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L2-INVARIANTS AND MORSE -SMALE FLOWS
ON MANIFOLDS

L2-THBAPIAHTH TA IIOTOKH MOPCA - CMEMJIA
HA MHOTI'OBUJAX

We study the homotopy invariants of free cochain and Hilbert complexes. These L2-invariants are applied to the
calculations of exact values of minimal numbers of closed orbits of some indexes of nonsingular Morse — Smale
flows on manifolds of large dimensions.

BUBYAIOTHCS FOMOTOMIYHI iHBAPiaHTH BiJTLHUX KOJIAHITIOTOBMX Ta riJIb0epToBMX Komrutekcin. Lli L2-inpapi-
AQHTH 3aCTOCOBYIOTHCS MPU OOYKMCJICHHI TOYHUX 3HAY€Hb MiHIMAJILHUX YMCEJI 3aMKHEHHX OpOIT (PiKCOBaHUX
IHEKCIB HECUHTYJIAPHHUX MOTOKIB Mopca — CMeiiyia Ha MHOTOBH/IaX BEJIMKUX PO3MipHOCTEIH.

1. Introduction. Let M™ be a closed smooth manifold. By a nonsingular Morse — Smale
flow on M™ we shall mean a flow ¢, satisfying the following conditions:

1) chain-recurrent set R of ¢, consists of finitely many hyperbolic closed orbit;

2) for each pair of closed orbits of ¢, the intersection of their stable and unstable
manifolds is transversal;

3) all closed orbits of ¢, are untwisted.

Notice that usually by a nonsingular Morse — Smale flow one means a flow satisfying
the conditions 1) and 2) only.

Let ¢; be a nonsingular Morse —Smale flow on M™. Denote by A;, i = 0,...,n,
the number of closed orbits of ¢; of index i. Let also R; = dim H;(M™; Q). Then the
following inequalities hold true:

A2 Ry —Ri_1+...+ Ry (1)
forall? = 0,...,n, see [1—3]. Notice that they are not strict in general.
In this paper we study the following problem:
Problem. For a manifold M™ and i = 0,...,n find a nonsingular Morse —Smale

Sflow @ on M™ with minimal possible value A; of (untwisted) closed orbits of index i.

Using numerical invariants of free cochain and Hilbert complexes of manifold M",
see [3, 4], we give an answer to this problem for: = 0,1,n —2,n—1land3 <i<n—4
when dim M™ > 6. Thus a unique unsettled case is ¢ = 2 (and n — 3 by duality).

By definition the i-th Morse S*-number M? ' (M™) of a manifold M™ is the minimal
number of closed orbits of index 7 taken over all nonsingular Morse —Smale flows on
manifold M™.

It is convenient to define the following function p: Z — N by p(x) = 2 for x > 0 and
p(x) =0forz < 0.

Let M™, n > 6, be a closed manifold with zero Euler characteristic and with
71 (M™) = 7. Then the Morse S*-numbers of the manifold M™ are given by the fol-
lowing formulas:

ME (M) = ME_ (M™) =1,
M (M) = MEL,(M™) = p(m) — 1,
ME(M™) = SIEHM™) + p| (1) D (=1)7 dimyyg) (H}y) (M)
j=0

for 3 <i < n — 4, where u(r) is the minimal number of generators of 7.
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L2-INVARIANTS AND MORSE — SMALE FLOWS ON MANIFOLDS 523

2. Stable invariants of finitely generated modules and L?-modules. We give sev-
eral definitions and results about finitely generated modules over group rings. Most of the
facts are also valid for modules over a wider class of rings.

Let Z be the ring of integers and C the field of complex numbers. Let G be a dis-
crete countable group. Denote its integer and complex group rings by Z[G] and C[G]
respectively. Each group ring admits an augmentation epimorphism ¢: Z[G] — Z (e:
C[G] — C) defined by € (ZZ ozigi) = X, a;. Denote by I[G] the kernel of the epimor-

phism e. The ring C[G] has also an involution *: C[G] — C|G] given by (Z aigi) =

= Z aiggl, where @ is the conjugate to o € C. Define the trace tr: C[G] — C by

k
tr (ZZ a,-g1;> = a3, where a is the coefficient at g; = e, the unit of the group G.

