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DISTRIBUTIONS OF ZEROS AND POLES OF N-POINT PADE APPROXIMANTS
TO COMPLEX-SYMMETRIC FUNCTIONS DEFINED AT COMPLEX POINTS

PO3IIOAIT HYJIB I ITOJIIOCIB N-TOYKOBUX HABJIMKEHD ITA/IE
KOMILJIEKCHO-CUMETPUYHNX ®YHKIIIN,
BU3HAYEHUX ¥ KOMINVIEKCHHUX TOYKAX

The knowledge of the location of zeros and poles Padé and N-point Padé approximations to a given function f provides
much valuable information about the function being studied. In general PAs reproduce the exact zeros and poles of
considered function, but, unfortunately, some spurious zeros and poles appear randomly. Then, it is clear that the control of
the position of poles and zeros becomes essential for applications of Padé approximation method. The numerical examples
included in the paper show how necessary for the convergence of PA is the knowledge of the position of their zeros and
poles. We relate our research of localization of poles and zeros of PA and NPA in the case of Stieltjes functions because
we are interested in the efficiency of numerical application of these approximations. These functions belong to the class of
complex-symmetric functions. The PA and NPA to the Stieltjes functions in different regions of the complex plane is also
analyzed. It is expected that the appropriate selection of the complex point for the definition of approximant can improve
it with respect to the traditional choice of { = 0. All considered cases are graphically illustrated. Some unique numerical
results presented in the paper, which are sufficiently regular should motivate the reader to reflect on them.

3HaHHS NPO MiCIE3HAXO/PKEHHS HYIIB 1 momrociB HaOmmwkenb [lane ta [V -toukoBux HabmmkeHb [lanme juist maHOl QyHK-
uii f nHamae myxe BaxuuBy iH(opmauito mogo miei ¢ykuii. B3arami, Habmmkenns [lage HOBTOPIOIOTH TOYHI HYIN Ta
nomocH (yHKII, ane, Ha Jkajb, MOXYTh 3 SIBISITUCH 1HIII HYJI Ta HOJIOCH. 3p0O3yMilo, 10 KOHTPOJIb MO3MLIT HYMIB 1 MO-
JIFOCIB € BaYKIIMBHUM VIS 3aCTOCYBaHb METOy HaOmimkeHs Ilane. YncinoBi npukiia iy, o HaBeeHi y poOoTi, AeMOHCTPYIOTh
HEOOXIHICTh 3HATH TO3MUINI0 HYJIB 1 MOJIOCIB I TOTO, 1100 rapaHTyBaTH 301KHICTH HaOmwkeHHs [lame. Hamii mocmi-
JOKEHHS MTO3MIIIT MOJTFOCIB 1 HyTiB HabmmkeHs [lane Ta [V -ToukoBux HaOmmxkeHb [lane BrukoHaHO miis QyHKIiH CTinbThECa,
OCKIJIbKU HAC IiKaBIATh ehEeKTUBHI YUCIIOBI 3aCTOCYBaHHs TakuX HaOmmkeHs. LI QyHKUiT HaekaTh 10 KIaCy KOMILIEKCHO-
cumerpruHuX GyHKuii. Takoxk gocmimpkeno HabmmkeHHs [lage ta [N -toukoBi HaOmmkenHs [lage ans Gynkuiid CTimbTheca
y pi3HHX perioHax KOMIUIEKCHOI IIomuHA. OUiKyeThesl, I10 MPaBWIBHUHN BUOIp KOMIUICKCHOI TOYKHM IS BU3HAYECHHS Ha-
OJIYKEHHS MOXKE TIOKPALHTH 11 BITHOCHO cTanxapTHoro Bubopy ¢ = 0. s BCiX po3NISHYTUX BUIAAKIB HaJaHO BiANIOBIAHI
imroctpaii. Jleski HaBeneHi y cTaTTi yHIKaIbHI YACIIOBI pE3yNIBTaTH € JOCTaTHHO THIIOBUMH i MIOBHHHI CIIOHYKAaTH YUTa4a
3aMHCIIUTUCS HaJl HAMH.

1. Introduction. In the paper published in 1976 by Chisholm et al. [2], the authors claimed that all
poles and zeros of diagonal Padé approximants (PAs) [n/n] to In(1 — z) developed at the complex
point ¢ interlace on the cut ¢ + t(1 — (), t €|1, 0o[. Klarsfeld remarked in 1981 [7] that the zeros
do not follow this rule. The study of this problem was the starting motivation of two Ph.D. theses
directed by the second author [5, 8]. The primary theoretical results obtained from these theses were
published in [6]. However, some interesting numerical observations remain unexplained. Some of
these open problems are presented in this paper.

The paper is organized as follows. In Section 2, we recall the basic terminology related to PAs,
complex-symmetric functions and Stieltjes functions. We also summarize the classical results of
the location of the zeros and poles of PAs to the Stieltjes functions. In Section 3, we discuss the
distribution of the zeros and poles of PAs in a few cases of the development points of PAs to In(1—z)

1 . . . . .
and ——In(1 — z). Section 4 contains a theorem which describes the location of the zeros and poles
¥4
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of PAs at complex and complex conjugate points. Section 5 provides the appropriate theorems to
N-point Padé approximants (NPAs) of the complex-symmetric functions. In Section 6, we describe
numerical observations related to the specific location of zeros and poles of PAs. The problem of
convergence of PA is also considered. Finally, the conclusion contains some concluding remarks. At
the end of the paper, there is an Appendix. It includes the extra material on the problems discussed in
the main party of the manuscript. The paper is illustrated with various numerical examples, mainly
in the form of graphs, to introduce the reader to the problems discussed in the relevant sections.

2. PA, complex-symmetric functions and Stieltjes functions. Let f be an analytic function

having at the points (1, ...,({xy € C the power expansions:
pi—1
Ci(z) = di(z— ) + O((z - gi)pi) i=1,...,N.
k=0
Then the NPA [m/n] to f at the points (i,...,{n € C noted [11]

Pn(z)  ao+aiz+...+anz™
Qn(2) 1+biz+...+byz"

[m/n]té e (2) =

where
m4+n+l=p=pi+p2+...+pn

is defined by

£(2) — [m/n](2) :o((z—gi)m), i=1,2,...,N. (1)

We always suppose that it exists and then (1) leads to

Qn(2)f(2) — Pn(z) = O((z - g)m), i=1,2,...,N,

representing m + n + 1 linear equations for unknowns ag,ai,...,am,b1,...,b,. If N = 1 this
reduces to the classical one-point PA. A compact formula giving this PA at z = 0 is as follows:
2
C(m) (Z) ZC(m—l) (Z) z C’(m—2) (Z) s ZnC(m—n) (Z)
Cm+1 Cm Cm—1 cee Cm—n+1
Cm+4-2 Cm+1 Cm, cee Cm—n+2
Pm (Z) _ Cm+n Cm+n—1 Cm+4n—2 o Cm
Qn(2) 1 z 22 cee 20 ’
Cm+1 Cm Cm—1 o Cm—n+1
Cm+2 Cm+1 Cm .- Cm—n+2
Cm+n Cm+n—1 Cm+n—2 oo Cm
where

k .

