SINGULARLY PERTURBED PERIODIC AND SEMIPERIODIC DIFFERENTIAL OPERATORS * СИНГУЛЯРНО ЗБУРЕНІ ПЕРІОДИЧНІ ТА НАПІВПЕРІОДИЧНІ ДИФЕРЕНЦІАЛЬНІ ОПЕРАТОРИ

Qualitative and spectral properties of the form-sums

$$
S_{ \pm}(V):=D_{ \pm}^{2 m} \dot{+} V(x), \quad m \in \mathbb{N}
$$

in the Hilbert space $L_{2}(0,1)$ are studied. Here, $\left(D_{+}\right)$is the periodic differential operator, $\left(D_{-}\right)$is the semiperiodic differential operator, $D_{ \pm}: u \mapsto-i u^{\prime}$, and $V(x)$ is a 1-periodic complex-valued distribution in the Sobolev spaces $H_{\text {per }}^{-m \alpha}, \alpha \in[0,1]$.

Досліджено якісні та спектральні властивості форм-сум

$$
S_{ \pm}(V):=D_{ \pm}^{2 m} \dot{+} V(x), \quad m \in \mathbb{N}
$$

у гільбертовому просторі $L_{2}(0,1)$. Тут $\left(D_{+}\right)$та $\left(D_{-}\right)$- періодичний та напівперіодичний диференціальні оператори, $D_{ \pm}: u \mapsto-i u^{\prime}$, а $V(x)$ - довільна 1-періодична комплекснозначна узагальнена функція з просторів Соболева $H_{\text {per }}^{-m \alpha}, \alpha \in[0,1]$.

1. Introduction and statement of results. In this paper, we study the operators $S_{+}(V)$ and $S_{-}(V)$ that are not selfadjoint in general and given on the Hilbert space $L_{2}(0,1)$ by two-terms differential expressions of an even order, with a 1-periodic complex-valued potential $V(x)$, which is a distribution in \mathcal{D}_{1}^{\prime}, and periodic and semiperiodic boundary conditions,

$$
\begin{gathered}
S_{ \pm} u \equiv S_{ \pm}(V) u:=D_{ \pm}^{2 m} u+V(x) u \\
D_{ \pm}:=-i \frac{d}{d x}, \quad \operatorname{Dom}\left(D_{ \pm}\right)=H_{ \pm}^{1}, \quad D_{ \pm}^{2 m}:=\left|D_{ \pm}\right|^{2 m}, \\
\operatorname{Dom}\left(D_{ \pm}^{2 m}\right)=H_{ \pm}^{2 m}, \quad m \in \mathbb{N} \\
V(x)=\sum_{k \in \mathbb{Z}} \widehat{V}(2 k) e^{i 2 k \pi x} \in \mathcal{D}_{1}^{\prime} \\
u \in \operatorname{Dom}\left(S_{ \pm}\right)
\end{gathered}
$$

Here by the $H_{ \pm}^{1} \equiv H_{ \pm}^{1}[0,1]$ and $H_{ \pm}^{2 m} \equiv H_{ \pm}^{2 m}[0,1]$ we denote the Sobolev spaces of functions that are 1-periodic and 1 -semiperiodic on the interval $[0,1]$, and \mathcal{D}_{1}^{\prime} denotes the space of 1-periodic distributions [1, p. 115].

In this paper, we give sufficient conditions for the operators $S_{ \pm}(V)$ to exist as formsums, conduct a detailed study of their qualitative properties, prove theorems about their approximation and spectrum decomposition. The approximation theorem gives another definition of the operators $S_{ \pm}(V)$ as a limit, in the generalized convergence sense [2] (Ch. IV, § 2.6), of a sequence of operators with smooth potentials.

Earlier in [3-5], the authors have carried out a detailed study of the differential operators $L_{ \pm}(V)$ generated on the finite interval by the same differential expressions as the operators $S_{ \pm}(V)$ but defined on the negative Sobolev spaces $H_{ \pm}^{-m}$. The case $m=1$ for operators $L_{ \pm}(V)$ was treated in [6,7] (see also closely related papers [8-11]).

[^0]So, for an arbitrary $s \in \mathbb{R}$, the Sobolev spaces of 1-periodic and 1-semiperiodic functions or distributions are defined in a natural fashion by means of their Fourier coefficients,

$$
\begin{gathered}
H_{+}^{s} \equiv H_{+}^{s}[0,1]:=\left\{f=\sum_{k \in \mathbb{Z}} \widehat{f}(2 k) e^{i 2 k \pi x} \mid\|f\|_{H_{+}^{s}}<\infty\right\}, \\
\|f\|_{H_{+}^{s}}:=\left(\sum_{k \in \mathbb{Z}}\langle 2 k\rangle^{2 s}|\widehat{f}(2 k)|^{2}\right)^{1 / 2}, \quad\langle k\rangle:=1+|k| \\
\widehat{f}(2 k):=\left\langle f, e^{i 2 k \pi x}\right\rangle_{+}, \quad k \in \mathbb{Z}
\end{gathered}
$$

and

$$
\begin{gathered}
H_{-}^{s} \equiv H_{-}^{s}[0,1]:=\left\{f=\sum_{k \in \mathbb{Z}} \widehat{f}(2 k+1) e^{i(2 k+1) \pi x} \mid\|f\|_{H_{-}^{s}<\infty}\right\} \\
\|f\|_{H_{-}^{s}}:=\left(\sum_{k \in \mathbb{Z}}\langle 2 k+1\rangle^{2 s}|\widehat{f}(2 k+1)|^{2}\right)^{1 / 2}, \quad\langle k\rangle=1+|k| \\
\widehat{f}(2 k+1):=\left\langle f, e^{i(2 k+1) \pi x}\right\rangle_{-}, \quad k \in \mathbb{Z}
\end{gathered}
$$

By $\langle\cdot, \cdot\rangle_{+}$and $\langle\cdot, \cdot\rangle_{-}$we denote the sesquilinear forms that define the pairing between the dual spaces $H_{ \pm}^{s}$ and $H_{ \pm}^{-s}$ with respect to the zero space $L_{2}(0,1)$; these pairings are obtained by extending the inner product in $L_{2}(0,1)$ by continuity [12, p. 47],

$$
(f, g)=\int_{0}^{1} f(x) \overline{g(x)} d x, \quad f, g \in L_{2}(0,1)
$$

It will be useful to notice that the two-sided scales of Sobolev spaces $\left\{H_{ \pm}^{s}\right\}_{s \in \mathbb{R}}$ coincide up to equivalent norms with scales generated by powers of the non-negative selfadjoint operators $\left|D_{ \pm}\right|[13](\mathrm{Ch} . \mathrm{II}, \S 2.1)$.