The ring C[G] has also an inner product <Z, ;i Z ﬁigi> = Z ;3;. Then for

3

each 7 € C[G] its norm |r| can be defined by |r| = tr(rr*)/2. Let L?(G) be the com-
pletion of C[G] with respect to this norm. Then L?(G) has a structure of a Hilbert space
(with inner product given by the same formula as for the group ring C[G]) and elements
of G constitute its orthonormal basis. Notice that C[G] acts faithfully and continuously
by left multiplication on L?(G)

CIG] x L*(G) — L*(@),

therefore we can regard C[G] as a subset of the set B(L?(G)) of bounded linear operators
on L%(G). A a week closure of C[G] in B(L?(G)) is called the von Neumann algebra of
G and denoted by N[G]. The map N[G] — L?(G) given by w — w(e) turns out to be
injective and this allows us to identify N[G] with a subspace of L?(G).

Thus algebraically we have C[G] C N[G] C L?*(G). The involution and the trace
map on C[G] extends to N[G] by the same formulas. Moreover, the trace map can also be
extended to the space M,,(N[G]) of (n x n)-matrices over von Neumann algebra N[G]
by tr(W) = Zjﬂ wy;, where W = (w;;) is a matrix with entries in N[G].

Following Cohen [5] we will now define a notion of Hilbert N[G]-module. Let E =
= N oo, where oo is the first infinite cardinal. For eachn € E let L?(G)™ be the Hilbert
direct sum of n copies of L?(G). Thus L?(G)™ is a Hilbert space. The von Neumann
algebra N [G] acts on L?(G)™ from the left, whence L?(G)" is a left N[G]-module called
a free L?(G)-module of range n.

The left Hilbert N [G]-module M is a closed left C[G]-submodule of L?(G)™ for some
n € E. If n € N, then Hilbert N[G]-module M is called finitely generated.

Following [5, 6] we will say that a Hilbert N|G|-submodule of M is a closed left
C[G]-submodule of M, a Hilbert N|[G|-ideal is a Hilbert N[G]-submodule of L?(G),
and a Hilbert N|[G]-homomorphism f: M — N between Hilbert N|[G]-modules is a
continuous left C[G]-map.

Let M be a Hilbert N[G]-module and let p: L*(G)" — L?(G)™ be a orthogonal
projection onto M C L?(G)". Then the number

n

dimpyg) (M) = tr(p) = Z(p(ei% ei)L2(G)n

i=1
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is called a von Neumann dimension of M, where e; = (0,...,1(g),...,0) is a standard
basis in L?(G)™. It is known that dimy(g)(V/) is a nonnegative real number [6].

In what follows we will assume, unless otherwise stated, that A is an associative ring
with unit e and M is a left finitely generated A-module. Rings for which the rank of a
free module is uniquely defined are called I BN-rings. It is known that the group rings
Z|G] and C|G| are I BN-rings. In the present paper, we consider only /B N-rings. For
a module M let u(M) be the minimal number of its generators. If M is zero, then
w(M) = 0. Evidently, u(M @@ F,,) < p(M) + n, where F), is a free module of rank n.
There are examples (of stably-free modules) when this inequality is strict [3]. Recall that
a A-module M is called stably-free if the direct sum of M with some free A-module Fy,
is free.

A ring A is said to be Dedekind-finite if, for any A1, Ao € A, relation A\; - Ao = 1
implies Ao - Ay = 1. A ring A is stably-finite if the matrix rigs M,,(A) are Dedekind-finite
for all n € N. The terminology here follows the usage of workers in operator algebras.

Definition 1. Let d be afunction from the category of A-modules M (not necessarily
over group rings) to the set of nonnegative integers Nog. We say that this function d is weak
additive if the following conditions holds true:

a) d(M) = d(N) if modules M and N are isomorphic;

b) d(M) = 0 if and only if M = 0

c) d(M @ F,) = d(M) + n for any free module F,, of rank n € N.

Definition 2. For a finite generated module M over I BN-ring A let us define the
following function:

ps(M) = lim (u(M @ F,) —n).

n—oo

Lemma 1. The function us(M) is well defined and is weak additive for modules
over stably-finite rings.