20 k>0

Cly(2) = Za‘:o AR
0 otherwise.
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1036 R. JEDYNAK, J. GILEWICZ

The doubly infinite array of PA is called Padé table

0 1 2
[0/0] | [0/1] | [0/2]
(/0] | [t/ | [1/2]
2/0] | [2/1 | [2/2]

N —|o| 3

The first column in this table contains the truncated power series. In this paper, we are concerned
by PA to the Stieltjes functions

1/R
= [ g0 R20, zeC\ Rl ©)
0

which belong to the largest class of complex-symmetric functions, i.e., functions satisfying the con-
dition

fZ) = f(2). 3)

In particular, if ¢ and { are two complex conjugate points, then
[e.e] [e.e] .
J)=) ealz=Q" and  f(z) =) ealz = Q)"
n=0 n=0

Classical results [3]:
1. All poles and zeros of PA [n — 1/n] and [n/n] to the Stieltjes functions (2) at z = 0 interlace
on the cut |R, co[. This property is illustrated in Fig. 1. It is due to a fact that the numerators and

denominators of these PA are related to the orthogonal polynomials P and Q by P, (z) = 2" P, (1/x)
and Q,(z) = 2"Qn(1/z), respectively. The zeros of the orthogonal polynomials are located inside
of the support of the measure defining those polynomials.

Im(2) Im(2)

7/8 zeros [8/8] O

;Zaeo;g: %7/3119 poles [8/8] X

point of development <7 point of development 7
0.5 0.5

0 BOS 0 TR,
~05 -0.5
-1 -1

1 10 100 Re(2) 1 10 100 Re(2)
(@) (b)

. o 1
Fig. 1. Distributions of zeros and poles of (¢) PA [n — 1/n] and (b) PA [n/n] for n = 8 to —gln (1—2)atz=0

which are plotted on a semi-logarithmic scale. They interlace on the cut | R, oof.
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2. The sequences of these diagonal and subdiagonal PA converge uniformly to the Stieltjes
function in C[R, oo.
3. Let us consider the set {[nA/n]} of PA on the sloping diagonal A. Fig.2 (@) presents the

1
distributions of zeros [nA/n| to the Stieltjes function <—ln(1 — z) | for three cases of A\ =
z

= {10,100, 1000}. We observe that with the increase of this parameter those points tend to the circle
of convergence. We also examine the impact of n when the parameter A is set. Fig.2 (b) shows the
distributions of zeros for A\ = 4 and n = {2,4,8}. They look very similar to each other. A\ = oo
corresponds to the PA [n/0] and A = 1 to the diagonal PA [n/n]. All zeros of PA [n/0] are located
in the vicinity of the circle of convergence of the Taylor series of the Stieltjes function. This property
is documented in Fig.2 (c¢). If A (1 < A < o0) decreases to 1 (A — 1), the zeros of PA remove from
the circle of convergence increasing the region of convergence D) of PA limited by the position of
zeros (see Fig.1). The exceeding zeros, i.e., nA — n zeros which are not located on the cut, put
away, surrounding the cut, and (or) go to infinity. This problem was first studied by Baker [1], but

-1 -1
his formula (16.10) is false: o1 must be replaced by )\T which changes the result radically.

The correct limits of these regions were given in [3, p. 267].

Im(z) Im(2) Im(2)

zer0s [10/1] = zeros(@2] W T 170] ©
zeros [100A] o zeros [16/4] O o
. . ] zeros [8/0] @ .
2 zeros [1000/1] 4 o zeros [32/8] point of development Vg

o O point of development
point of development i P o

) " 2 ¢]
1 |
- 05 o
1 o
osas 0
1 o
o - o -05|
- L

o

!
®

(a) (b) (©)

Fig. 2. Distributions of zeros of (a) PA [An/n] for A = {10,100, 1000} to —éln (1 —2) at z =0, (b) PA [4n/n]

for n = {2,4,8} to —lln(l —z) at z =0, and (¢) PA [n/0] for n = {7,8} to —lln(l —z)atz=0.
z z

These results show how necessary for the convergence of PA is the knowledge of the position
of their zeros and poles. In general PAs reproduce the exact zeros and poles of considered function,
but, unfortunately, some spurious zeros and poles appear randomly. Then it is clear that the control
of the position of poles and zeros becomes essential for applications of PA method. Some beautiful
theorems of convergence of PA outside the set of measure zero or of capacity zero are inapplicable
in practice because these sets are not localizing. Since we are interested in the efficiency of the
numerical application of PA, we relate here our research of localization of poles and zeros of PA
in the case of Stieltjes functions. We also analyze the quality of PA to the Stieltjes functions in
different regions of the complex plane expecting that the appropriate choice of the complex point for
the definition of PA can improve it with respect of the traditional choice of { = 0.

At the end of this section, we shortly present the example of using the method mentioned before
of location zeros of PA to the inverse Langevin function which is a complex-symmetric one, but it
is not related to the Stieltjes function. It is an essential function because it is extensively used in
magnetism and polymer physics. In papers [12 —14], we derived different approximation formulas to
that function. We evaluated the radius of the convergence of the Taylor series of the inverse Langevin
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1038 R. JEDYNAK, J. GILEWICZ

function by the procedure by Mercer and Roberts and obtained value » = 0.904 for 1500 nonzero
coefficients of the Taylor series expansion. Below we present the truncated Taylor series expansion
of this function

923  297z°  1539z7
—1 _ o 9
L7 (z) =3z + et et g +0(2”).

It can be transformed to more convenient form for numerical computations

1—22 222 62* 1828
= - -1 =
f(@) £ @ 5 175 875

3T
Fig.3 presents the distributions of zeros of PA [4n/n]| to those mentioned before functions for
n = {25,50,75}. Both functions have the same radius of convergence.

+0 (:Ug) .

