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MULTIPLICATIVE RELATIONS
WITH CONJUGATE ALGEBRAIC NUMBERS*

MUL|TYPLIKATYVNI SPIVVIDNOÍENNQ

ZI SPRQÛENYMY ALHEBRA}ÇNYMY ÇYSLAMY

We study which algebraic numbers can be represented by a product of conjugate over a fixed number
field  K  algebraic numbers in fixed integer powers.  The problem is nontrivial if the sum of these integer
powers is equal to zero.  The norm over  K  of such number must be a root of unity.  We show that there
are infinitely many algebraic numbers whose norm over  K  is a root of unity and which cannot be
represented by such product.  Conversely, every algebraic number can be expressed by every sufficiently
long product in conjugate over  K  algebraic numbers.  We also construct nonsymmetric algebraic
numbers, i.e., such that none elements of the respective Galois group acting on the full set of their
conjugates form a Latin square.

DoslidΩeno, qki alhebra]çni çysla moΩut\ buty zobraΩeni u vyhlqdi dobutku sprqΩenyx nad

fiksovanym çyslovym polem  K  alhebra]çnyx çysel u fiksovanyx cilyx stepenqx.  Rozhlqdu-

vana zadaça [ netryvial\nog, qkwo suma cyx cilyx stepeniv dorivng[ nulg.  Norma nad  K  tako-

ho çysla ma[ buty korenem z odynyci.  Pokazano, wo isnu[ neskinçenno bahato alhebra]çnyx çy-

sel, norma nad  K  qkyx [ korenem z odynyci i qki ne moΩut\ buty zobraΩeni zhadanym dobutkom.

Navpaky, koΩne alhebra]çne çyslo moΩna vyrazyty bud\-qkym dostatn\o dovhym dobutkom

sprqΩenyx nad  K  alhebra]çnyx çysel.  Pobudovano takoΩ nesymetryçni alhebra]çni çysla,

tobto taki, wo Ωoden element vidpovidno] hrupy Halua, qka di[ na povnij mnoΩyni ]xnix sprq-

Ωen\, ne formu[ Latyns\kyj kvadrat.

1.  Introduction.  Let  K  be a number field, i.e., a finite extension of the field of
rational numbers  Q .  In this paper we investigate multiplicative relations with

conjugate algebraic numbers.  More precisely, given  β ∈ Q   and  k1 , … , kn  ∈ Z
*,  our

main concern is to determine whether or not  β   can be expressed as  α α1
1k

n
kn…   with

some algebraic numbers  α1 , … , αn  conjugate over  K.  (Throughout, as usual,  Q

denotes the set of algebraic numbers, and  Z*  denotes the set of non-zero integers.)

Let  M ( K; k1 , … , kn )  be the set of all  β  expressible as  α α1
1k

n
kn… .  Here, we do

not assume that  α1 , … , αn  are all distinct, nor we assume that the degree of  α = α1

over  K  is equal to  n.  Throughout, we reserve the letter  d  for the degree of  β  over
K.  Also, with  β1 = β , β2 , … , βd  being the full set of conjugates of  β  over  K,  let

L = K ( β1 , … , βd )  be the normal closure of  K ( β )  over  K,  and let  G = Gal ( L / K )  be

the Galois group of  L / K.
As in [1], it is easily seen that  M ( K; k1 , … , kn ) = Q ,  unless  k1 + … + kn = 0.

(Just take  α1 = … = αn = β1 1/( +…+ )k kn .)  Also,

 M ( K; 1, – 1 )  ⊂   M ( K; k1 , … , kn ).

Indeed, the equality  k1 + … + kn = 0  with non-zero  k1 , … , kn  implies that  n ≥ 2.
The above inclusion now easily follows, by setting  α2 = … = αn  and observing that

M ( K; k k1 , … , k kn ) = M ( K; k1 , … , kn )  for  k ∈ Z
*  (by Theorem 1 below).

The structure of  M ( K; k1 , … , kn )  is nontrivial if  n ≥ 2  and  k1 + … + kn = 0  (see,

for instance, Corollary 2 in Section 5).  Note that if  β ∈ M ( K; k1 , … , kn )  with  k1 , …

* 
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… , kn  ∈ Z
*  such that  k1 + … + kn = 0,  then its norm over  K,  namely,  Norm ( β ) =

= β1 , … , βd  must be a root of unity.  Indeed, setting  F  for the normal closure of

L ( α )  over  K  and substituting  β = α α1
1k

n
kn… ,  we deduce that

  

Norm Norm Norm/ / /F K F K j
k

j

n

F K
k kj n( ) = ( ) = ( ) = ( )

∈ =

+…+∏ ∏β σ β α α
σ G 1

1   =  1,

where  G = Gal ( L / K ).  Since  Norm /F K ( )β   is a natural power of  Norm ( β ),  the latter
number is a root of unity.