Proof. Condition a) is obvious. Let us prove b). Suppose that p5(M) = 0 for some
non-zero module M. Then there exists n € N such that for the module N = M @ F,
we have ;i(N) = n. Therefore, there is an epimorphism f: F,, — N of a free module F;,
of rank n onto the module N. In addition, there exists a canonical epimorphism p: N =
= M@ F, — F, with the kernel equal to M. Let K be the kernel of the epimorphism
po f: F,, — F,,. It follows from the construction of f and p that K # 0. Moreover, po f
is an epimorphism onto a free module, therefore it splits, whence K & F,, = Fj,. Since A
is stably-finite, we obtain that K = 0. The condition ¢) is proved in [7].

Corollary 1. The function us(M) is week additive for modules over the rings Z|G]
and C[G].

Proof. 1t follows from theorems of Kaplansky and Cockroft [3] that the group rings
Z|G] and C|G] are hopfian.

Remark 1. Itis clear, that for any non-zero module M we have that

0 < ps(M) < p(M).
The difference
(M) — ps(M)

estimates how much times the addition a free module of rank one to the modules M P kA,
k=0,1,...,does not increase by one the number 1(M € kA). There are also inequali-
ties
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L2-INVARIANTS AND MORSE — SMALE FLOWS ON MANIFOLDS 525

p(MEPN) < p(M) + p(N),

ps(MEP N) < o (M) + prs(N).

It is not hard to construct examples of projective modules in which strict inequalities hold
true.

Lemma 2. For every finitely generated module M over IBN-ring A there exists
n € N such that for the module N = M @ nA and for all m > 0 we have that

/L(N@mA) = u(N)+m.

Moreover, (N is additive for the module N.
Proof. An existence of such a number n is proved in [3]. It is clear, that if for a
module N we have

(N @ mA) = u(N) +m,

then u(N) = d(NN) by the virtue of the definition of the function d(N).

Let N be a submodule of the free module F}. Following H. Bass we define f-rank of
the pair (N, F},) to be the largest nonnegative integer r such that IV contains a direct sum-
mand of F}, isomorphic to free module F,.. We shall denote this number by f-rank(N, Fy,).

By definition f-rank of (N, F},) is called additive if

Sfrank(N @ F,,, Fi, ® F,;,) = f-rank(N, Fy) + m.

We note that for any submodule N of the free module F}, there exist a positive integer mg
such that f-rank of (N @ F,,, F), @ F},,) is additive for all m > my, see [3] (Lemma II1.7).

3. Homotopy invariants of cochain complexes. It is known that the homology
(cohomology) of a free chain (cochain) complex over the ring of integers determines its
homotopy type. But for a free chain (cochain) complex over arbitrary rings this is not the
case, one should require the existence of a chain (cochain) map that induces homology
(cohomology) isomorphisms.

Definition 3. Let (C,,d.): Cy & (o & b C,, be a free chain complex.
Then the following chain complex:

is called the i-th skeleton of the chain complex (C., d.).

It is well known that the Euler characteristic x(C., d.) = Z(fl)i #(C;) is an in-
variant of the homotopy type of the chain complex (C., d). But in general the i-th Euler
characteristics of homotopy equivalent chain complexes (C,, d.) and (D, 0, ) may differ
each from other.

Definition 4. Ler (C,,d.): Cy & Ch Lo G C,, be a free chain complex
and

Xi(Cuydi) = (=1)'x(Cu(0), du(0)).

The following number:
X3 (Cy,dy) = min {Xi(D*, 0x) | (Dy, 0x) is homotopy equivalent to (Cl, d*)}

will be called the i-th Euler characteristics of the chain complex (C., d.).
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For cochain complexes the definitions are similar.

Theorem 1. Let (C,,d.): Cy Aoy & & o be a free chain complex.
Then x¢(Cy,dy) = xi(Cx, dy) if and only if f-rank of (d;+1(Ci41), C;) is additive and is
equal to zero:

frrank(di41(Cit1), Ci) = 0.

Proof. Necessity. Suppose that x?(C, d.) = xi(Cx, d.) but

Srank(d;+1(Ci41),C;) =1 > 0.