Im(2) Im(2)

zeros [100/25] - zeros [100/25] «
zeros [200/50] - | eaeatarac,, zeros [200/50]

15 SV et 428108 [300/75] T s Zeros [300/75]
: ;,..f"' C'Om(_ggrgence circle * : convefgence circle -

B "

1 o % 1

22 s 1 65 o0 05 1 15 Re(? 2 15 1 05 0 05 1 15 Re(
(a) (b)
Fig. 3. Distributions of zeros of PA [4n/n] for n = {25,50,75} to (a) the inverse Langevin function £7* (z) and
(b) modified one f(z) = + gj £ (z) at ¢ = 0.
3. Zeros and poles of PAs to In(1 — z) and _ln(lz—z). The first function studied in [2]

is related to the Stieltjes function

1
f(z):/ dx :—lln(l—z)
0

1—2xz z

defined in the cut-plane C \ [1,00[. The zeros and poles of PA defined by a power series of f
expanded at the real points interlace on the cut [1,00[. One can question what happens if PA is
defined at the complex point (? Klarsfeld remarked [7] that the Chisholm result [2] is wrong and
showed that only the poles of PA to In(1 — z) follow the cut { + ¢(1 — (), t > 1, as mentioned in
Introduction, but not the zeros. This result was generalized in [6] to all m > n. For the convenience
let us introduce the following simplified notation for the cut:

C+i(R—-¢), t=1,  [R,00[(¢)

directed by the straight line joining the point of development of f: z = ( with the branch point
z = R. Let us consider the following power expansions:
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if ( =0, then

f(z)=In(1-2)= chz” = — lZ”,

n=0 n=1
if ¢ # 0, then
f<z>=1n<1—<>+1n(1—“)=ic*<z—<>"=1n<1—o—i1(Z‘g)" @
17( n:On n:ln 17C ’
where
¢y =In(1-), c;:(liinc)n, n>1.

Theorem 3.1 [6]. Let [m/n] and [m/n]*, m > n, be the PAs of the function f(z) =1n (1 — z)
developed at the points z = 0 and z= (, respectively. If z, k = 1,2,...,n, denotes a pole of
[m/n], then

2 =C+2(1—0)
denotes the pole of [m/n]*. In other words, the poles of [m/n]* locate on the cut

[1,00[(¢), ¢ + (1 = (),

The zeros of [m/n|* locate out of this line.
One can observe that the form (4) is particular for the function In. Other Stieltjes functions do

not follow this rule, i.e., if f(z) = Zanz", then f(z) # f(¢) + Zan (i:g) for ¢ # 0.

(i) Zeros and poles of PA [n —1/n] and [n/n] to In (1 — z). This function has an exceptional
property which leads to the Theorem 3.1 giving the location of poles. As shown in Fig. 4 the zeros
are located left of the straight line of poles, approximately in the vicinity of an oblique straight line,
except one zero. In the case m > n, Fig.4(b) and (c), the poles lie on the line joining the point of
development of f: z = ( with the branch point z = 1. When m < n, Fig.4 (a), the poles deviate
slightly from that line, except one pole (in this example zg = 101.244 + 309.316¢), which is located
quite distant from the mentioned line.

t>1. Q)

Im(2) Im(z) Im(2)
zeros [9/8] © %
poles [978] X o oK

oles
point of development

o .
poles [778] x o o%
reloy

point of development o i point of development ¥

u
-
=2
o
gl e

-20
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-40

(@)

1
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0

(b)
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1

15 Re(2)

(©)
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1 15 Re(

Fig. 4. Distributions of zeros and poles of (a) PA [n — 1/n], (b) PA [n/n] and (¢) PA [n + 1/n] to In(1 — 2) at
¢ =1+ for n = 8. Each line connects the point of development of f : z = ¢ with the branch point z = 1.
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Im(2) Im(2)
Y- 7T AL 4
0 o) e 0 O T
[ 1 - o -
o] - _ L
_- -7 P FEPPEN
_2'__ e TH ) 2 - i -
zeros [7/8]¢=U/6 © - zeros [8/8] p=/6 ©
: 2 =t
.- = .- =
-4 9=5n/12 -4 ¢i’5n/12
. H=/2 p=n/2
point of development v point of development v
-6 -6
-8 -8
-10 -10
-3 -2 -1 0 1 2 Re(2) -3 -2 -1 0 1 2 Re(2)
(a) (b)

Fig. 5. Distributions of zeros of (a) PA [n — 1/n] and (b) PA [n/n] to In(1 — z) at { = 1 4 €*® for n = 8 and
¢ ={n/6,m/4,7/3,57/12,7/2}. Each line connects the point of development of f : z = ¢ with the branch

point z = 1.
Im(2) Im(2)
v AL
0 0
T o -2
[t - T
- ..
- -- .-©
2f - abn 2 -
b - - ..
oles [7/8] p=/6 © Pt oles [8/8] ¢=n/6 o
.- P : ](1?:7(/4 u - P q?=n/4 ]
4l ¢=m/3 4l-- o=n/3
¢=51/12 $=57/12
o=n/2 =n/2
point of development v point of development v
-6 -6
-8 -8
-10 -10
-3 -2 -1 0 1 2 Re(z) -3 -2 -1 0 1 2 Re(2)
(a) (b)

Fig. 6. Distributions of poles of (a) PA [n — 1/n] and (b) PA [n/n] to In(1 — 2) at { = 1 + € for n = 8 and
¢ ={n/6,m/4,7/3,57/12,7/2}. Each line connects the point of development of f : z = ¢ with the branch
point z = 1.

This problem was further examined in more detail and included the following cases: a few
equidistant points on the circle of radius 1 around the ramification point, namely ¢ = 1 + ¢’ and
¢ = {n/6,7/4,7/3,57/12,7/2}, and on the other circle ¢ = 1 + i + ¢** and the same set of ¢
as previous, to analyse the evolution of the location of zeros. The first case is illustrated in Figs. 5
(zeros) and 6 (poles). Figs.7 (zeros) and 8 (poles) present the second case for the other circle. The
figures mentioned before confirm the same behavior of the location of zeros and poles as in Fig. 4.
In all cases for [n — 1/n| one zero lies near z = 0 and other locate on the straight line which is ro-
tated by a certain angle with reference to a line which connects the point of development of f:
z = ( with the branch point z = 1. From Fig.7 one can conclude that this angle is about
/12 for those points of development presented in this graph. All poles for [n/n]| lie on the
straight line which connects the point of development of f: z = { with the branch point z = 1.
Almost all poles for [n — 1/n] lie near the straight line which connects the point of development of
f: z = with the branch point z = 1, without one pole which locates quite distant from this line.
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Fig. 7. Distributions of zeros of (a) PA [n — 1/n] and (b) PA [n/n] to In(1 — 2) at ¢ = 14+ + €*® for n = 8 and
¢ ={n/6,m/4,7/3,57/12,7/2}. Each line connects the point of development of f : z = ¢ with the branch

point z = 1.
Im(2) Im(2)
VVyv,
0 0
&
L e
L-ou, o
-2 - g -2 e
o 4 . _ e L)
e poles [7/8] ¢=/6 © PR oles [8/8] ¢ =x/6
i = s =
4 - i o -4 T o
.- . =n/2 o I $=n/2
. ‘ point of development ¥
-6 -6 ‘
b
-8 . l’ -8
-10 -10
-3 -2 -1 0 1 2 Re(2) -3 -2 -1 0 1 2 Re(2)
(@) (b)

Fig. 8. Distributions of poles of (a) PA [n — 1/n] and (b) PA [n/n] to In(1 — z) at ¢ = 1414 + €'® for n = 8 and
¢ ={n/6,m/4,7/3,57/12,7/2}. Each line connects the point of development of f : z = ¢ with the branch
point z = 1.