The Sobolev spaces

$$
H_{\mathrm{per}}^{s} \equiv H_{\mathrm{per}}^{s}[-1,1]:=\left\{f=\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{i k \pi x} \mid\|f\|_{H_{\mathrm{per}}^{s}<\infty}\right\}, \quad s \in \mathbb{R},
$$

of 2-periodic elements (functions or distributions) are defined in a similar way.
Now, we are ready to formulate the main results obtained in the paper. But first recall that an operator A on a Hilbert space is said to be m-sectorial if its numerical range $\Theta(A)$, i.e., the set

$$
\Theta(A):=(A u, u), \quad u \in \operatorname{Dom}(A), \quad\|u\|=1
$$

is contained in a sector of the complex plane,

$$
\begin{gathered}
\Theta(A) \subseteq \operatorname{Sect}(\gamma, \theta) \\
\operatorname{Sect}(\gamma, \theta):=\{\lambda \in \mathbb{C}| | \arg (\lambda-\gamma) \mid \leq \theta\}, \quad 0 \leq \theta<\frac{\pi}{2}
\end{gathered}
$$

and the exterior of the sector $\operatorname{Sect}(\gamma, \theta)$ belongs to the resolvent set $\operatorname{Resol}(A)$ of the operator $A[2]$ (Ch. V, § 3.10).

Theorem 1. Let a 1-periodic complex-valued distribution $V(x)$ be in the space H_{+}^{-m}. Then the operators $S_{ \pm}(V)$ are well defined on the Hilbert space $L_{2}(0,1)$ as m sectorial operators - form-sums,

$$
S_{ \pm}(V)=D_{ \pm}^{2 m} \dot{+} V(x)
$$

associated with densely defined, closed, sectorial sesquilinear forms defined on $L_{2}(0,1)$ by

$$
t_{S_{ \pm}}[u, v] \equiv t_{ \pm}[u, v]:=\left\langle D_{ \pm}^{2 m} u, v\right\rangle_{ \pm}+\langle V(x) u, v\rangle_{ \pm}, \quad \operatorname{Dom}\left(t_{S_{ \pm}}\right)=H_{ \pm}^{m},
$$

and act on the dense domains

$$
\operatorname{Dom}\left(S_{ \pm}\right)=\left\{u \in H_{ \pm}^{m} \mid D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1)\right\}
$$

as

$$
S_{ \pm}(V) u=D_{ \pm}^{2 m} u+V(x) u, \quad u \in \operatorname{Dom}\left(S_{ \pm}\right)
$$

Let us remark that, in virtue of the convolution lemma (see Lemma 1 below), a 1periodic complex-valued distribution $V(x) \in H_{+}^{-m}$ defines, on the Hilbert space $L_{2}(0,1)$, two sesquilinear forms,

$$
\begin{aligned}
t_{V}^{+}[u, v]:=\langle V(x) \cdot u, v\rangle_{+}, & u, v \in H_{+}^{m}, \\
t_{V}^{-}[u, v]:=\langle V(x) \cdot u, v\rangle_{-}, & u, v \in H_{-}^{m},
\end{aligned}
$$

where $V(x) \cdot u$ denotes the formal product, which converges in the Sobolev spaces $H_{ \pm}^{-m}$, of the Fourier series of the distribution $V(x) \in H_{+}^{-m}$ and the function $u \in H_{ \pm}^{m}$.

If the distribution $V(x)$ has additional smoothness in the scale $\left\{H_{ \pm}^{s}\right\}_{s \in \mathbb{R}}$ of the Hilbert spaces, then functions in the domains of the operators $S_{ \pm}(V)$ have an additional regularity.

Theorem 2. Let $V(x) \in H_{+}^{-m \alpha}, \alpha \in[0,1]$. Then the inclusion

$$
\operatorname{Dom}\left(S_{ \pm}\right) \subseteq H_{ \pm}^{m(2-\alpha)}
$$

holds.
In the case $\alpha \neq 0$, i.e., for

$$
V(x) \in H_{+}^{-m \alpha}, \quad \alpha \in(0,1]
$$

the question about locality of the operators $S_{ \pm}(V)$ is meaningful. Let us recall that an operator A on a function space is called local if

$$
\operatorname{supp}(A u) \subseteq \operatorname{supp}(u), \quad u \in \operatorname{Dom}(A)
$$

For the Hilbert space $L_{2}(0,1)$, this is equivalent to the following:

$$
\left.u\right|_{(\alpha, \beta)}=\left.0 \Rightarrow A u\right|_{(\alpha, \beta)}=0, \quad u \in \operatorname{Dom}(A), \quad(\alpha, \beta) \subset[0,1] .
$$

Theorem 3. If $V(x) \in H_{+}^{-m}$, the operators $S_{+}(V)$ and $S_{-}(V)$ are local.
The following theorem describes qualitative properties of the operators $S_{ \pm}(V)$.

Theorem 4. Let a 1-periodic complex-valued distribution $V(x)$ be in the space H_{+}^{-m}.
a) The operators $S_{ \pm}(V)$ are m-sectorial with respect to an arbitrary angle containing the positive half-axis.
b) The operators $S_{ \pm}(V)$ are selfadjoint if and only if the distribution $V(x)$ is realvalued, i.e., if

$$
\widehat{V}(2 k)=\overline{\widehat{V}(-2 k)}, \quad k \in \mathbb{Z}
$$

c) The operators $S_{ \pm}(V)$ have discrete spectra.

The following theorem allows to give another alternative definition of the operators $S_{ \pm}(V)$ described in Theorem 1.

Theorem 5. Let $V_{n}(x), n \in \mathbb{N}$, and $V(x)$ be defined on the space H_{+}^{-m}, and suppose that

$$
V_{n}(x) \xrightarrow{H_{+}^{-m}} V(x), \quad n \rightarrow \infty .
$$

Then the operators $S_{ \pm}^{(n)} \equiv S_{ \pm}\left(V_{n}\right)$ converge to the operators $S_{ \pm} \equiv S_{ \pm}(V)$ in the uniform resolvent convergent sense,

$$
\left\|R\left(\lambda, S_{ \pm}^{(n)}\right)-R\left(\lambda, S_{ \pm}\right)\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

So, by virtue of Theorem 5, the operators $S_{ \pm}(V)$ can be defined as a limit of a sequence of the operators $S_{ \pm}^{(n)}$ with smooth potentials $V_{n}(x)$ in the generalized convergence sense [2] (Ch. IV, § 2.6).