The the module C; can be represented in the form C; = C; ® F,. Therefore stabilizing
the boundary homomorphisms d; and d; ;5 via the free module F). we can assume that the
submodule C; is free and there is a decomposition

Cit1®F, = éi+1 o F,

such that d;1(0 & F‘T) = 0 @ F,. Canceling the fragment 0 < F, « F,. « 0 from
(Cy,d.) we obtain the chain complex (CN'*,J*) such that Xi(CN'*,J*) < xi(Ci,dy). Tt
follows that the chain complexes (C.,d,) and (C,,d,) are homotopy equivalent but
xi(Cy,d,) < xi(Cx, d,) which contradicts to the definition of x%(C., d.).

If f-rank(d; 11 (Ci+1), C;) is nonadditive the proof is similar.

Sufficiency. Suppose that there exists a chain complex

(é*,d*)ZCN’O <d—101 <d—2 <d—n én
such that f-rank of (d;41(Cy41), C;) additive and equal to zero but

XZ(CMCL) > X?(C*v d*)

Then there exists a chain complex (Ci,d.) Cy S Ci . C,, which is

homotopy equivalent to (C.,, d.) and such that x;(C., d,) = x*(C., d.). Then it follows
from necessity of our theorem that f-rank of (di+1 (Cit1), Ci) is additive and equal to
Z€ero.

Then by Cockroft—Swan’s lemma we can stabilize the boundary homomorphisms
dj and dj, j = 1,2,...,n, via some free modules Fj, and F,;j respectively and obtain
isomorphic chain complexes (C3*,d5*) and (C3*,d3"). By the construction the modules
F, @ ~C’l @~ Fy,,, and I} @ C; @ chi+1 are isomorphic and therefore x;(C$t, dst) =
= x:(C2t, dst). We note that

kit :frank(df-tﬁ-l(ci-ﬁ-l @ sz‘,+1 @ Fk'i+2)7 Ci®Fi, ® kaH»l) =

:f-rank(ciffrl(éiﬂ D F,}Hl (&) Fiﬁwz)’ él (&) Ff% D Ffful) =kKit1-
Hence we get xi(é*, CZ*) = X¥(Cy, ds).
Theorem 1 is proved.
0 1 n—1
Remark 2. If (C*,d*): ¢° < ¢t <4 .. “, O™ is a free cochain complex

then reversing arrows in Theorem 1 we obtain that x?(C*, d*) = x;(C*, d*) if and only
if frank of (d*(C?), C**1) is additive and equal to zero:

frank(d*(C*), C*T1) = 0.
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0 1
4. The value of the i-th Euler characteristic. Let (C(,),d*): C¥y <, Cly <4,

R, Cfy) be a sequence of free Hilbert V[G]-modules and bounded C[G]-map such

that d**! od® = 0. Such a sequence is called a Hilbert complex. The reduced cohomology
of the Hilbert complex (C(,), d") is the collection of L?(G)-modules ﬁ(g)( (s d7) =
Kerd’/Imd'~1.

Definition 5. Let

dt qr—1

(C*,d*>l CO d_[)) Cl LN cn

be a free cochain complex over Z|G). Then the following complex:

(@) QCr, 1dQ)d*
Z[G) Z[G)

dn71

d* e 4o
. g

d® , o d° e,
rec 1 e LG Qcn
Z[G] Z[G] 7[G)
of free Hilbert N |G)-modules is called a Hilbert complex generated by the Z|G)-cochain
complex (C*, d*).
Consider the ¢-th skeletons of these complexes

4t qi—1 .
LG e

(C* (i), d*(3)): €° L o

d® ;o d° d® ;o d
LX(G) Q) (i), W) d (i) |: L2(G) Q) =& LGt X
Z[G) Z[G] Z[G] Z[G)
d® i, di—2 L Wd® o diT? .
et e
7IG] Z[G]

Set Tt = C/d*=1(C*~1). It is clear that

Ii=L2(G) QR /R di-t | L2(G) Q) Ci-t
Z[G]

Z[Q) Z[G)

is the i-th Hilbert N [G]-module of the reduced cohomology of the i-th skeleton of the
Hilbert complex

L*(G) Q) C (i), 1d (X) d* (i)
Z[G] Z[G)
For a cochain complex (C*, d*) over Z[G] set
AéQ) (C*, d*) = MS(Fl) — dlmN[G] I

If (C*,d*) and (D*,0*) are two homotopy equivalent free cochain complexes over
the group ring Z[G] then

SéQ) (C*,d") = EZ) (D*,0%).
The numbers S, &) (C*, d*) are nonnegative for every 1.