1
(ii) Several progressive deviations from [1, 0o[({) lines of zeros and poles of PA to ——1n (1 —
z

— z). The zeros of diagonal and subdiagonal PA to f(z) = —%ln (1—2) computed at ¢ = 0 interlace
on the cut [1,00[(0) (Fig. 9).

The zeros of diagonal and subdiagonal PA to f computed at the points 0.2¢,...,10¢ locate on
the under sides of [1, 00[(¢) consecutive lines (or cuts). The poles of [n/n]| and [n — 1/n] (n < 8)
locate on the upper sides of these lines. The moving zeros and poles deviate more and more from
[1,00[(¢) with || forming the shape of the form A. When |¢| — 0 one receives the distribution of
poles and zeros, which is demonstrated in Fig. 9. From Fig. 10 one concludes that for small |(| such
as two the zeros and poles of diagonal and subdiagonal PA to f locate on [1, 0o[(() line.

The location of the zeros of [m/n|* remains an open problem. However, the following remarks
can maybe unlock this question. The particular case of a theorem given in [2, p.217] says that if
[n/n]s is a PA of some function f and « a constant, then

[n/nlf + o= [n/n]f1a-
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Im(2) Im(2)
zeros [8/8] O
zeros {;;g]]g . poles [8/8] X
point of developmenl v point of development 7
0.5 0.5
0 BOO, 0 BROOE:
-05 -0.5
-1 -1
1 10 100 Re(2) 1 10 100 Re(2)
(@) (b)

Fig. 9. Distributions of zeros and poles of (¢) PA [n — 1/n] and (b) PA [n/n] to f(z) = —iln (1—2)at¢ =0 for

n = 8 which are plotted on a semi logarithmic scale. They interlace on the cut [1, co[(0).

Im(2) Im(2)
4 ¥
\ \
0 445?* == 0 +
s st g -l R
# o L g“ + -e
o °
.
-20 -20 -
') X
\ % \
' zelios ;;g t_g % ] ' zeros [8/8] k=0.2 ©
0 e - e bl |
poles [7/8] k=10 x e poles [8/8] k=10 x
point of development ¢ \ point of development v
point of development v X point of development v
-60 -60
L]
-80 ox -80
~100 -100
0 5 10 15 20 25 30 35 Re(2) 0 5 10 15 20 25 30 35 Re(2)
(a) (b)

Fig. 10. Distributions of zeros and poles of (a) PA [n — 1/n] and (b) PA [n/n] to —éln(l — z) at ¢ = ki for

k = {0.2,10} and n = 8. Each line connects the point of development of f : z = { with the branch point
z=1.

It readily leads to the following theorem, where all notations are the same as in Theorem 3.1
except ¢ which is replaced by an arbitrary constant a.

1—
Theorem 3.2. Let g(z) =In(l—2)—In(1—-¢) =1In <1§> , then

f%(i_c> mﬁ#n(z_g>+.u+pn(z_c>n
—¢ — 1-¢
n/nly(2) = — =& = = Py
afizg) (i) ()
1-¢ - 1-¢
and all zeros and poles of this PA interlace on the cut [1,00[(C) (5). If a # 0, then
¢ (726
) nli=e) ml)
NESY
w(i=) (=)
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If o = 0, then the poles and also the zeros simulate the cut [1,00[(¢). The problem consists in
analyzing the behavior of the zeros of P,; as function of complex «, in particular with o = ¢ =
= In (1 — ¢) and, if possible, to bound the position of all zeros. One observes that the zeros of PA of

In (1 — 2z) correspond to the zeros of P =1In (1 — ()@, (i_g) + P <Z£ : g) :

4. Zeros and poles of PAs at complex and complex conjugate points. In this section

[m/n]f(z — ¢) and [m/n]}(z — () denote the PAs of a complex-symmetric function f at the point
¢ and its complex conjugate ¢, respectively.

*

P

Theorem 4.1. Let [m/n] = Q—m and [m/n]* = QT be PAs of a complex-symmetric function f
_ n n

at ¢ and (. Then the zeros and the poles of [m/n] are complex conjugate of the corresponding zeros

and poles of [m/n|*.

Proof. Eq.(3) gives

(o.9) o0
)= -0 =) ak=-q), (6)
i=0 i=0
Qu=14q(z =)+ ... agu(z— Q" and, due t0 (6), Q) = L+ i(z — ) + ... + Gulz — Q)"
Then the zeros of @)} are the complex conjugate of those of (), . The same arguments are used for
P,, and P}, which completes the proof.
This fact is documented in Fig. 11.

Im(2) Im(z)
10
15 zeros [7/8] © zeros [8/8] ©
lees 7/8] x . poles [8/8] x X
point of development v point of development v
zeros [7/8] © © zeros [8/8] ©
10 oles [7/8] x poles [8/8] X o
point of development v point of development ¥
5 X

-5

(a) (b)

Fig. 11. Distributions of zeros and poles of (¢) PA [n—1/n] and (b)) PA [n/n]toIn(1—2) at( =1+iand { =1—i
for n = 8. The zeros and the poles of [m/n] are complex conjugate of the corresponding zeros and poles of
[m/n]".

5. NPAs of the complex-symmetric functions. The following theorem is the consequence of
Theorem 3.1.
Theorem 5.1 [6]. Let f be a complex-symmetric function, then the zeros and poles of 2-point

PA [m/ n]lc% of f are complex conjugate of the zeros and poles of [m/ n]lg%, where | and I' are the
arbitrary integers satisfying the condition | +1' = m +n + 1.
Fig. 12 illustrates the Theorem 5.1. It includes 3 cases of different distribution of pieces of

information. We observe that when the amount of information approaching the symmetrical form
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then zeros and poles tend to the real axis. Fig. 12 (¢) shows the situation when the symmetric state is
achieved. Then we observe that all zeros and poles interlace on the real cut [1, 0o[(0).

Im(2) Im(2)

° zeros [7/8] ©
poles [7/8] % 4
point of deve\opmem v
s[7/8] ©
o\es [7/8] x
point o development

zor0s 78] o

les [7/8] %

point of developmenl v

0s [7/8] ©

poles 7/6]
point of development v
X

Im(2)

zeros [7/8] o
poles [7/8] x
point of development &

-2 2 4 6 8 10 12

(@)

Re(2) -2

(b)

2 4 6 8 10 12

(©)

Re(2)

Fig. 12. Distributions of zeros and poles of (a) [7/8]3 2/ _o; (rising branch) and [7/8]{}2;5 2, NPA, (b)

[7/8]I+229‘172i and [7/8]?4»21?1722‘7 (0 [7/8ﬁ+2§172i to

1
—gln (1-2).