As an example, consider

$$
V(x)=\sum_{k \in \mathbb{Z}} \widehat{V}(2 k) e^{i 2 k \pi x} \in H_{+}^{-m}
$$

the trigonometric polynomials

$$
V_{n}(x)=\sum_{|k| \leq n} \widehat{V}(2 k) e^{i 2 k \pi x} \in H_{+}^{\infty},
$$

form the necessary sequence,

$$
V_{n}(x) \xrightarrow{H_{+}^{-m}} V(x), \quad n \rightarrow \infty,
$$

which yields the convergence

$$
\left\|R\left(\lambda, S_{ \pm}^{(n)}\right)-R\left(\lambda, S_{ \pm}\right)\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

Due to Theorem 5 we also have that

$$
\sigma\left(S_{ \pm}^{(n)}\right) \rightarrow \sigma\left(S_{ \pm}\right), \quad n \rightarrow \infty
$$

where the convergence of spectra is upper semicontinuous in general [2] (Ch. IV, § 3.1) and, for real-valued potentials, it is continuous [14] (Theorems VIII. 23 and VIII.24); by $\sigma\left(S_{ \pm}^{(n)}\right)$ and $\sigma\left(S_{ \pm}\right)$we denote unordered spectra of the corresponding operators.

Now, let us consider, on the Hilbert space $L_{2}(-1,1)$, the m-sectorial operators -form-sums $S(V)$ with 1-periodic complex-valued potentials that are distributions $V(x) \in$ $\in H_{\text {per }}^{-m}$, i.e., $\widehat{V}(2 k+1)=0 \forall k \in \mathbb{Z}$,

$$
\begin{gathered}
S \equiv S(V):=D^{2 m}+V(x), \\
D:=-i \frac{d}{d x}, \quad \operatorname{Dom}(D)=H_{\mathrm{per}}^{1}, \quad D^{2 m}:=|D|^{2 m}, \quad \operatorname{Dom}\left(D^{2 m}\right)=H_{\mathrm{per}}^{2 m}, \\
V(x)=\sum_{k \in \mathbb{Z}} \widehat{V}(2 k) e^{i 2 k \pi x} \in H_{\mathrm{per}}^{-m}, \\
\operatorname{Dom}(S)=\left\{u \in H_{\mathrm{per}}^{m} \mid D^{2 m} u+V(x) u \in L_{2}(-1,1)\right\}, \quad m \in \mathbb{N} .
\end{gathered}
$$

Analogs of Theorems 2-4 and 5 hold for the operators $S(V)$. In particular, they have discrete spectra.

Let us study the structure of spectra of the operators $S(V), S_{+}(V)$, and $S_{-}(V)$ in more details.

Denote by $\operatorname{spec}(A)$ the discrete spectrum of the operator A, taking into account the algebraic multiplicity of the eigenvalues that ordered lexicographically. Namely, we will say that an eigenvalue λ_{k} precedes an eigenvalue λ_{k+1} for $k \in \mathbb{Z}_{+}$if
$\operatorname{Re} \lambda_{k}<\operatorname{Re} \lambda_{k+1}, \quad$ or $\quad \operatorname{Re} \lambda_{k}=\operatorname{Re} \lambda_{k+1} \quad$ and $\quad \operatorname{Im} \lambda_{k} \leq \operatorname{Im} \lambda_{k+1}, \quad k \in \mathbb{Z}_{+}$.
It is easy to see that

$$
\begin{gathered}
\operatorname{spec}\left(D^{2 m}\right)= \\
\left\{0 ; 1,1 ; 2^{2 m}, 2^{2 m} ; \ldots ;(2 k-1)^{2 m},(2 k-1)^{2 m} ;(2 k)^{2 m},(2 k)^{2 m} ; \ldots\right\} \cdot \pi^{2 m} \\
\operatorname{spec}\left(D_{+}^{2 m}\right)=\left\{0 ; 2^{2 m}, 2^{2 m} ; \ldots ;(2 k)^{2 m},(2 k)^{2 m} ; \ldots\right\} \cdot \pi^{2 m} \\
\operatorname{spec}\left(D_{-}^{2 m}\right)=\left\{1,1 ; 3^{2 m}, 3^{2 m} ; \ldots ;(2 k-1)^{2 m},(2 k-1)^{2 m} ; \ldots\right\} \cdot \pi^{2 m}
\end{gathered}
$$

And thus we get

$$
\operatorname{spec}\left(D^{2 m}\right)=\operatorname{spec}\left(D_{+}^{2 m}\right) \sqcup \operatorname{spec}\left(D_{-}^{2 m}\right) \quad \text { (the disjoint sum). }
$$

The following theorem about spectra decomposition is a non-trivial generalization of the last equality for the perturbed m-sectorial operators - form-sums $S(V), S_{+}(V)$, and $S_{-}(V)$.

Theorem 6. Let $S(V), S_{+}(V)$ and $S_{-}(V)$ be the m-sectorial operators, where the potential $V(x)$ is a 1-periodic complex-valued distribution from the Sobolev spaces H_{per}^{-m} and H_{+}^{-m} for the first and the second two operators, respectively. Then

$$
S(V)=S_{+}(V) \oplus S_{-}(V)
$$

and we have the decomposition

$$
\operatorname{spec}(S)=\operatorname{spec}\left(S_{+}\right) \cup \operatorname{spec}\left(S_{-}\right)
$$

A part of results are announced in [15] and contained in [16].
2. The proofs. At first, we will recall some known facts and results that will be necessary.