In the next section, we state the main results of this paper.  Their comparison with
earlier results (in particular, with additive results) will be discussed in Section 3.  In
Section 4, we prove Theorem 1 and Corollary 1.  Section 5 contains the proofs of
Theorems 2 and 3 which show that the condition on the norm of  β  is not sufficient for
it to belong to  M ( K; k1 , … , kn ).  In Section 6 we prove Theorem 4 which asserts that
every  β  whose norm is a root of unity can be represented by every sufficiently long
multiplicative form.  We also present an example showing how, for a given  β,  one can
find the respective  α.  The last section contains the construction of nonsymmetric
numbers (see the definition at the end of Section 2).

2.  Main results.  Below,  k1 , … , kn  are integers,  K  is an arbitrary number field,

L  is the normal closure of  K ( β )  over  K,  and  G = Gal ( L / K ).  Also, for  r ∈  Q ,  the

number  β βr r= { }exp log   is defined by taking the principal branch of the logarithm.
Our first theorem shows that the set  M ( K ; k1 , …  , kn )  is invariant under

multiplication by roots of unity.  This implies that the search for possible a can be
reduced to those numbers whose powers lie in the field  L.

Theorem 1.  Suppose that   β ∈ M ( K; k1 , … , kn ),   r  ∈  Q ,   and   ζ   is  a root of

unity.  Then  ζ β, βr ∈ M ( K; k1 , … , kn ).

Corollary 1.  Given integers   k1 , … , kn ,   assume that   β  = α α1
1k

n
kn… ,   where

α1 , … , αn  are all conjugate to  α  over  K.  Then  α   can be chosen so that one of
its natural powers lies in  L.

In the next two theorems we show that not all algebraic numbers whose norm is a
root of unity lie in the set  M  ( K; k1 , … , kn ),  where  k1 + … + kn = 0.  The proof of
Theorem 3 is constructive and, at the same time, it is rather unusual for this kind of
proofs.  It uses, for instance, some elementary properties of the Pell equation.

Theorem 2.  Suppose that   β  ∈  M ( K; k1 , … , kn )   with   k1  , … , kn  ∈  Z
*    such

that  k1 + … + kn = 0.  Then there is a subgroup  H   of   G ,  generated by  n – 1

(not necessarily distinct) elements, such that  σ βσ ( )∈∏ H
  is a root of unity.

Theorem 3.  Assume that  k1 , … , kn  ∈  Z
*  are such that  k1 + … + kn = 0.  Then

there exists an algebraic number   β ∉ M  ( K; k1 , … , kn )   of degree   d = 2n  over  K
whose norm over  K  is equal to 1.

Our final theorem shows that the condition on  Norm ( β )  to be a root of unity is not
only necessary, but also sufficient for  β  to lie in  M ( K; k1 , … , kn ),  provided that  n
is sufficiently large.

Theorem 4.  Assume that   k1 , … , kn  ∈  Z
*,   and   β    is an algebraic number of

degree  d  over   K   whose norm over   K  is a root of unity.   If   n ≥ 2d – 5,    then
β ∈ M ( K; k1 , … , kn ).
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Similarly to Theorem 3 in [1], the inequality  n ≥ 2d – 5  can be replaced by  n ≥
≥ 2 [ d / 2 ] – 1  for symmetric  β.  Here,  [ … ]  stands for the integral part, and  β ∈  K
of degree  d  over  K  is called symmetric over  K  if there exist  σ2 , … , σd  ∈  G  such

that the matrix  σ βi j i j d
( )

= …, , ,1
,  where  σ1   stands for the identity, is a Latin square,

namely, each of its rows and each of its columns is a permutation of  β1 , … , βd .  In
Section 7 we will prove the result which was announced in [1]: the smallest possible
degree for nonsymmetric numbers to occur is equal to 6.

3.  Comparison with earlier results and comments.  There are several types of
problems concerning additive and multiplicative relations in conjugates of an algebraic
number.  Given a field  K,  an algebraic number  β  over  K,  and  k1 , … , kn  ∈  K,  one
can ask, for instance, whether  β  can be expressed as  k1  α1 + … + kn αn  with distinct
α1 , … , αn  conjugate over  K.  Similarly, for integer  k1 , … , kn ,  one can ask whether

β  is expressible as  α α1
1k

n
kn… .  The cases  β = 0  (and  β = 1  in the multiplicative

setting, respectively) were studied earlier by V. A. Kurbatov [2], C. J. Smyth [3, 4],
K. Girstmair [5, 6], J. D. Dixon [7], M. Drmota and M. Skalba [8] (see also [9, 10]).
Similar problems were also studied by E. M. Matveev [11], the author [12] and
T. Zaimi [13 – 15].