Fig. 13 shows distributions of zeros and poles for two different development points (a) { =
=14 0.2¢ and (b) ¢ = 1 + ¢. They have the similar distribution as previous ones.

Im(2) Im(2)
zeros [7/8] o zeros [7/8] o
poles [7/8] x poles [7/8] x
4 X pomtofdevelopmen v 4 point of development
zeros [7/8] © zeros [7/8] ©
poles [7/8] % X poles [7/8] %
pointofdevelopmen v ° point of development ¥
2 o 2
v
X X
0 m: 0 ng
% X
v
-2 o -2 °
X
-4 x -4
-2 0 2 4 6 8 10 12 Re(2) -2 0 2 4 6 8 10 12 Re(2)

(a) (b)

Fig. 13. Distributions of zeros and poles of (a) [7/8]?+0121¢,170.2¢ (rising branch) and [7/8]1%o.9;1_0.2: NPA,
1
(®) [7/8]34515; and [7/8]11:1%; to —fln(l — 2).

Then the Zeros and poles of NPA
gl

CCC?

Corollary5.1 [6]. Let f be a complex-symmetric function.

[m/n]?lg%l% complex conjugate of the zeros and poles of [m/n ]
1--CrC1.--Ck

o4 ...+l ++h+ .+l =m+n+1.
Theorem 5.2 [6]. Let f be a complex-symmetric function. Then all coefficients of NPA

[m/n ] l&lél of f, where 2(l1 + 1o+ ...+ 1) = m+n+1, are real.

We performed numerous numerical computations whose results lead to the following theorem.

Theorem 53. Let f be a complex-symmetric function. Then all the zeros and poles of NPAs
[n—1/n ] lc’“lél and [n/n—l]Cl lc’“lél of f, where 2(l1 +la+ ...+ 1) = m+n+1, are
real and znterlace on the cut of the functkzon

The general proof of this theorem remains an open problem. We are convinced that the only
candidates between NPAs, whose all the zeros and poles are real, belong to approximants with real
coefficients. It means that they must satisfy Theorem 5.2. We proved it in the simplest form NPAs

[1/2] and [2/1], which is presented in the next example. As shown despite the apparent simplicity of

where 11 +
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the chosen approximants, one gets very complicated mathematical formulas on the coefficients and
then poles and zeros.

Theorem 5.3 is illustrated numerically in Table 1. Only NPAs [3/4] and [4/3] have all the zeros
and poles real. Table 2 confirms that all NPAs from Table 1 have real coefficients.

1
Table 1. Distributions of zeros and poles of NPA [m/n]}, 5,4 _o; to —=In (1 — z2)
: z

[1/6] [2/5] [3/4]
Zeros poles Zeros poles Zeros poles
1.92359  -4.10447 + 4.57707: | 1.61757 -7.07786 — 20.26247 | 1.52964 1.22367
-4.10447 - 4.57707i | 3.46555 —-7.07786 + 20.26247 | 3.03277 2.11415
1.36082 1.25579 8.96214 4.18872
2.8988 2.27595 16.0223
3.4331 + 5.92542i 5.09943
3.4331 - 5.92542¢

[4/3] [5/2] [6/1]

Zeros poles Zeros poles Zeros poles
—-35.5846 1.2437 -7.9627 1.3174 —2.4522 1.5287
1.5843 2.2143 0.5564 + 8.9102¢ 2.6162 —0.7666 — 4.0899:
3.2911 4.7095 0.5564 - 8.91021 —0.7666 + 4.0899¢
15.1603 1.793 2.5359

4.8891 2.758 — 3.8783:

2.758 + 3.87831

1
Table 2. NPA [m/nl]}, 54 5 to —=In (1 — z)
: z

11/6] = 0.9795 — 0.5092z
0.00014326 — 0.000417125 + 0.00379724 + 0.00144223 + 0.19322 — 1.009z + 1
9/5] = 0.17752% — 0.90262 + 0.9954
—0.00014892% — 0.000822824 — 0.0535223 + 0.550322 — 1.401z + 1
3/4] = —0.0239923 + O.324§z2 —1.09252z 4+ 0.9976
0.00575924 — 0.135623 + 0.789922 — 1.5913z + 1
—0.00035422* — 0.0055072% + 0.224522 — 0.9694z + 0.9964

14/8) = —0.0770923 + 0.62972% — 146792 + 1
/2] = Q00017527 + 0.000020755" 1 0.0062" +0.08929% — 064272 + 0.9878
0.29012% — 114122 + 1
/1) — ~00003TT=C +0.0015332" — 0.0096519z4 g 25.211457;;3 — 0.0759022 — 0.13012 + 0.9194
— U. z

Example of analytical solution of distribution of zeros and poles of NPAs [1/ 2]2 % and [2/ 1]2 %

1
to ——In (1 — z). Next we find exact solutions for the locations of zeros and poles in the case
z

In(1 -
of NPA [1/2]2%(2) to the Stieltjes function f(z) = 1 Cl))
2

follows:

. The problem can be expressed as

+ a1z
1/9122(5) = M0 T ME
[ / ]CC(Z) 1—|—b12’+b222
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The Taylor series expansion to the Stieltjes function f developed in the arbitrary point ¢ is given by
the formula

1) =20 —q -0+ 0G0 ™

In(1—
Theorem 5.4. Let f(z) = -2 and ¢y, (z) be coefficients of the the Taylor series expan-
2

sion to the Stieltjes function f(z). Then

nk|

]{1—2 kyn—k+1°

n!(=1)" (1l — 2)
C"(Z) = ontl + Z
k=1

Proof. We use the general Leibniz rule which states that if f and ¢ are n-times differentiable
functions, then the product fg is also n-times differentiable and its nth derivative is given by

P =3 ()10 @) = 3 () 710H9 @) + ntf 00,

k=0 k=1

n n!
_ . . . (0) _ (0) _
where (k:) Hin =Bl is the binomial coefficient and f\)(x) = f(x), ¢'")(x) = g(z).

The following formulas for the nth derivatives of both functions f(z) = x~! and g(z) =
= —1In(1 — z) are valid

F(z) = (~1)"nle™"1,
dM@)=m-D1-2)", n>1,
g(o)(x) =—In(l —=z).