ISSN 1027-3190. Ykp. mam. xypH., 2007, m.59, N° 4



528 V. V. SHARKO

0 1 n—1
Theorem 2. Let (C*,d*): C° Lot L, L Om be afree cochain complex

over Z|G). Then
Xi (O, d%) =
= (—1)") (~1) dimyge ( ( ®C* Id®d*)) g;)l(c* ).
=0
an— 1

0 1
Proof. Suppose that the cochain complex (C*, d*): C° Lot s
such that x;(C*, d*) = x¢(C*,d*). Consider the Hilbert complex

2GR, 1@ d
Z[G]

Z]G|
2G)®Cold®z_[>] ®Cl Z_[G>]d ”.Id®z[i])d" 1 ®Cm
Z[G] Z[G] Z[G]
and let

2(G) Q) C (i), 1 (R) d* (i)
Z[G)

Z[G]
4® d° d'
O o @cr
Z[G]
d® @)di_Q 12(G) ®Ci‘1 d® @di' ! ®Ci
Z[G] Z[G)
be its i-th skeleton.
It is clear from additivity of dim N[G] that
xi(CF,d*) =
= ()" (=1 dimye) | Hi o) | LH(G) Q) C*(i), W@ d* (i) | | =
§=0 Ate) Z[G]

— dimyg <H7,(2)< ®C* Id®d*(i)>)

Z[G)

—(=1)"" 12 1)7 dim (g (HJ(2)< G)Rc, Id®d*>)

Z[G]
Similarly to [4] one can check that
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dimN[G] H ® C*(4), Id ® d* (i) =

Z[G) Z[G)

= dimyg) | Ho) [ L@@ C™, W& d | | + 53 (C",d").
7| 7|
Theorem 2 is proved.
5. Topological applications. Let Y be a topological space endowed with some struc-
ture K = K(Y) of a finite CTV-complex. Denote by K; the i-th skeleton of K (Y"). Let
also n(c7) be the total number of j-cells of K (Y') and

Xi(K(Y)) = (=1)'x(K;) = (=1)" ) _(=1)’n(d”?).
j=0

Definition 6. The cellular i-th Euler characteristics of the space Y is the minimal
value of x;(K(Y")) taken over all cellular decomposition K(Y') of Y

X;(Y) = min {Xi(K(Y)) | K(Y) is a cellular decomposition of Y}.

Remark 3. Let M™ be a closed (possibly only topological) manifold having a han-
dle decomposition. Then similarly to the Definition 6 we can define the i-th handle Euler
characteristics x'(M™) of the manifold M" using handle decompositions M™.

Evidently, that if a closed manifold A" admits a handle decomposition, then contract-
ing each handle to its middle disk we obtain some cell decomposition of M ™. Therefore

X§(M™) < xiH(M™).

Note that for a closed simply-connected smooth manifold M"(n > 4) the following
equality holds true:

X§(M™) = xi (M™) = u(H;(M", Z )" IZ M™,Q)).

Now let K be a C'W-complex and p: K — K be the universal covering of K. Using
the map p we can lift the CW-complex structure of K to K. Then the fundamental group
7w = m(K) acts free on K also preserving its C'W-structure. This action turns each
chain group C;(K, Z) into a left module over the group ring Z[r]. It is evident that the
resulting chain module Ci(f( ,Z) is free. Moreover, lifting each i-cell of K to some cell
of K we obtain a finite set of generators of Ci(f( ,Z) over Z. As a result we get a free
chain complex over the ring Z[r]:

C.(K): Co(K,Z) <& (K, Z) <2 ... & (K, 7).
Definition 7. For a CW-complex K the following number x¢ (K) defined by
X{(K) = X4 (Cu(K)).
is called the i-th algebraic Euler characteristics of K.
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It is well known that any two chain complexes constructed from some cellular decom-
positions of the same topological space K have the same homotopy type. Therefore it
follows directly from the previous discussion or from [3, 8] that the numbers x¢(K) are
invariants of the homotopy type of the cell complex K.