Consider the Hilbert spaces of two-sided weighted sequences,

$$
h^{s} \equiv h^{s}(\mathbb{Z} ; \mathbb{C}), \quad s \in \mathbb{R}
$$

$$
\begin{gathered}
h^{s}:=\left\{a=(a(k))_{k \in \mathbb{Z}} \mid\|a\|_{h^{s}}<\infty\right\}, \\
(a, b)_{h^{s}} \\
:=\sum_{k \in \mathbb{Z}}\langle k\rangle^{2 s} a(k) \overline{b(k)}, \quad\langle k\rangle=1+|k|, \\
\|a\|_{h^{s}}:=\left(\sum_{k \in \mathbb{Z}}\langle k\rangle^{2 s}|a(k)|^{2}\right)^{1 / 2} .
\end{gathered}
$$

The Fourier transform establishes an isometric isomorphisms between the Sobolev spaces $H_{\text {per }}^{s}, H_{ \pm}^{s}$ and the Hilbert spaces h^{s} of two-sided weighted sequences,

$$
\begin{gathered}
\mathcal{F}: H_{\mathrm{per}}^{s} \ni f \mapsto(\widehat{f})=(\widehat{f}(k))_{k \in \mathbb{Z}} \in h^{s}, \\
\mathcal{F}_{+}: H_{+}^{s} \ni f \mapsto(\widehat{f})=(\widehat{f}(2 k))_{k \in \mathbb{Z}} \in h^{s}, \\
\mathcal{F}_{-}: H_{-}^{s} \ni f \mapsto(\widehat{f})=(\widehat{f}(2 k+1))_{k \in \mathbb{Z}} \in h^{s} .
\end{gathered}
$$

This, together with the convolution lemma (see bellow), allows to give sufficient conditions of existence of the formal product

$$
V(x) \cdot u(x)=\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \widehat{V}(k-j) \widehat{u}(j) e^{i k \pi x}
$$

To this end, introduce in the scale of the Hilbert spaces of two-sided weighted sequences $\left\{h^{s}\right\}_{s \in \mathbb{R}}$ a commutative convolution operation. For arbitrary sequences

$$
a=(a(k))_{k \in \mathbb{Z}} \quad \text { and } \quad b=(b(k))_{k \in \mathbb{Z}},
$$

it is defined in a natural fashion,

$$
\begin{gathered}
(a, b) \mapsto a * b, \\
(a * b)(k):=\sum_{j \in \mathbb{Z}} a(k-j) b(j) .
\end{gathered}
$$

The following known lemma (see, for example, [7], Lemma 1.5.4) holds.
Lemma 1 (Convolution lemma). Let $s, r \geq 0$, and $t \in \mathbb{R}$ with $t \leq \min (s, r)$.
(I) If $s+r-t>1 / 2$, then the convolution map

$$
(a, b) \mapsto a * b
$$

is continuous when viewed as the maps
(a) $h^{r} \times h^{s} \rightarrow h^{t}$,
(b) $h^{-t} \times h^{s} \rightarrow h^{-r}$.
(II) If $s+r-t<1 / 2$, then this statement fails to hold.
2.1. Proof of Theorem 1. Due to the convolution lemma for

$$
V(x) \in H_{+}^{-m} \quad \text { and } \quad u(x) \in H_{ \pm}^{m}
$$

the products $V(x) \cdot u(x)$ are well defined in the Sobolev spaces $H_{ \pm}^{-m}$. Therefore, the sesquilinear forms

$$
t_{V}^{+}[u, v]=\langle V(x) u, v\rangle_{+}, \quad \operatorname{Dom}\left(t_{V}^{+}\right)=H_{+}^{m},
$$

$$
t_{V}^{-}[u, v]=\langle V(x) u, v\rangle_{-}, \quad \operatorname{Dom}\left(t_{V}^{-}\right)=H_{-}^{m},
$$

are well defined in the Hilbert space $L_{2}(0,1)$.
Further, set

$$
\begin{aligned}
\tau_{+}[u, v]:=\left\langle D_{+}^{2 m} u, v\right\rangle_{+}, & \operatorname{Dom}\left(\tau_{+}\right)=H_{+}^{m}, \\
\tau_{-}[u, v]:=\left\langle D_{-}^{2 m} u, v\right\rangle_{-}, & \operatorname{Dom}\left(\tau_{-}\right)=H_{-}^{m} .
\end{aligned}
$$

The sesquilinear forms $\tau_{ \pm}[u, v]$ are well defined in the Hilbert space $L_{2}(0,1)$, they are densely defined, closed, and nonnegative.

The following assertion is true.
Proposition 1. The sesquilinear forms $t_{V}^{ \pm}[u, v]$ are $\tau_{ \pm}$-bounded with $\tau_{ \pm}$-boundary that equals zero, i.e., we have $V(x) \prec \prec D_{ \pm}^{2 m}$.

Proof. Represent the 1-periodic distribution

$$
V(x)=\sum_{k \in \mathbb{Z}} \widehat{V}(2 k) e^{i 2 k \pi x} \in H_{+}^{-m}
$$

as the sum

$$
\begin{equation*}
V(x)=V_{0}(x)+V_{\delta}(x), \tag{1}
\end{equation*}
$$

where $V_{0}(x)$ is a smooth function and $V_{\delta}(x)$ is a distribution with an arbitrarily small norm,

$$
V_{0}(x) \in H_{+}^{m},
$$

and

$$
V_{\delta}(x) \in H_{+}^{-m} \quad \text { with } \quad\left\|V_{\delta}\right\|_{H_{+}^{-m}} \leq \frac{\delta}{C_{m}}
$$

The constant C_{m} is defined from the convolution lemma and is fixed. The decomposition (1) is possible, since H_{+}^{m} is densely embedded into the space H_{+}^{-m}.

So, for

$$
u \in \operatorname{Dom}\left(\tau_{ \pm}\right) \subset \operatorname{Dom}\left(t_{V}^{ \pm}\right)
$$

we have

$$
\begin{gathered}
\left|t_{V}^{ \pm}[u]\right|=\left|\langle V(x) u, u\rangle_{ \pm}\right| \leq\left|\left\langle V_{0}(x) u, u\right\rangle_{ \pm}\right|+\left|\left\langle V_{\delta}(x) u, u\right\rangle_{ \pm}\right| \leq \\
\leq\left\|V_{0}(x) u\right\|_{L_{2}(0,1)}\|u\|_{L_{2}(0,1)}+\left\|V_{\delta}(x) u\right\|_{H_{ \pm}^{-m}}\|u\|_{H_{ \pm}^{m}} \leq \\
\leq C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}\|u\|_{L_{2}(0,1)}^{2}+\delta\|u\|_{H_{ \pm}^{m}}^{2} .
\end{gathered}
$$

Taking into account that

$$
\|u\|_{H_{ \pm}^{m}}^{2} \leq\|u\|_{L_{2}(0,1)}^{2}+\left\|u^{(m)}\right\|_{L_{2}(0,1)}^{2}=\|u\|_{L_{2}(0,1)}^{2}+\left\langle D_{ \pm}^{2 m} u, u\right\rangle_{ \pm}
$$

for an arbitrary $\delta>0$ we obtain the necessary estimate,

$$
\begin{equation*}
\left|t_{V}^{ \pm}[u]\right| \leq \delta \tau_{ \pm}[u]+\left(C_{m}\left\|V_{0}\right\|_{H_{+}^{m}[0,1]}+\delta\right)\|u\|_{L_{2}(0,1)}^{2} . \tag{2}
\end{equation*}
$$

The proof is complete.
Proposition 1, together with [2] (Theorem IV.1.33) yields the following corollary.