Using the general Leibniz rule and mentioned before formulas for the nth derivatives of functions f

In(1—
and g, we get a general formula for the nth derivative of Stieltjes function —M:
z
In(1—2)\™
(™) @ = 0w -
n
=nl(=1)"z " (= In(1 —2)) + Z < > (=) F(n— k) 1 — ) 7F =
~nl(=1)"In(l — ) 1) =kn!
- pntl Zk 1—.73 kpn—k+1"
In(1— 1 1 In(1—
Using Theorem 5.4, one can readily obtain ¢y = —M and c; = Z 1-¢ — n c O) ,

which should be inserted in Eq. (7). Then the problem of 2-point Padé to f(z) (Eq. (7)) can be formu-
late by the use of the following matrix representation of the linear system for unknown coefficients
ao, ai, by, by:
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1 ¢ —coC —co¢? ap co
1 < —cof —co¢? ar| |co 2
0 1 —co—al —2cl—al®| |b| |al’ ®
0 1 —co—ci( —2coC—ci1C?] b2 C1,

It can be expressed more conveniently for the further computation using the simple transformation
of rows of the matrix such as adding or subtraction. For simplification one can use the formulas
like ¢ + ¢ = 2Re (¢), ¢ — ¢ = 2Im (¢). Finally, we obtain the following matrix equation (Eq. (9))
whose elements are real. One can note that such a transformation can be performed for any matrix
which results from Theorem 5.2. It is evident that unknown coefficients which are found from this
equation must also be real. It leads to the fact that zero is always real (solution of the linear equation
ag + a1z = 0) but the poles do not have to be real. This fact will be revisited after finding the
coefficients by and bs:

1 Re (C) —Re (CoC) —Re (C(]C2) aq Re (Co)
0 Im(Q) —Im (¢oQ) —Im (co¢?) ar|  |Im(co) ©)
0 1 —Re(cg+c1¢)  —Re(2coC+c1¢?)| || |Re(cr)
0 0 —Im (co+c1¢)  —Im (2c0¢ + e1¢?)] |bo Im (c1)

The general solution for unknown coefficients ag, a1, b1, bo is given in Appendix A. We provide
the exact formulas for zero and poles. Because they are very complicated, we also present the
solution for the particular case of ( = 1 + iy, whose behavior can reflect the general situation. It is
easier to analyse the distribution of the zero and poles in the two-dimensional case than spatial (3D)
one. To summarize the obtained results, we show them below in the form of graphs (Fig. 14). They
clearly illustrate the fact that poles are real and interlace the zero on the real cut [1, 00[(0).

The same procedure was applied to NPA [2/ 1]2% For simplicity, we only provide a solution in

the form of graphs. Fig. 15 confirms that all the zetos and poles are real and interlace on the real
axis.

25 poles z —
poles z, —
zeros z, - - -
-
20 -
~
-~
-~
~
value 15 -
30} e K polez, g
201 4 é S pole 2, -
10 | y ,l ::"o ’ 1 - g
0 L ..‘.‘. y . IQ _ 7~
-10 - 5y P
5 7
7
B N N S
5 L-= - - - =
Re(z) O % 2 Z 6 8 y=Im(2)
(a) (b)
Fig. 14. Distribution of zeros and poles for (a) spatial case [1/2]2,,3 . i NPA to —=In (1 — z), (b) two-dimensional
z

case [1/2]3,,71_,: NPA for continuous values of y = Im (2).
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ok ) L zeroz, 10 b I
£ 7 -
50t 7 Im(2) B zerozo ~
-100 I polezy 20 < -
L0 -30 T~ -
5 ~
~
0 Swl -40 =~ ~
5L
Re(2) - 2 4 6 8 y=Im(2)
(@) (b)

1
Fig. 15. Distribution of zeros and poles for (a) spatial case [2/ 1]fj+y2i’x,yi NPA to —;1n (1—z), (b) two-dimensional

case [2/1]3,,71_,: NPA for continuous values of y = Im(z).

6. Characteristic location of zeros and poles and convergence of PA: numerical observa-
tions. To appreciate the speed of convergence of diagonal PA [n/n] to Sieltjes functions f in
different directions starting from the point ¢ of development of f one analyze [8] the so-called
equierror curves which border the regions defined by

De = z:|f(2) = [n/nl¢(2)| < e

for different . It was remarked that for the points ¢ equidistant with respect to the ramification point
R (here R = 1) the convergence is a little better for ( real. More, the convergence is, in general,
better going from R to oo, and worse in the opposite direction from ¢ to R. The non-rational Stieltjes
functions f defined by (2) in a complex cut plane have no zeros and no poles. The zeros and poles
of diagonal and subdiagonal PA to f defined at z = 0 localize the cut on [R, co]. If the point of
development ¢ is complex, the cut can be z(t) = ¢ + t(R — {),t > 1; in the following we note
this line [R, 0o[(¢). If we observe the concentration of poles and zeros of PA at the vicinity of some
lines as [R, co[, we have a natural tendency to interpret this as a localization of the cut. However an
essential problem of approximation concerns the domain of convergence, and the convergence of PA
to Stieltjes functions depends on the position of poles and zeros, the choice of the cut being secondary.
Observing the following numerical results, we remark specific order, the proximity of zeros and (or)

poles to certain lines. Visibly these localizations follow some rules. It is to be discovered. In this

In (1 —
paper, we present the results relative to the function In (1 — z), to the Stieltjes function _n=-2)

z
. . V1 -1
and to its inverted function. In fact, other Stieltjes functions as 17T > or tz present
—Z z
similar properties (Fig. 16).
In(1— 2)

(i) Exceeding zeros and poles of 6-point PA to f(z) = — . The zeros of truncated
Mclaurin series are located on the convergence circle (Fig. 17).

The two following figures (Fig. 18 (a), (b)) show that the exceeding zeros of [12/3], [22/3], [30/3]
and the exceeding poles of [3/12], [3/22], [3/30], progress to the convergence circle. The six consid-
ered points of development are: ¢, —i,1 + 4,1 — ¢, —1 4 24, —1 — 24.
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Im(z) Im(2)
3 zeros [5/6] o 3 zeros [5/6] O
) poles [5/6] X poles [5/6] X
point of development v point of development 7
2 v v v 2 v|v v
1 1
0 0 B
-1 -1
2| v v v -2 v|v v
-3 -3
0 5 10 15 Re(2) -40 -30 -20 -10 0 Re(2)
(a) (b)
Fig. 16. Distributions of d poles of NPA [5/63 5% 2 71a? 1> t = = d
ig. 16. Distributions of zeros and poles o [5/6]1 1271 _5i—i42i1-2i342i3_2; 10 (@) f(z) = — an
Ve+1-1
®) f(z) = ——F
z
Im(2)
15
zeros [12/0] O
zeros [22/0] MW Q
’ zeros [30/0] W F W
point of development 7 L] L o]
Q b |
[ &
0.5 ™ /o)
o ]
r
0
[
1) o
05 | «©
S 4
1 m O
a
&g
-1.5
-3 -2 - 0 1 2 Re(2)

WatC:O.

Fig. 17. Distributions of zeros of [12/0], [22/0], [30/0] PAs to f(z) = —

(ii) Power expansions at the symmetric points on the oblique line. Let us consider the deve-
lopment points on the line D% = {z(t) = R + te'(®*2).1 € R}, symmetrical with respect to the
ramification point R (Fig. 19).