Given a positive integer  n  and non-zero  k1 , … , kn  ∈  K,  one can also ask which
algebraic numbers  β  over  K  can be written as

β  =  k1 α1 + … + kn αn

with algebraic numbers  α1 , … , αn  conjugate over  K .  For  n  = 2,  the complete
answer was given in [16]: an algebraic number  β  can be written as a difference  α1 –
– α2  of algebraic numbers  α1 

,  α2  conjugate over a number field  K  if and only if

there is  σ ∈ G  such that  σ βi
i

( )=
−∑ 0

1v
 = 0.  (Here,  v  is the order of the cyclic group

〈 σ 〉  generated by  σ .)  The case  n  ≥ 3  was the main subject of our paper [1].
Similarly,  β  can be written as a quotient  α1 / α2  of algebraic numbers  α1 

,  α 2

conjugate over a number field  k  if and only if there is  σ ∈ G  such that  
 

σ βi
i

( )=
−∏ 0

1v

is a root of unity.  Note that in Hilbert’s Theorem 90 (see, e.g., [17, 18] and also [19,
20] for generalizations), where both  β  and  α  are only allowed to lie in a fixed cyclic
extension of  K,  the answer is different.

Let  k1 , … , kn ∈ Z
*.  Assume that  β = α α1

1k
n
kn…   with  α1 , … , αn  conjugate to  α

over a number field  K.  In [1] we asked whether it is true that  α  can be chosen so that

its natural power is equal to  a a
d
adβ β1

1 …   with integer  a, a1  , … , ad 
?  This, as we

claimed, would be sufficient in order to give the additive theorems of [1] in the
multiplicative form.  In the present paper, we use a much weaker version of this
statement (Corollary 1), but still attain the same goals as in [1].

There is nothing like Theorem 1 needed in the additive case, because, for  r ∈  Q ,

the numbers  r α  and  r  α′  are conjugate over  K  if so are  α  and  α′.  This is, in

general, false in the multiplicative case:  αr  and  α′ 
r  need not be conjugate for  α  and

α′  being conjugate.  Theorem 2 is a direct analogue of the respective additive theorem
in [1] both in terms of the result and in terms of the proof.  The proof of Theorem 3 is
much more subtle compared to its additive analogue (see the construction before
Corollary 1 in [1]), because now we cannot use the normal basis theorem.  The present

construction uses, for instance, the fact that the Pell equation  X mY2 2−  = 1,  where  m
is square-free, has infinitely many solutions in positive integers  X,  Y .  It also involves
an extra part of combinatorics.  Finally, Theorem 4 looks essentially the same as does
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its additive analogue (Theorem 3 in [1]), although, because of what was said earlier, the
practical computation becomes more difficult (see the example in Section 6).  In
particular, for  d = 4,  it follows that every  β   of degree  ≤ 4  over  Q   can be

represented by every form  α α α1 2 3
1 2 3k k k   of length 3 with fixed  k1 , k2 , k3 ∈ Z

* and some

algebraic numbers  α1 , α2 , α3  conjugate over  Q.  Thus, for  d = 4,  the inequality  n ≥
≥ 3  of Theorem 4 is sharp.  It cannot be replaced by  n ≥ 2,  which is shown by the
example of  β = 1 + 2 6+  ∉ M ( Q; 1, – 1 )  (see [16] or apply Theorem 2 with  n =

= 2  combined with the fact that, for this  β,  G  is the Klein 4-group).
4.  Restrictions on algebraic numbers.  Proof of Theorem 1.  Write  β  =

= α α1
1k

n
kn…   with  α1 , … , αn  conjugate over a number field  K.  Assume that  m   is a

positive integer and  ζ1 , … , ζ n  are arbitrary  mth roots of unity.  We will show first

that there is a positive integer  a  such that  ζ α ζ α1
1

1
1a am

n
m

n
/ /, ,…   are conjugate over

K.  Here,  a m1/   denotes the positive  mth root of  a.
Indeed, let  F  be the normal closure of  K ( α, µm  )  over  K ,  where  µm   is the

primitive  mth root of unity.  Take a positive integer  a  such that the polynomial  zm  –
– a  is irreducible over  F.  (This is possible, e.g., by Theorem 16 on p. 221 in Lang’s

book [18].)  Then, firstly,  α 1 , … , αn  are all conjugate over  K a m( )1/ ,  for otherwise

the minimal polynomial of  α  over  K  is reducible over  K a m( )1/ .  We thus get

D  >  [ ] [ ][ ]
[ ]

[ ]( ) ( ) = ( ) ( ) ( )
( )

= ( )K a K a
K a K K K

K a K
K Km m

m

m
1 1

1

1
/ /

/

/, :
, : :

:
:α α α α α   =  D,

where  D  is the degree of  α  over  K,  a contradiction.  Secondly,  F a m( )1/
 / F   and

F / K  are both Galois extensions, hence there are automorphisms  τ1 , … , τn  in the