Corollary. The sesquilinear forms

$$
t_{ \pm}[u, v]:=\left\langle D_{ \pm}^{2 m} u, v\right\rangle_{ \pm}+\langle V(x) u, v\rangle_{ \pm}, \quad \operatorname{Dom}\left(t_{ \pm}\right)=H_{ \pm}^{m},
$$

are densely defined, closed, and sectorial in the Hilbert space $L_{2}(0,1)$.
According to the first representation theorem [2] (Theorem VI.2.1), there exist m sectorial operators $S_{ \pm}(V)$ associated with the forms $t_{ \pm}[u, v]$ such that
i) $\operatorname{Dom}\left(S_{ \pm}\right) \subseteq \operatorname{Dom}\left(t_{ \pm}\right)$and

$$
t_{ \pm}[u, v]=\left(S_{ \pm} u, v\right)
$$

for every $u \in \operatorname{Dom}\left(S_{ \pm}\right)$and $v \in \operatorname{Dom}\left(t_{ \pm}\right) ;$
ii) $\operatorname{Dom}\left(S_{ \pm}\right)$are cores of $t_{ \pm}[u, v]$;
iii) if $u \in \operatorname{Dom}\left(t_{ \pm}\right), w \in L_{2}(0,1)$, and

$$
t_{ \pm}[u, v]=(w, v)
$$

holds for every v belonging to the cores of $t_{ \pm}[u, v]$, then $u \in \operatorname{Dom}\left(S_{ \pm}\right)$and $S_{ \pm}(V) u=w$ 。

The m-sectorial operators $S_{ \pm}(V)$ are uniquely defined by condition i).
Now, investigate the operators $S_{ \pm}(V)$ associated with the forms $t_{ \pm}[u, v]$ in more details.

Let

$$
u \in \operatorname{Dom}\left(S_{ \pm}\right) \quad \text { and } \quad v \in \operatorname{Dom}\left(t_{ \pm}\right)
$$

Then we have

$$
\begin{gathered}
t_{ \pm}[u, v]=\left\langle D_{ \pm}^{2 m} u, v\right\rangle_{ \pm}+\langle V(x) u, v\rangle_{ \pm}=\left\langle D_{ \pm}^{2 m} u+V(x) u, v\right\rangle_{ \pm}= \\
=\left(S_{ \pm} u, v\right)=\left\langle S_{ \pm} u, v\right\rangle_{ \pm}
\end{gathered}
$$

This shows that we have the equality

$$
\left\langle D_{ \pm}^{2 m} u+V(x) u, v\right\rangle_{ \pm}=\left\langle S_{ \pm} u, v\right\rangle_{ \pm}, \quad v \in H_{ \pm}^{m},
$$

of linear forms. So, we can conclude that

$$
S_{ \pm}(V) u=D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1), \quad u \in \operatorname{Dom}\left(S_{ \pm}\right),
$$

and that the inclusions

$$
\operatorname{Dom}\left(S_{ \pm}\right) \subseteq\left\{u \in H_{ \pm}^{m} \mid D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1)\right\}
$$

hold. It remains to verify that the inverse inclusions hold.
Let

$$
u \in\left\{u \in H_{ \pm}^{m} \mid D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1)\right\} \quad \text { and } \quad v \in \operatorname{Dom}\left(t_{ \pm}\right)
$$

Then

$$
\begin{gathered}
t_{ \pm}[u, v]=\left\langle D_{ \pm}^{2 m} u, v\right\rangle_{ \pm}+\langle V(x) u, v\rangle_{ \pm}= \\
=\left\langle D_{ \pm}^{2 m} u+V(x) u, v\right\rangle_{ \pm}=\left(D_{ \pm}^{2 m} u+V(x) u, v\right)
\end{gathered}
$$

and using the first representation theorem iii) (see above) we get the necessary estimate,

$$
u \in \operatorname{Dom}\left(S_{ \pm}\right)
$$

which implies that

$$
\left\{u \in H_{ \pm}^{m} \mid D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1)\right\} \subseteq \operatorname{Dom}\left(S_{ \pm}\right)
$$

and

$$
S_{ \pm}(V) u=D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1) .
$$

So,

$$
\operatorname{Dom}\left(S_{ \pm}\right)=\left\{u \in H_{ \pm}^{m} \mid D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1)\right\}
$$

and

$$
S_{ \pm}(V) u=D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1), \quad u \in \operatorname{Dom}\left(S_{ \pm}\right)
$$

Theorem 1 is proved completely.
Remark 1. Throughout the rest of the paper we will often use the notations

$$
t_{S_{ \pm}}[u, v] \equiv t_{ \pm}[u, v]
$$

to underline the dual relations between the sesquilinear forms $t_{ \pm}[u, v]$ and the associated with them operators $S_{ \pm}(V)$, see [2] ([Theorem VI.2.7).
2.2. Proof of Theorem 2. Let the 1-periodic distribution $V(x)$ belong to the space $H_{+}^{-m \alpha}, \alpha \in[0,1]$. Then for any $u \in \operatorname{Dom}\left(S_{ \pm}\right)$, due to the convolution lemma, we have

$$
V(x) u \in H_{+}^{-m \alpha},
$$

and therefore

$$
D_{ \pm}^{2 m} u \in H_{ \pm}^{-m \alpha} .
$$

From this we conclude that

$$
u \in H_{ \pm}^{m(2-\alpha)} .
$$

2.3. Proof of Theorem 3. Let

$$
u \in \operatorname{Dom}\left(S_{ \pm}\right)
$$

and

$$
\left.u\right|_{(\alpha, \beta)}=0 \quad \text { with } \quad(\alpha, \beta) \subset[0,1],
$$

and let

$$
\varphi(x) \in C_{0}^{\infty}[0,1] \quad \text { with } \quad \operatorname{supp}(\varphi) \Subset(\alpha, \beta) .
$$