It is clear that for a cell complex K we have that

Xi () < x5 (K).

For a smooth manifold M™ it is possible to define a cochain complex via Morse
functions (handle decomposition). The details can be found in [3]. It is proved in [8] that
the all chain complexes constructed from some Morse functions (handle decomposition)
on the manifold M™ have the same homotopy type. This means that the values of i-th
algebraic Euler characteristic x¢(M™) of M™ do not depend on the way of constructing
a chain complex.

If the fundamental group m = m1(K) of K is non-zero then for calculation of the
values of some x¢(Y) one can use L?-theory. To describe this let us recall the definition
of the integers §§2) (K) [4].

Let Ci(K,Z) = Homgg (C’i(f{, Z),Z[G)). and using involution in the ring Z[G] in-
troduced the structure of left Z[G]-module on C'( K, Z). Consider the following cochain
complex

C*(K) = C°(K,z) & o\ (K, z) 2 .. Y on(R, z).

Taking the tensor product of C*(K) and L2(G) as Z|G]-module we obtain the Hilbert
complex

. s ~ id® d° ~ id® d
Clyy(K): LA(G) Q) C°(K,z) “— LXG) R CHEK,z) — .
Z[x] Z[m]

ML oK, 7).

Z[~]

The L?(G)-module of i-th cohomology H{,) (K) of this Hilbert complex is called L*(G)-

module of i-th cohomology of the space K. Therefore the following Z[r]-module:
LK) = C'(K,2)/d™ (O (K. 7)),

can be interpreted as the i-th cohomology module with compact support of the i-th skeleton
of K and L?(G)-module

I'(K) =L*(G) Q) C'(K,2)/id @R d " [ L2(G) Q) ¢ (K, Z)
Z[x) Z[~]

is the i-th L?(G)-module of cohomology of the i-th skeleton of K.
Definition 8. For a cell complex K, set

Sl (K) = 8y (C*(K)) = p1s(T(K)) — dimpye (T (K)),

From our previous discussion or from [3, 4] it follows that the numbers :S'\Z'z) (K) are
invariants of the homotopy type of the cell complex K.
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Of course, for a smooth manifold M™ the values of the numbers §EQ) (M™) do not
depend on the method of constructing a chain complex.

Theorem 3. Let M", n > 6, be a closed smooth nonsimply connected manifold
with w1 (M™) = . Then

X§(M™) = xHM™) = p(r) — 1,
X5(M™) = x5 (M™),
XE(M™) = xI(M™) = xF(M™) =

— (=1)" ST (= 1)7 dimp ) (H, (M™) + 8731 (M)
j=0
for3 <i<n-—4
Proof. The condition n > 6 allows us to construct a handle decomposition of the
manifold M™ =|JH ]Z such that the free chain complex

(Curd): Co <20y 2 g,
over Z[r] corresponding this handle decomposition satisfies following conditions:

a) 1(Co) = 1;

b) pu(Ch) =1;

&) x5(M™) = X5(M");

d) frank(d;1+1(Ciy1),C;) = 0 and is additive for 3 < i < n — 4.

The proof follows from Theorems 1 and 2.

Remark 4. For a closed smooth nonsimply connected manifold M™, n > 6, the
numbers x§(M™), x2(M™), x§(M™), and x?(M™), 3 < i < n — 4, are invariants of
homotopy type of manifold.

6. Nonsingular Morse — Smale flows.

Definition 9. A smooth flow @, on smooth closed manifold M™ is called nonsingu-
lar Morse — Smale if

a) the chain-recurrent set R of p; consist of finite number of hyperbolic closed orbit;

b) the unstable manifold of any closed orbit has transversal intersection with the
stable manifold of any closed orbit.

A vector field X generating a nonsingular Morse — Smale flow is also called nonsin-
gular Morse—Smale. A result of K. Meyer (see [2]) says for each nonsingular Morse —
Smale vector field there exists a Lyapunov function f: M™ — R for X’: that is a function
satisfying the following conditions:

a) X(f), < 0for all y that are not contained in a closed orbit;

b) df, = 0if and only if y is a point on a closed orbit.