Galois group of  F a m( )1/
 / K   fixing  F   and taking  a m1/   to  ζ ζ1

1 1a am
n

m/ /, ,… ,

respectively.  Finally,  F a m( )1/
 / K a m( )1/   is a Galois extension whose Galois group

isomorphic to that of  F / K  (see, for instance, Theorem 4 of Ch. VIII in. [18]).  Thus

there are automorphisms  σ 1  , … , σn  in the Galois group of  F a m( )1/
 / K   fixing

K a m( )1/   and taking  α   to  α 1 , … , αn 
,  respectively.  Note that  τ σ αj j

ma( )1/  =

= τ αj
m

ja( )1/  = ζ αj
m

ja1/ ,  where  j = 1,  … , n.  It follows that  ζ α ζ α1
1

1
1a am

n
m

n
/ /, ,…

are all conjugate over  K,  as claimed.
Write  ζ = exp /{ π − }2 1u m   with  u < m  coprime.  Let  k ′  be the greatest common

divisor of  k1 , … , kn 
.  We can certainly assume that  k ′ = 1,  for otherwise the initial set

of conjugates  α1 , … , αn  can be replaced by the set  α α1
′ ′…k

n
k, , .  Clearly, there exist

nonnegative integers  r1 , … , rn < m  such that  r1 k1 + … + rn kn  is equal to  u  modulo

m.  Take  a ∈ Z
*  so that  δ1 = µ αm

r ma1 1
1

/ , … , δn = µ αm
r m

n
n a1/   are conjugate over  K.

Using  k1 + … + kn = 0  (which can be assumed without loss of generality, for

otherwise  M ( K; k1 , … , kn ) = Q ,  and there is nothing to prove), we obtain that

δ δ µ α α µ β ζβ1 1
1 1 1 1k

n
k

m
r k r k k

n
k

m
un n n n… = … = =+…+ .

Consequently,  ζ β ∈ M ( K; k1 , … , kn ) .

For every  r ∈ Q,  there are roots of unity  ζ1 , … , ζ n  such that  ζ α ζ α1 1
r

n n
r, ,…   are

all conjugate to  αr  over  K.  (Recall that  αr = exp log{ }r α   is defined by taking the

principal branch of the logarithm.)  Thus  β = α α1
1k

n
kn…   implies that
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( ) … ( ) =ζ α ζ α ζβ1 1
1r k

n n
r k rn

with some root of unity  ζ.  Hence  ζβr   lies in  M  ( K; k1 , … , kn ),  and, by the above,

so does  ζ ζβ−1 r  = βr
.

Proof of Corollary 1.  Let  F  be the normal closure of  L ( α )  over  K ,  and let
G = = Gal ( F / K ).  We have that  K ⊂ L ⊂ F.  By the main theorem of Galois theory,  G
= = G / H,  where

H  =  { σ ∈ G | σ ( x ) = x  for all  x ∈ L }.

Assuming that  H = { σ1 , … , σm },  we set

ϕ ( x )  =  σ1 ( x ) … σm ( x )

for every  x ∈ F.   Clearly,  ϕ ( β ) = βm
,  since  β ∈  L.  On applying  ϕ  to the equality

β = α α1
1k

n
kn… ,  we deduce that

βm
  =  ϕ α ϕ α( ) … ( )1

1k
n

kn .

Also, as  H  is a group,  σj ( ϕ ( α ) ) = ϕ ( α )  for every  j = 1, … , n.  Hence

ϕ ( α ) ∈ L  =  { x ∈ F | σ ( x ) = x  for all  σ ∈ H }.

The numbers  ζ ϕ α ζ ϕ α1 1
1 1( ) … ( )/ /, ,m

n n
m   are conjugate over  K  for some  m  th

roots of unity  ζ1 , … , ζ n 
.  Now, as in the proof of Theorem 1, it follows that there is a

positive integer  a  such that  β = δ δ1
1k

n
kn… ,  where  δ1 = ζ ϕ α1

1
1

1a m m/ /( ) , … , δn =

= ζ ϕ αn
m

n
ma1 1/ /( )   are all conjugate over  K.  This completes the proof, since  δ1

m  =

= δm
 = a ϕ ( α ) ∈ L.