Then we have

$$
\begin{gathered}
\left(S_{ \pm} u, \varphi\right)=\left\langle S_{ \pm} u, \varphi\right\rangle_{ \pm}=\left\langle D_{ \pm}^{2 m} u+V(x) u, \varphi\right\rangle_{ \pm}=\left\langle D_{ \pm}^{2 m} u, \varphi\right\rangle_{ \pm}+\langle V(x) u, \varphi\rangle_{ \pm}= \\
=\left\langle u, D_{ \pm}^{2 m} \varphi\right\rangle_{ \pm}+\langle V(x), \bar{u} \varphi\rangle_{ \pm}=\langle V(x), 0\rangle_{ \pm}=0
\end{gathered}
$$

which yields the necessary statement,

$$
\left.\left(S_{ \pm} u\right)\right|_{(\alpha, \beta)}=0
$$

2.4. Proof of Theorem 4. (a) The m-sectoriality of the operators $S_{ \pm}(V)$ have been proved in Theorem 1. Let us prove the second part of the assertion, i.e., we need to show that for any $\varepsilon>0$ and some constant $c_{\varepsilon} \geq 0$ the following estimates hold:

$$
\left|\arg \left(\left(S_{ \pm}+c_{\varepsilon} I d\right) u, u\right)\right| \leq \varepsilon, \quad u \in \operatorname{Dom}\left(S_{ \pm}\right)
$$

For this we have to make sure that

$$
\left|\operatorname{Im}\left(S_{ \pm} u, u\right)\right| \leq \varepsilon \operatorname{Re}\left(S_{ \pm} u, u\right)+c_{\varepsilon}\|u\|_{L_{2}(0,1)}^{2}, \quad u \in \operatorname{Dom}\left(S_{ \pm}\right)
$$

for any $\varepsilon>0$ and some constant $c_{\varepsilon} \geq 0$.
So, take $0<\varepsilon<1 / 2$. From Proposition 1 (see (2)) we get

$$
\left|t_{V}^{ \pm}[u]\right| \leq \frac{\varepsilon}{2} \tau_{ \pm}[u]+\left(C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+\frac{\varepsilon}{2}\right)\|u\|_{L_{2}(0,1)}^{2}, \quad u \in \operatorname{Dom}\left(\tau_{ \pm}\right)
$$

and, hence,

$$
-\varepsilon \operatorname{Re} t_{V}^{ \pm}[u] \leq \frac{\varepsilon}{2} \tau_{ \pm}[u]+\left(C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+\frac{\varepsilon}{2}\right)\|u\|_{L_{2}(0,1)}^{2}, \quad u \in \operatorname{Dom}\left(\tau_{ \pm}\right)
$$

Further, taking into account that

$$
\begin{gathered}
\operatorname{Re}\left(S_{ \pm} u, u\right)=\left\langle D_{ \pm}^{2 m} u, u\right\rangle_{ \pm}+\operatorname{Re}\langle V(x) u, u\rangle_{ \pm} \\
\operatorname{Im}\left(S_{ \pm} u, u\right)=\operatorname{Im}\langle V(x) u, u\rangle_{ \pm}, \quad u \in \operatorname{Dom}\left(S_{ \pm}\right)
\end{gathered}
$$

we obtain the necessary estimates,

$$
\begin{gathered}
\left|\operatorname{Im}\left(S_{ \pm} u, u\right)\right| \leq\left|\langle V(x) u, u\rangle_{ \pm}\right| \leq \frac{\varepsilon}{2} \tau_{ \pm}[u]+\left(C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+\frac{\varepsilon}{2}\right)\|u\|_{L_{2}(0,1)}^{2} \leq \\
\leq \varepsilon\left(\tau_{ \pm}[u]+\operatorname{Re} t_{V}^{ \pm}[u]\right)+\left(2 C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+\varepsilon\right)\|u\|_{L_{2}(0,1)}^{2}= \\
=\varepsilon \operatorname{Re}\left(S_{ \pm} u, u\right)+c_{\varepsilon}\|u\|_{L_{2}(0,1)}^{2}, \quad u \in \operatorname{Dom}\left(S_{ \pm}\right) .
\end{gathered}
$$

(b) Let the 1-periodic distribution $V(x)$ be real-valued. Then the sesquilinear forms $t_{S_{ \pm}}[u, v]$ are symmetric and, consequently, in virtue of [2] (Theorem VI.2.7) (also see the KLMN theorem [17] (Theorem X.17)), the operators are self-adjoint.

Conversely, let the operators $S_{ \pm}(V)$ be selfadjoint. In the case of a non-real-valued distribution $V(x)$, the operators $S_{ \pm}(V)$ are not symmetric either. This contradiction allows to make conclusion that the distribution $V(x)$ is real-valued.
(c) From [2] (Theorem VI.3.4) and Proposition 1 we immediately obtain the following proposition.

Proposition 2. The resolvent sets of the operators $S_{ \pm}(V)$ are non-empty. Moreover, the resolvents $R\left(\lambda, S_{ \pm}(V)\right)$ of the operators $S_{ \pm}(V)$ are compact.

Proposition 2 implies that the operators $S_{ \pm}(V)$ have discrete spectra.
2.5. Proof of Theorem 5. The proof is based on the following proposition.

Proposition 3. Let the 1-periodic distributions $V_{n}(x), n \in \mathbb{N}$, and $V(x)$ be in the Sobolev space H_{+}^{-m}. For

$$
V_{n}(x) \xrightarrow{H_{+}^{-m}} V(x), \quad n \rightarrow \infty
$$

the operators

$$
\begin{gathered}
S_{ \pm}^{(n)} \equiv S_{ \pm}\left(V_{n}\right):=D_{ \pm}^{2 m} \dot{+} V_{n}(x), \\
\operatorname{Dom}\left(S_{ \pm}^{(n)}\right)=\left\{u \in H_{ \pm}^{m} \mid D_{ \pm}^{2 m} u+V_{n}(x) u \in L_{2}(0,1)\right\},
\end{gathered}
$$

converge to the operators

$$
\begin{gathered}
S_{ \pm} \equiv S_{ \pm}(V)=D_{ \pm}^{2 m}+V(x) \\
\operatorname{Dom}\left(S_{ \pm}\right)=\left\{u \in H_{ \pm}^{m} \mid D_{ \pm}^{2 m} u+V(x) u \in L_{2}(0,1)\right\}
\end{gathered}
$$

in the generalized convergence sense [2] (Ch. IV, § 2.6).
Proof. Set

$$
t_{S_{ \pm}^{(n)}}[u, v] \equiv t_{ \pm}^{(n)}[u, v]:=\left(S_{ \pm}^{(n)} u, v\right), \quad u \in \operatorname{Dom}\left(S_{ \pm}^{(n)}\right), v \in \operatorname{Dom}\left(t_{ \pm}^{(n)}\right)=H_{ \pm}^{m}
$$

and recall that

$$
t_{S_{ \pm}}[u, v] \equiv t_{ \pm}[u, v]=\left(S_{ \pm} u, v\right), \quad u \in \operatorname{Dom}\left(S_{ \pm}\right), v \in \operatorname{Dom}\left(t_{ \pm}\right)=H_{ \pm}^{m}
$$