In(1—
We observed that the zeros and poles of PA to —u interlace approximatively on Dﬂ R

z
That fact is documented in Fig. 20 for three different angles 6 = {arctan(1/2), arctan(1), arctan(2)}.
Figs.21 and 22 confirm the similar behavior of the zeros and poles of PA for other combinations of
development points and amount of information taken for PAs.

Unfortunately two poles of [1/2]?2 ,(z) deviate from this line (Fig. 23).

However, a remarkable regularity was observed: the real part of all zeros and poles located in the
vicinity of Dﬂ , are almost equal to the zeros and poles located on the real axis (on DOL r) as shown
in Fig. 24.
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Im(2) Im(2)
6 ° ° zeros [12/3] o 8 + poles [3/12] +
zeros [22/3] m + poles [3/22] x
) zeros [30/3] 6 poles [3/30]
4 point of development ¥ point of development ¥
I
o ]
] - o 4 x X x *
n x X
2 v n + X
[ ] 2 v x
y v u X v v X
[ ]
0 CEm 0 . B
| | ¥ v Yy Vv x
] _2 X v
-2 L] v n + X *
X
[ ] n o -4 X % |x ¥
o LI
-4
-6
+
[0} o
-6 -8 *
"6 4 ) 0 2 4 Re(2) 10 -8 -6 -4 -2 0 2 4 Re(2)

(a) (b)

Fig. 18. Distributions of (a) zeros exceeding of [12/3], [22/3], [30/3] NPAs and (b) exceeding poles of [3/12], [3/22],
In(1-
[330] to f(z) = — (L=2),
z
0
Dy
Dy
o
o|rR
Dy
Fig. 19. D% and DY L D%.

Im(2)
20 zeros [4/5] o

poles [4/5] x

point of develop‘r‘n"een( v o
Im(2)
15 16 zeros [4/5] o ¢ Im(2)
* point ldepvoelispr[:ﬂ: 16 feros [4/5] o
perpendicular line - - x poles [4/5] x
point of development v x
10 2 12 12 perpendicular line = ==
“ 8 o 8 i

5 ’

@”i 4 v

< 4 ; o X
° { v ol - 0 L™ i
S 5 4 6 8 Re(2) & e 3 = T Re(2) s 0 5 10 15 20 %5 30 Re(?)

(@) (b) (c)
: it 2222 In(1-2)
Fig. 20. Distributions of zeros and poles of [4/5];,%,%,2, NPA to f(z) = ————=: (a) § = arctan(1/2),z1 =
=1/2i, 20 = 2—1/2i, 23 =3 —4, z4 = =144, (b) § = arctan(l) = 7/4, z1 = i, 20 = 2 — 4,

23 =3—2i, za = =1+ 2i, (c) 0 = arctan(2), z1 = 2, 220 =2 — 2i, 23 =3 — 4i, za = —1 + 4i.
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Im(2)
zeros [7/8] o
poles [7/8] x
40 point|of development v Im(2)
perpendicular line = 40 zeros [7/8] o
poles [7/8] x K
point 9f development v R
pergendicular ling . . 2
30 20
o’ o
20 A 2
10 »_::: 10 B
& o
of—¥% ol % 49?(
A
-5 0 10 20 Re(2) -5 10 20 30 Re(2)
(a) (b)
. P 4444 _
Fig. 21. Distributions of zeros and poles of [7/8];,%,%,%, NPA to f(z) =

=120, 20 =2 —1/2i, 23 =3 —i, 24 = —1 44, (b) 0 =
23 =3 —2i, z4 = —1+ 21, (¢) 0 = arctan(2), z1 = 2i, 22 = 2

1051

Im(2)
40 2zer0s [7/8] o
poles [7/8] x
point of flevelopment ¥

perper{dicular line - - -

20

(c)

In(1-2)

(@) 0 = arctan(1/2),21 =
arctan(l) = w/4, z1 = i, 22 = 2 — i,
— 21, z3 =3 — 44, zg = —1 + 4i.

Im(2)
70 7/8]
Soies 78] 5 Im(2)
polnt of development v 70 zeros [7/8] o
601" perpendicular line ot epvoe\;s !Ze/g‘]‘ X
60 pperpend\cular;\’me T
50
50 Im2)
40 60 2¢r0s [7/8] o x
o 40 poles [7/8] X
N 50 { point of deyelopment 7
30 perpendicliar line -
30 40 [}
20 2 30
X 20
10 gx 10 e
10 o o-X
0 0 . Ry
T
-10 =10 ~10 hd
-5 0 10 20  30Re(2) -10 10 20 30 40 50 60 Re(2) -20 0 20 40 60 80 100 Re(2)
(@) (b) (c)
Fig. 22. Distributions of d poles of [7/82,22.22 222 NpAto £(2) = — (L =2). (4) 0 = arctan(1/2)
12. . Distributions of zeros and poles o 2129237425 262728 (0} z) = : (a) = arctan s

21

:1/2’i, 2222—1/2i, zz3 =3 —14, 24 = —1+1, ,2524—3/27:7 Z6=—2+3/2’i, zr = 5 — 2,

28 = =3+ 2i, (b) 0 = arctan(1l) = w/4, 21 =4, 22 =2 — 4, 23 =3 — 2, za = —1 4 24, 25 = 4 — 34,

Z6

= —2+43i, zr =5 —4i, 28 = =3+ 4i, (¢) 0 = arctan(2), z1 = 2i, 22 = 2 — 2i, 23 = 3 — 4i,

z4g =—144i, 25 =4 —061, z6 = =2+ 61, 27 =5 — 81, 28 = —3 + 8i.

Lm(Z) Im(2)
;2;22“% 2 ¢ 3 zeros [12] o
point of development v . ) poles [1/2] x
perpendicular line point of development v
3 perpendicular line =
x
X 2
2
1 :_a'; 4
0
v 0
-1
-2 _4
0 1 2 Re(2) ) 1 2 3 Re(2)
(a) (b)
1 1 1 1 22 _
Fig. 23. Distributions of zeros and poles of [1/2]3,5, NPA to f(z) = —

In(1-2)

Im(2)
3 zeros [112] o
poles [1/2] %
point of development &
perpendicular fine - - -
2 X
1 Mol
0
-1
0 1 H 3 ) T 5 o

(©)

: (a) 0 = arctan(1/2), z1 = 1/24,

20 =2—1/2i, (b) 0 = arctan(l) = 7w /4, z1 =4, 220 = 2 — i, (¢) 0 = arctan(2), z1 = 2i, 22 = 2 — 2i.
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Im(2)
50 reros [7/8] o
poles [7/8] x
point of development v X
zeros [7/8] ©
40 poles [7/8] X
point of development ¥
30 o
20
10 «
o]
v v,
0
v v
~10 0 10 20 30 40 Re(2)
Fig. 24. Distributions of d poles of [7/8]%.4.4 1 NPA and [7/8]%40.0 . to f(z) = — M0 =2) g2
12. . 1stributions oI zeros and poles O 21222324 an zfzizaf%f (0] z) = > or zy =1,

20=2—4,23=4—3i,24=—-2+4+3iand 2{ =144, 25 =1—14, 253 =1+ 34, z; =1 — 3.