5.  On numbers which cannot be represented.  Proof of Theorem 2.  Suppose

that  β  can be expressed as  α α1
1k

n
kn… .  By Corollary 1, there is a positive integer  m

such that  αm
 ∈ L.  On replacing  β, α 1 , … , αn  by their  m th powers (without

changing the notation for  α  ),  we see that the new  α  lies in  L.  It follows that  βm
 =

= α σ α σ αk k
n

kn1 2
2( ) … ( )   with  σ2 , … , σn  ∈  G.  Setting  H  = 〈 σ2 , … , σn 〉,  we

deduce that

σ β σ α σ α σ α σ α
σ σ σ

( ) = ( ) … ( ) = ( )
∈ ∈

+…+

∈
∏ ∏ ∏( )m

H

k k
n

k

H

k k

H

n n1 2 1
2   =  1,

which implies Theorem 2.
Let  K  be a number field, and let  p1 , … , pn  be prime numbers such that  p1  ∉

∉ K, p2  ∉ K p1( ), … , pn  ∉ K p pn1 1, ,…( )− .  Let  S1 , … , Sl  be all  l = 2n – 1

nonempty subsets of the set  { p1 , … , pn 
}  (in an arbitrary order).  Set  mi = p

p Si∈∏ .

Assume that  xi 
,  yi  are solutions of the Pell equations

X m Yi
2 2−   =  1

(in positive integers), where  i = 1, … , l,  satisfying  xi > ( )+2 1
2

xi
l   for  1 ≤ i ≤ l – 1.

Consider the number

β  =  ( + )
=

∏ x y mi i i
i

l

1

.
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Lemma 1.  The number  β   is a unit of degree  2n  over  K  such that no product

of fewer than  2n  of its conjugates is a root of unity.
Proof of Lemma 1.  We see at once that  β  is a unit, because it is a product of

units  x y mi i i+ .  Since

K p p Kn1 1, , :…( )[ ]−   =  2n,

it follows immediately that the degree of  β  over  K  is at most  2 n.  The Galois group
of  K p pn1, ,…( )  / K  is generated by  n  elements of order 2, say  σ1 , … , σn ,  where

σj  maps  pj   to  – pj   and every other  pi ,  i ≠ j,  to itself.  The conjugates of  β
are all of the form

β′  =  ( + )
=

∏ x y mi i i i
i

l

ε
1

,

where  εi ∈ { 1, – 1 }.  We call  ( ε1 , ε2 , … , εl )  the signature of  β′.  The signature of
every  β′  is uniquely prescribed by the  n  signs  εi  which correspond to  Si  containing

exactly one prime number.  Consider the table with  2n  rows and  2 n – 1 = l  columns,

whose first row contains  2n – 1  of plus signs, and whose other  2n – 1  rows
correspond to the signatures of different  β′.

We first show that every row except for the first contains  2n
 
–

 
1 – 1  of plus signs

and  2n
 
–

 
1  of minus signs.  This is, of course, the case for  n = 1.  Assume that this is

true with  n – 1  instead of  n.  By adding the square root of the  pn th prime with plus

sign, we increase the number of plus signs by  1 + ( 2n
 
–

 
2 – 1 ) = 2n

 
–

 
2.  The total number

of plus signs will be  2n
 
–

 
2 – 1 + 2n

 
–

 
2 = 2n

 
–

 
1 – 1.  Similarly, after adding the square

root of the  pn th prime with minus sign, the total number of plus signs will be  2 n
 
–

 
2 –

– 1 + 2n
 
–

 
2 = 2n

 
–

 
1 – 1,  unless all square roots  p pn1 1, ,… −   were with plus signs.

The latter situation however could be also achieved by adding the square root of the
pn – 1 th prime with minus sign which leads to the former situation.  Alternatively, if just
one  pn  is with minus sign, then one can find the total number of minus signs by the
formulae

1 1
1

2

1

1
+ − +

−



 + … +

−
−





n

n n

n
  =  2n

 
–

 
1.

Furthermore, every column of the table contains  2 n
 
–

 
1  of plus signs and  2n

 
–

 
1  of

minus signs.  Indeed, if the sign of the column is determined by the sign of the product
of  v  signs, then it is minus in

  

v v v

v
v v v

1 3 2 1 2 1
2 2 1



 + 



 + … +

( − ) +










 =[ ]

− − + −
/

n n   =  2n
 
–

 
1

cases.  The product of  β  and all different  β′  is thus equal to 1.  Clearly,  β  and all  β′
are positive.  Both remaining claims of the lemma will therefore follow if the product

of  < 2n  (not necessarily distinct) conjugates  β  is newer equal to 1.

Suppose, contrary to our claim, that the product of some  s < 2n  conjugates of  β   is
equal to 1.  Let   s1  of these be  β  itself, and let   s – s1   be different from   β.  There is
no loss of generality to assume that  s1 ≥ 1,  since we can map arbitrary  β′  to  β.  Now,

consider the table with  s   rows and  2n – 1  columns which correspond to the
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conjugates involved in the product, where every row is taken with corresponding
multiplicity.  The total number of plus signs in the new (smaller) table is equal to

s s s s sn n n n
1 1

1 1
1

12 1 2 1 2 1 2( − ) + ( − )( − ) = ( − ) +− − − .