Then, for every $u \in \operatorname{Dom}\left(t_{ \pm}\right)=\operatorname{Dom}\left(t_{ \pm}^{(n)}\right)=H_{ \pm}^{m}$,

$$
\begin{aligned}
\left|t_{ \pm}^{(n)}[u]-t_{ \pm}[u]\right| & =\left|\left\langle\left(V_{n}(x)-V(x)\right) u, u\right\rangle_{ \pm}\right| \leq\left\|\left(V_{n}(x)-V(x)\right) u\right\|_{H_{ \pm}^{-m}}\|u\|_{H_{ \pm}^{m}} \leq \\
& \leq C_{m}\left\|V_{n}(x)-V(x)\right\|_{H_{+}^{-m}}\left(\|u\|_{H_{ \pm}^{m}}^{2}+\tau_{ \pm}[u]\right),
\end{aligned}
$$

where the constant C_{m} is defined due to the convolution lemma, and $\tau_{ \pm}[u, v]$, as above,

$$
\tau_{ \pm}[u, v]=\left\langle D_{ \pm}^{2 m} u, v\right\rangle_{ \pm}, \quad \operatorname{Dom}\left(\tau_{ \pm}\right)=H_{ \pm}^{m}
$$

are sesquilinear, densely defined, closed and nonnegative forms. Since the forms

$$
t_{V}^{ \pm}[u, v]=\langle V(x) u, v\rangle_{ \pm}, \quad \operatorname{Dom}\left(t_{V}^{ \pm}\right)=H_{ \pm}^{m}
$$

are $\tau_{ \pm}$-bonded with zero $\tau_{ \pm}$-boundary for an arbitrary $0<\varepsilon \leq 1 / 2$, the following estimates hold:

$$
2\left|\operatorname{Re} t_{V}^{ \pm}[u]\right| \leq \tau_{ \pm}[u]+2\left(C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+\varepsilon\right)\|u\|_{L_{2}(0,1)}^{2}
$$

and thus

$$
2 \operatorname{Re} t_{V}^{ \pm}[u]+\tau_{ \pm}[u]+2\left(C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+\varepsilon\right)\|u\|_{L_{2}(0,1)}^{2} \geq 0
$$

Taking to account that

$$
\operatorname{Re} t_{ \pm}[u]=\tau_{ \pm}[u]+\operatorname{Re} t_{V}^{ \pm}[u]
$$

we get the needed estimates,

$$
\begin{gathered}
\left|t_{ \pm}^{(n)}[u]-t_{ \pm}[u]\right| \leq C_{m}\left\|V_{n}(x)-V(x)\right\|_{H_{+}^{-m}}\left(\|u\|_{H_{ \pm}^{m}}^{2}+\tau_{ \pm}[u]\right) \leq \\
\leq C_{m}\left\|V_{n}(x)-V(x)\right\|_{H_{+}^{-m} \times} \\
\times\left(2 \operatorname{Re} t_{V}^{ \pm}[u]+2 \tau_{ \pm}[u]+2\left(C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+\varepsilon+1 / 2\right)\|u\|_{L_{2}(0,1)}^{2}\right)=
\end{gathered}
$$

$$
=a_{n}\|u\|_{L_{2}(0,1)}^{2}+b_{n} \operatorname{Re} t_{ \pm}[u]
$$

where

$$
a_{n}=2\left(C_{m}\left\|V_{0}(x)\right\|_{H_{+}^{m}}+1\right)\left\|V_{n}(x)-V(x)\right\|_{H_{+}^{-m}} \geq 0
$$

and

$$
b_{n}=2 C_{m}\left\|V_{n}(x)-V(x)\right\|_{H_{+}^{-m}} \geq 0
$$

tend to zero as $n \rightarrow \infty$.
To complete the proof it suffices to apply [2] (Theorem VI.3.6).
Proposition 3 and Theorem IV.2.25 [2] together with Proposition 2, give Theorem 5.
2.6. Proof of Theorem 6. Let the operators - form-sums $S(V), S_{+}(V)$, and $S_{-}(V)$ be given with $V(x)$ a 1-periodic complex-valued distribution from the Sobolev spaces $H_{\text {per }}^{-m}$ and $H_{ \pm}^{-m}$, correspondingly.

For an arbitrary $s \in \mathbb{R}$ let us consider the Sobolev spaces

$$
\begin{gathered}
H_{\mathrm{per}}^{s}=\left\{f=\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{i k \pi x} \mid\|f\|_{H_{\mathrm{per}}^{s}}<\infty\right\} \\
H_{+}^{s}=\left\{f=\sum_{k \in \mathbb{Z}} \widehat{f}(2 k) e^{i 2 k \pi x} \mid\|f\|_{H_{+}^{s}}<\infty\right\} \\
H_{-}^{s}=\left\{f=\sum_{k \in \mathbb{Z}} \widehat{f}(2 k+1) e^{i(2 k+1) \pi x} \mid\|f\|_{H_{-}^{s}}<\infty\right\}
\end{gathered}
$$

It should be remarked that

$$
H_{\mathrm{per}}^{0} \equiv L_{2}(-1,1) \quad \text { and } \quad H_{+}^{0} \equiv H_{-}^{0} \equiv L_{2}(0,1)
$$

Set

$$
\begin{aligned}
H_{\text {per },+}^{s} & :=\left\{f \in H_{\text {per }}^{s} \mid \widehat{f}(2 k+1)=0 \quad \forall k \in \mathbb{Z}\right\}, \\
H_{\text {per, },-}^{s} & :=\left\{f \in H_{\text {per }}^{s} \mid \widehat{f}(2 k)=0 \quad \forall k \in \mathbb{Z}\right\},
\end{aligned}
$$

and thus

$$
H_{\mathrm{per}}^{s}=H_{\mathrm{per},+}^{s} \oplus H_{\mathrm{per},-}^{s}, \quad s \in \mathbb{R} .
$$

Let

$$
I_{ \pm}: H_{ \pm}^{s} \ni f(x) \mapsto f(x) \in H_{\mathrm{per}, \pm}^{s}, \quad s \in \mathbb{R}
$$

be extension operators that extend the elements $f(x) \in H_{ \pm}^{s}$ defined on the interval $[0,1]$ to the elements $f(x) \in H_{\mathrm{per}, \pm}^{s}$ defined on the interval $[-1,1]$. The operators $I_{ \pm}$establish isometric isomorphisms between the spaces $H_{ \pm}^{s}$ and $H_{\mathrm{per}, \pm}^{s}$ for $s \in \mathbb{R}$.