(iii) PAs of the inverted Stieltjes function. If f is a Stieltjes function, then the function g defined

by

_ f(0)

f(Z) - 1_29(2)
is also a Stieltjes function and is called inverted function [1, 3, 4, 9, 10]. The inverted function to
In(1-2) .
f(z) = — 22
z
1 1
O Y

The zeros and poles of PA [n — 1/n| and [n/n] of g computed at ( = i interlace in the vicinity of
the straight line [1, co[(7). It is a natural behavior indicating the cut chosen by PA (Fig. 25).

Im(2) ;m(z)

polés [8/8] o
pol¢s [7/8] o . zergs [8/8] X
o ze s [7/8] X point of develppment ¥
point of development ¥ v
* 0
0 g g
b X
s o]
,5 X‘\Q _5
=
-10 -10 <
X
-15 -15
(o]
20 . —201 ‘ : ‘ ‘ —
-5 0 5 10 15 20 Re(2) -5 0 5 10 15 20 Re(2)
(a) (b)
. C e . 1
Fig. 25. Distributions of zeros and poles of (a) PA [7/8] and (b) PA [8/8] computed at ( = i to g(z) = —= —
z
1 . . . .
- m Each line connects the point of development of f : z = ¢ with the branch point z = 1.
n(l—z
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7. Conclusions. Numerical experiments carried out with PA and NPA developed at the complex
points revealed certain regularity related to their distribution of poles and zeros. It can be seen that
positions of the poles and zeros for PA to the Stieltjes function expanded at ( = k¢ (for numerically
tested k = {0.2,...,10}) follow some well-defined corridors. In each case, they are included in a
certain fan (i.e., regions having the shape of a wide “V”) pointed on the ramification point R and
directed by [R,o0[(R) line. When k — 0 they lic on the real axis. An open question consists
of determining the angles of this fan concerning the line [R,co[(R) in each case. The paper also
provides some new results relating to the distribution of zeros and poles of PA and NPA using the
Taylor series of functions developed at the complex points and their conjugate points. The theorem
for the case, when all the zeros and poles of NPA are real, is also formulated. It is derived on the base
of the numerous numerical studies. We evidenced it in two cases [1/2] and [2/1] NPAs. At present
many general problems in this field remain still open which can encourage the readers to solve them.

1
Appendix A. Exact solution for [1/ 2]2% NPA to ——In (1 — z). This section provides the

general solution for unknown coefficients ag, a1, b1, bo which satisfy the matrix equation (8):

ag =

Im (¢)(c3ei¢Im (¢) + 1€ (29)* Im (¢) — 2¢pT5Im (co)Re (¢))
Im(¢(e1¢+2¢0))Im(¢(Re(c1¢) +Re (o) —co)) +Im(e1{+co)Im(¢(co{ —Re(¢(c1¢+2c0))))’

a)p =

_ Aepleol* (Re (¢) — ¢) — degerlm () + (2)° (G(er€ + 4eo) + a1 (¢ — 2¢) — deoRe (¢))
4(Im(¢(e1¢+2¢0) (¢ (Re(e1€) +Re(co) —co)) +Im(er¢+eo)Im(¢(co¢ ~Re(¢ (e1¢ +2¢0)))))

by =

_ Im (¢(e1¢ + 2¢0))Im (co — ¢Re (c1)) 4 Im (e1)Im (¢(Re (¢(e1€ + 2¢0)) — co())
Im (¢(e1€ 4 2¢0)) Im(C(Re(e1¢) +Re(co) —co)) +Im(e1¢+co)Im(C(co¢ —Re(C(c1¢+2¢0))))’

by =

Im ((e1¢ + co)Im (CRe (c1) — co) + c1lm (¢(co — Re (e1( + c0))))
Im (¢(e1€ 4 2¢0)) Im(C(Re(e1¢) +Re(co) —co)) +Im(e1¢ +co)Im(C(co¢ —Re(C(c1¢+2¢0))))

We present below the exact formulas for zero ((y) and poles ({1, (2) of approximant.
The zero is obtained from the linear equation ag + a1(y = 0:

) 41m (¢) (erClm () + ex¢ (@) Im (¢) = 2eqghm (co)Re (€))
dco leof* (Re (¢) — ¢) — Acdelm ()2 + (@)° (¢(er€ + 4eo) + e1C (C — 2¢) — deoRe (O))

G =

while the poles from the quadratic equation 1 4 b1 + ba¢? = 0:

:—b1—\/Z —b1+\/Z

G %y by

G =

where the discriminant of the quadratic equation is equal
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P(¢)

Q)

P(¢) = (Im (¢(e1€ + 2¢0))Im (co — ¢Re (1)) + Im (e1)Im (C(Re (C(e1¢ + 2¢0)) — o))~
—41Im ((e1€ + co)Im (CRe (e1) — co) + e1lm (¢(co — Re (1€ + c0)))) (Im (C(e2¢+
+2c0))Im (C(Re (1) + Re (co) — o)) + Im (1€ + co)Im (C(co¢ — Re (C(e1C + 2¢0))))),
Q(¢) = (Im (¢(e1€ + 2¢0))Im (¢(Re (c1¢) + Re (o) — co))+
+Im (¢1¢ + co)Im (¢(co¢ — Re (C(e1 + 2¢0)))))?,

mo:f“gq
B 1 In(1—¢)
aO=mg—get e

Those solutions are presented in Fig. 14 (a). To analyse the behavior of distributions zero and poles,
we also chose the particular case of ( = 1 + iy and y > 0. In this case, we obtain the relatively
simple results.

y(r?(ry? — 4y + 7) + 4(my® + 4y + 7) In*(y) — 87 (y* — 1) In(y))

oo (7 =) + 1)? |
L ylr(r = 2y) + 42y + ™) In(y) + 87 In(y))
o (w2 —4)(y? + 1)? ’
b 2(=2my3 + (% — D)y + 2(my? + 4y + M)y In(y) + 2my + 72 — 4)
1= — ’

(r% = 4)(y* + 1)?

—(4+7*)y? + 4y + 42y + My In(y) +7° — 4

b= (2 )2 + 12

The zero is given by the equation

T2 (ry? — dy + ) + A(my? + 4y + 7) In®(y) — 87(y% — 1) In(y)

Co = m2(m — 2y) + 4(2y + ) In%(y) + 87 In(y)

while the discriminant of the quadratic equation

P
A= DT I

Pi(¢) = 4((=2my® + (72 — 4)y* + 2(my® + 4y + 1)y In(y) + 2my + 7% — 4)*—

—(7* =4y + DA (=4 + 1)y + dry + 42y + 1y In(y) + 77 — 4)).
Those results are shown in Fig. 14 (b).
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