This number is greater than  s n( − )2 1 2/ ,  so that the number of plus signs is greater
than the number of minus signs.  By our construction, the product of conjugates is
equal to

( + )
=

∏ x y mi i i
e

i

l
i

1

  =  1,

where  ei  is the difference between the number of plus signs and the number of minus
signs in the  i th column.  The last equality can be also written as

( + ) = ( + )∏ ∏ −x y m x y mj j j
e

j
k k k

e

k

j k ,

where  j  are all indices with positive  ej 
,  and  k  are all indices with negative  ek 

.
(Here, at least one side is greater than 1, because  e1 + … + el > 0.)

Assume that  q  is the smallest number among all  j  and all  k.  The side which
contains the index  q   is at least  x y mq q q+  > xq 

.  We immediately have a

contradiction if  q = l.  Otherwise, since  | ei | ≤ s ≤ l  and  x y mi i i+  < 2xi 
,  the other

side is at most  ( ) < ( )+
( − )

+2 21 1
2

x xq
l l q

q
l  < xq 

,  a contradiction again.  The proof of
Lemma 1 is now completed.

Proof of Theorem 3.  Consider  β   as defined before Lemma 1.  Every element of
G,  except for identity, is of order 2.  Furthermore,  G  is abelian.  Therefore, every

subgroup of  G  generated by  n – 1  of its elements has the order at most  2n
 
–

 
1.  By

Theorem 2, it follows that if  β ∈ M ( K; k1 , … , kn ),  then the product of at most  2n
 
–

 
1

of its conjugates is a root of unity.  This is however not the case, by Lemma 1, a
contradiction.  This completes the proof of Theorem 3, because, by Lemma 1 again, the

degree of  β  over  K   is  2n.  (Norm ( β ) = 1,  because every column in the table of
signatures contains equal number of plus and minus signs.)

Corollary 2.  Let  k1 , … , kn  ∈  Z
*  be such that  k1 + … + kn = 0.  Then  M  ( K;

k1 , … , kn )  is not a multiplicative semigroup.
By the results of [16], every algebraic number of prime degree whose norm is a root

of unity belongs to  M  ( K; 1, – 1 ).  Thus, as every quadratic unit  x y mi i i+ ,  where
xi 

,  yi  are positive integers and  mi  is an integer which is not a perfect square, is a

quotient of two conjugates over a number field  K, this number belongs to every  M  ( K;
k1 , … , kn ).  For the proof of Corollary 2, note that the algebraic number  β   considered

in Theorem 3 (see Lemma 1) is the product of quadratic units  x y mi i i+ ,  but  β ∉
∉ M ( K; k1 , … , kn ),  by Theorem 3.

6.  Representation by sufficiently long forms.  The next lemma is a part of
Lemma 2 proved in [1].

Lemma 2.  Suppose that the  d  ×  d  matrix, where  d  ≥ 4,  with negative real
entries in the main diagonal and nonnegative real entries outside the main diagonal is
such that the sums of its elements in every row and in every column are all equal to
zero.  If the first row contains at least  d – 2  positive entries, then the rank of the
matrix is equal to  d – 1.
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Proof of Theorem 4.  For  d = 1  the theorem follows from Theorem 1, whereas
for every  β  of prime degree  d  (including  d = 2  and  d = 3)  it follows from the fact
that already  M ( K; 1, – 1 )  contains  β.  It therefore suffices to prove the theorem for

the case  d ≥ 4  and  kjj

n

=∑ 1
 = 0,  where  k1 , … , kn  ∈ Z

*.  As  n ≥ 2d – 5,  at least  d –

– 2  elements of the multiset  k1 , … , kn  are either positive or negative.  Without loss of
generality we may assume that  k2 , … , kd – 1  are all positive.  On replacing of the
remaining ones  k1  and  kd , … , kn  by  k1 + kd + … + kn  and  n  – d  + 1  zeroes,
respectively, and writing  k1  again for the sum  k1 + kd + … + kn ,  we will show that

there is an  m ∈ Z
*  such that

β α αmd k
d
kd= …1

1 ,

where  kd = 0,  has a solution in conjugates of  α  over  K.

Since  ( … )β β1 d
m  = 1  for some positive integer  m,  we see that

β β β β β1
1

2 1
( − ) − −… = =d m m

d
m md md .

Write  α = β β1
1x

d
xd…   with unknowns  x1 , … , xd  ∈  Z.  Choose the automorphisms

σ2 , … , σd  ∈  G  such that  σ βi( )1  = βi  ,  i = 2, …  , d,  and let  σ1  be the identity.

