptotic of R f x y0 ( , )  in the neighborhood of the diagonal in terms of powers of the
distance  x y−   of the point  ( x,  y ) ∈ Q × Q  from the diagonal  ∆,  dist ((  x,  y ),  ∆ )  ∼
∼  x y− . 

Proposition 4.1 states that the a priori more general asymptotics (4.1) can be always
reduced to the “simplest” case (4.2). 

Actually the averaging process described in Proposition 4.1 can be continued one
step further reducing (4.2) to the pointwise inequality 

f x f y( ) ( )−   ≤  C x y a x a y− +0( )˜̃( ) ˜̃( )   ≡  C a x a y( )˜̃( ) ˜̃( )+
with the estimate 

˜̃( )a x   ≤  C M M a x M M a x M M a xi i( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 2 1 1+ + … +( )+

with all the terms locally in  L Qp1 ( ). 
Thus the extended averaging process gives essentially the Sobolev and Sobolev –

Hajłasz embedding theorem for  p  <  n  ( p  <  s  =  dimH ( X,  d,  µ ) — for measure me-
tric spaces ) . 

Analogous asymptotic  Sm RC  conditions can be formulated for  m  >  1  and Pro-
position 4.1 generalizes to this context also. 

When complemented by the recent extension results of Hajłasz – Koskela – Tuomi-
nen [26] or P. Shvartsman [27], the poinwise theory approach to Sobolev spaces

W Qm p, ( ) ,  p  >  1,  as presented in [5, 7, 16] and outlined above for Sobolev jet spaces

VLC ( m,  Q,  p )  extends to regular  ( n-Ahlfors regular ) open subsets of  R 
n.  In this

way the Sobolev jet space theory seems to be brought to a satisfactory shape, according
to the expectations expressed in the final comments of §10 of [16].  It can be expected
that the averaging process described above when applied with respect to a  d-measure

µ  supported by a  d-set  Σ  ⊂  Q  ( Σ  ⊂  R 
n

 )  [11, 28] will be useful for fully understan-

ding from the pointwise point of view the case of fractional Sobolev – Besov spaces on

n-Ahlfors regular subsets of  R 
n  (see also [21], wich almost fulfils the task) and the

case of Besov spaces or traces of Sobolev spaces on  d-subsets  Σ  of  R 
n. 

This problem will be, hopefully, the subject of a subsequent publication in coopera-
tion with  P. Hajłasz  and  P. Strzelecki. 
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