Further, let us consider the operators $S(V)$. Since the potentials $V(x)$ are 1-periodic distributions from the space $H_{\text {per }}^{-m}$, i.e., $V(x) \in H_{\text {per, }+}^{-m}$, the operators $S(V)$ are reduced by the space $H_{\text {per, }+}^{-m}$ [18] (Ch. IV, § 40). So, we have

$$
\begin{equation*}
S(V)=S_{\text {per },+}(V) \oplus S_{\text {per },-}(V) \tag{3}
\end{equation*}
$$

where the operators $S_{\mathrm{per}, \pm}(V)$ are defined on the Hilbert spaces $H_{\mathrm{per}, \pm}^{0}$. Taking into account that

$$
H_{+}^{s} \stackrel{I_{+}}{\simeq} H_{\mathrm{per},+}^{s} \quad \text { and } \quad H_{-}^{s} \stackrel{I_{-}}{\simeq} H_{\mathrm{per},-}^{s}
$$

for an arbitrary $s \in \mathbb{R}$ we conclude that the operators $S_{\mathrm{per}, \pm}(V)$ and $S_{ \pm}(V)$ are unitary equivalent,

$$
S_{+}(V) \stackrel{I_{ \pm}}{\simeq} S_{\mathrm{per},+}(V) \quad \text { and } \quad S_{-}(V) \stackrel{I_{-}}{\simeq} S_{\mathrm{per},-}(V) .
$$

From the latter relations and decomposition (3), we obtain the need statement,

$$
S(V)=S_{+}(V) \oplus S_{-}(V)
$$

which implies

$$
\operatorname{spec}(S)=\operatorname{spec}\left(S_{+}\right) \cup \operatorname{spec}\left(S_{-}\right)
$$

The proof of Theorem 6 is completed.

1. Vladimirov V. S. Generalized functions in mathematical physics (in Russian). - Moscow: Nauka, 1976. 280 p.
2. Kato T. Perturbation theory for linear operators. - Berlin etc.: Springer, 1966. - 592 p. (Russian edition: Moscow: Mir, 1972. - 740 p.).
3. Molyboga V. Estimates for periodic eigenvalues of the differential operator $(-\mathbf{1})^{\mathbf{m}} \mathbf{d}^{\mathbf{2 m}} / \mathbf{d x} \mathbf{x}^{\mathbf{m}}+\mathbf{V}$ with V-distribution // Meth. Funct. Anal. and Top. - 2003. - 9, № 2. - P. 163-178.
4. Mikhailets V. A., Molyboga V. M. Singular eigenvalues problems on the circle // Ibid. - 2004. - 10, № 3. - P. 44-53.
5. Mikhailets V. A., Molyboga V. M. Uniform estimates for the semiperiodic eigenvalues of the singular differential operators // Ibid. - № 4. - P. 30-57.
6. Kappeler T., Möhr C. Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials // J. Func. Anal. - 2001. - 186. - P. 62-91.
7. Möhr C. Schrödinger operators with singular potentials on the circle: spectral analysis and applications // Thes. Univ. Zürich. - 2001. - 134 p.
8. Mikhailets V. A., Sobolev A. V. Common eigenvalue problem and periodic Schrödinger operators // J. Funct. Anal. - 1999. - 165, № 1. - P. 150-172.
9. Hryniv R. O., Mykytyuk Ya. V. 1-D Schrödinger operators with periodic singular potentials // Meth. Funct. Anal. and Top. - 2001. - 7, № 4. - P. 31-42.
10. Korotyaev E. L. Characterization of the spectrum of Schrödinger operators with periodic distributions // Int. Math. Res. Not. - 2003. - 37. - P. 2019-2031.
11. Djakov P., Mityagin B. S. Instability zones of one-dimensional periodic Schrödinger and Dirac operators (in Russian) // Uspekhi Mat. Nauk. - 2006. - 61, № 4. - P. 77-182.
12. Berezansky Yu. M. Expansions in eigenfunctions of self-adjoint operators. - Providence, RI: Amer. Math. Soc. Transl., 1968. - 17. - 809 p. (Russian edition: Kiev: Naukova Dumka, 1965. - 800 p.).
13. Gorbachuk V. I., Gorbachuk M. L. Boundary value problems for operator differential equations. - Dordrecht etc.: Kluwer, 1991. - 347 p. (Russian edition: Kiev: Naukova Dumka, 1984. - 283 p.).
14. Reed M., Simon B. Methods of modern mathematical physics: Vols 1-4. - V. 1. Functional analysis. New York etc.: Acad. Press, 1972. - 400 p. (Russian edition: Moscow: Mir, 1977. - 359 p.).
15. Mikhailets V. A., Molyboga V. M. The perturbation of periodic and semiperiodic operators by Schwartz distributions (in Russian) // Repts NAS Ukraine. - 2006. - 7. - P. 26-31.
16. Mikhailets V. A., Molyboga V. M. The spectral problems over the periodic classes of distributions (in Ukrainian). - Kyiv, 2004. - 46 p. - (Preprint / NAS Ukraine. Inst. Math.; 2004.10).
17. Reed M., Simon B. Methods of modern mathematical physics: Vols 1-4. - V. 2. Fourier analysis, selfadjointness. - New York etc.: Acad. Press, 1975. - 361 p. (Russian edition: Moscow: Mir, 1978. - 396 p.).
18. Akhiezer N. I., Glazman I. M. Theory of linear operators in Hilbert space. - New York: Dover Publ., Inc., 1993. - 218 p. (Russian edition: Moscow: Nauka, 1966. - 544 p).

[^0]: * The investigation of the first author has been supported in part by the DFFD under grant 14.1/003.