Setting  αi = σ αi
− ( )1 ,  where  i = 1, … , d,  we deduce that

σ α σ α β β β β1
1 1

1
1

2
1− − ( − ) − −( ) … ( ) = … =k

d
k d m m

d
m mdd ,

if

M x x x d m m md
t t( … ) = ( − ) − … −( )1 2 1, , , , , ,

has a solution in  x1 , … , xd ∈ Z.  Here,  t  stands for the transpose, and  M  is the  d × d

matrix  mij i j d, , ,= …1
,  where  mij = kr∑   and the sum is taken over every  r  such that

σ βr i( )  = βj  .
By Lemma 2, the rank of  M  is equal to  d – 1.  Summing the rows of the  d × (  d +

+ 1 )  matrix  M*  which is obtained by adding the  ( d + 1 ) st column

( )( − ) − … −d m m m t1 , , ,

to  M,  we see they are linearly dependent over  Q.  It follows that  d – 1 = rank M ≤

≤ rank M* ≤ d – 1,  thus  rank M = rank M* = d – 1.  By the Kronecker – Capelli
theorem, we conclude that the linear system has a non-zero rational solution.  Let  x′  be

the least positive integer such that  x′ xi ∈  Z
*  for every  i = 1, … , d.  On replacing

every  xi  by  x′ xi  and  m  by  x′ m,  we get the desired conclusion.
If in Lemma 2 the condition on the first row of the matrix to contain at least  d – 2

positive entries is replaced by the condition to contain at least  [ d / 2 ]  positive entries,
and, in addition, the  d × d  matrix is a Latin square, then, by Lemma 2 of [1], its rank
is also equal to  d – 1.  Hence, if  β  is symmetric over  K  and if  n ≥ 2 [ d / 2 ] – 1,  then
at least  [ d / 2 ]  elements among  k1 , … , kn  are either positive or negative.  Thus we can

argue as above with the automorphisms  σ2 , … , σd  such that  σ βi j i j d
( )

= …, , ,1
  is a

Latin square.  This shows that, for symmetric  β,  in Theorem 4 the inequality  n ≥ 2d –
– 5  can by replaced by the inequality  n ≥ 2 [ d / 2 ] – 1.
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Example.  Let  K = Q ,  β = 1 + 2 6+ ,  d = 4,  n = 3,  k1 = k2 = 1,  k3 = – 2.

Then  α  can be chosen as  ( )( + + + )8 5 2 4 3 3 6 2 1 2/ / .
By Theorem 4, we know that the equation

β  =  1 2 6 1 2 3
2+ + = −α α α

has a solution in conjugate over  Q  algebraic numbers  α1 , α2 , α3 .  We will show how

to find some solutions.
Let us choose the following indices:  β1 = 1 + 2 6+ ,  β2 = 1 – 2 6− ,  β3 =

= 1 – 2 6+   and  β4 = 1 + 2 6− .  Now, following the proof of Theorem 4 with
m – 1,  we obtain the system of linear equations

x1 + x2 – 2x3  =  3,

x1 + x2 – 2x4  =  – 1,

– 2x1 + x3 + x4  =  – 1,

– 2x2 + x3 + x4  =  – 1.

(Of course, there is no need to put the negative elements of  M  on the main diagonal.
It suffices to assume that every row and every column of  M  contains precisely one
negative element.)  One of its solutions is  x1  = x2 = 0,  x3 = – 3 / 2,  x4 = 1 / 2.  So we
can choose  x′ = 2,  which gives the integer solution  x1 = x2 = 0,  x3 = – 3,  x4 = 1  for
m = 2.  This choice shows that

β δ δ δ8
1 2 3

2= − ,

where  δ1 = β β3
3

4
− ,  δ2 = β β3 4

3− ,  δ3 = β β1
3

2
− .  On replacing  δ  by  – δ,  we compute

δ  =  δ1  =  ( + − ) ( + ) = − + −1 2 6 7 4 3 11591 8196 2 6692 3 4732 64 3 .

The minimal polynomial of  δ  over  Q  is

Q ( z )  =  z z z z4 3 246364 10950 284 1− + − + .

Since the polynomial

Q z z z z z( ) = − + − +5 625 5795500 273750 1420 18 32 24 16 8

is irreducible over  Q,  the equation  β = α α α1 2 3
2−   is solvable in conjugates of

α  =  ( ) = ( − + − )( )δ / // /5 11591 8196 2 6692 3 4732 6 51 8 1 8

of degree 32.
It is not the smallest possible degree for  α.  The polynomial  Q ( z8

 )  is the product
of three irreducible polynomials  z8 + 16z6 + 20z4 + 8z2 + 1,  z8 – 16z6 + 20z4 – 8z2 +
+ 1,  and  z16 + 216z12 + 146z8 + 24z4 + 1.  In this example, it happens that the roots of

Q ( z8
 )  satisfying  1 2 6 1 2 3

2+ + = −α α α   are all roots of the second polynomial,
namely,  z8 – 16z6 + 20z4 – 8z2 + 1  (which is not always the case).  The roots are  α1 =

= ( )( + + + )8 5 2 4 3 3 6 2 1 2/ / ,  α 2 = ( )( − + − )8 5 2 4 3 3 6 2 1 2/ /   and  α 3 =

= ( )( + − − )8 5 2 4 3 3 6 2 1 2/ / ,  giving the second solution with  α  of degree 8, as
claimed.