We will call f self-indexing if f(y) = A whenever y belongs to a closed orbit of
index A.

There are two types of closed orbit: twisted and untwisted. An untwisted closed
orbit o of index A of a nonsingular Morse — Smale vector field A" is said to be in the
standard form if there are local coordinates § € S, x1,...,¥1,...,Yn—x—1 On tubular
neighborhood of & such that

0 0

X A
= — 4. T — —Y— — e —Ypr]—————
"0 Ay ylayl Yn=x Y O0Yn-_x1
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on this neighborhood. If X} is a nonsingular Morse — Smale vector field on M ™ then there
is an arc in the space of smooth vector field on M", &;, 0 < ¢t < 1, such that &} is
Morse —Smale for all 0 < ¢ < 1 and closed orbits of X} coincide with the closed orbits
of Xy and are in the standard form [2].

In what follow we will consider nonsingular Morse — Smale vector fields having only
untwisted closed orbits.

Conversely, if a manifold M™ admits a round Morse function f: M"™ — R, then there
exists a nonsingular Morse — Smale vector field X on M ™, such that closed orbits of index
A of X coincide with singular circles of index A of the function f. By definition a function
f on M™ is said to be a round Morse function if its singular set K (f) consists of disjoint
circles and corank of the Hessian is equal to one: corank,¢ (1) f=1(see[3]).

It is known that under a small perturbation of a round Morse function f, each singular
circle of index A splits into two nondegenerate critical points of indexes A and A + 1.
And conversely, if g: M™ — R is a Morse function having two independent (see [3])
critical points x; and 2 of g of indexes A and A + 1 respectively, then these points can be
replaced by one singular circle of index \. Therefore, for the construction of nonsingular
Morse — Smale vector fields on a manifold M™ with zero Euler characteristics we may
use Morse functions.

Definition 10. The i-th Morse S*-number of a manifold M™ is the minimum num-
ber of closed orbits of index i taken over all nonsingular Morse —Smale vector fields on
M™ with untwisted closed orbits. This number will be denoted by M7 ' (M™).

Theorem 4. Let M", n > 6, be arbitrary closed smooth manifold with zero Euler
characteristic and with w1 (M™) = . Then the i-th Morse S*-number of the manifold
M™ is equal:

M§ (M) = MEL (M) =1,
M (M™) = M5, (M™) = () — 1,
M (M™) = p(x3(M™)) =

= SGHM™) +p | (=1)" ) _(=1) dimyie) (Hly) (M™))
§=0
for3 <i<n-—4
Proof. Let X be a nonsingular Morse — Smale vector field on M"™ such that all closed
orbits of X’ are untwisted. Let also f: M"™ — R be a round Morse function corresponding
to X and g: M™ — R be an ordered Morse function obtaned by small pertrubation of

f. Using g we can construct a handle decomposition of M "™ and from this decomposition
define the free chain complex over Z[r]:

(Cy,dy): Co <20y <& 4 .

It is clear that
X (M"™) = x§(Cy, dy) < xi(Cy, dy)

for 3 < i < n — 4. The condition n > 6 allows to construct a handle decomposition
M™ = UH} of M™ such that the free complex over Z[r]
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dn,

(Cyod,): Cp 20y &2 &y

corresponding to this handle decomposition satisfies the following conditions:

a) u(Co) =1;

b) pu(C1) = p(m) — 1

¢) frank(d;+1(Ciy1,C;) = 0 and is additive for 3 < i <n — 4.

Using diagram technique from [3] and Theorem 3 we can construct from this handle
decomposition M" = UH ; a round Morse function and therefore a nonsingular Morse —
Smale vector field X’ such that the numbers of untwisted closed orbits of X satisfy the
conditions of theorem. Homotopy invariance of the i-th Morse S!'-number of M" for
1=0,1,n—1,n—2and 3 <7 < n — 4 easily follows from previous discussions.

Theorem 4 is proved.

The calculation of M5 ' (M™) and Mﬁi 3(M™) seems to be a difficult problem.
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