7.  Nonsymmetric numbers.  Clearly, every  β  of prime degree  d   over  K   is
symmetric, since the Galois group  G  contains a  d-cycle.  If, for  d = 4,  G  does not
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contain a 4-cycle, then it is the Klein 4-group, so the respective  β  is also symmetric.
Hence the smallest  d  for nonsymmetric  β  must be greater than or equal to 6.  We
will show now that nonsymmetric numbers of degree 6 exist.  For this, we first
introduce an „auxiliary” number  α.

Let  α  be of degree 4 over  K   with the Galois group of  K( )α α α α1 2 3 4, , ,  / K
isomorphic to the full symmetric group on four symbols.  Assume that  ± α1 ±  α 2 ±
± α3 ± α4 ≠ 0.  (It is clear that such  α  exist.)  Set  β = β1 = α1 + α2 

.  Such  β  is of
degree 6 over  K  with the remaining conjugates being  β2 = α2 + α3 

,  β3 = α3 + α4 
,

β4 = α1 + α4 
,  β5 = α1 + α3 

,  β6 = α2 + α4 
,  and with Galois group  G  of order 24.

We claim that  β  is nonsymmetric.
Assume that  β  is symmetric over  K .  Then some five elements of the full

symmetric group acting on  α 1 
, α2 

, α3 
, α4  can be chosen so that their action on the

row  β1 , … , β6  together with identity form a Latin square.  Let  S  be the set of these
five elements.  Evidently, none of the elements in  S  is a transposition nor it is a
product of two transpositions.  The remaining fifteen elements are the identity  τ0  

,  and
the following fourteen elements:  τ1 = (123),  τ2 = (132),  τ3 = (124),  τ4 = (142), τ5 =
= (134),  τ6 = (143),  τ7 = (234),  τ8 = (243),  τ9 = (1234),  τ10 = (1243),  τ11 = (1324),
τ12 = (1342),  τ13 = (1423),  τ14 = (1432),  five of which do form the set  S.  Their
action on  β1 , … , β6  can be described as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 5 6 4 2 6 5 4 2 6 3 5 3 4

2 5 1 3 5 6 1 3 6 3 4 6 4 5 1

3 4 6 5 2 4 5 6 2 4 5 1 6 1 2

4 6 3 1 6 5 3 1 5 1 2 5 2 6 3

5 1 2 2 3 3 4 4 1 6 1 2 3 4 6

6 3 4 4 1 1 2 2 3 5 3 4 1 2 5

Here, the symbol  i  in the first row means  τi 
,  whereas in other five rows  i  stands

for  βi  
.

Since  τ11 ( β1 ) = τ13 ( β1 ),  τ10 ( β2 ) = τ12 ( β2 ),  τ 9  ( β5 ) = τ14 ( β5 ),  the set  S
contains at most one element from the pair  { τ11 

, τ13 },  at most one from  { τ10 
, τ12 },

and at most one from  { τ11 
, τ13 }.  If  τ11 ∈ S,  then  τ2 ∉  S,  since  τ2 ( β5 ) = τ11 ( β5 )

(see the table).  Similarly,  τ3 
, τ5 

, τ8 ∉  S,  because  τ3 ( β5 ) = τ11 ( β5 )  and  τ5 ( β2 ) =
= τ8 ( β2 ) = τ11 ( β2 ).  So, if  τ11 ∈ S,  then the elements of  S8 = { τ1 , … , τ8 }  belonging
to  S  all must lie in the set  S1 = { τ1 , τ4 , τ6 , τ7 }.  Similarly, if  τ13 ∈ S,  or  τ10 ∈  S,  or
τ12 ∈ S,  or  τ9 ∈  S,  or  τ14 ∈ S,  then the elements of  S8  belonging to  S  must lie,
respectively, in  S– 1 = { τ2 , τ3 , τ5 , τ8 },  S2 = { τ2 , τ4 , τ5 , τ7 },  S–  2 = { τ1 , τ3 , τ6 , τ8 },
S3 = { τ2 , τ4 , τ6 , τ8 },  S– 3 = { τ1 , τ3 , τ5 , τ7 }.  Note that  Si ∩ S– i = ∅  for  i = 1, 2, 3

and, for any choice of signs,    S S S± ± ±1 2 3∩ ∩  = 1.  We can therefore conclude by

observing the following.  If    S ∩ { … }τ τ9 14, ,  = 3,  then   S S∩ 8  = 1,  so  S  = 3 +
+ 1 = 4,  a contradiction.  If however    S ∩ { … }τ τ9 14, ,  < 3,  then, once again,  S  <
< 3 + 2 = 5,  because  S S∩ 8  ≤ 2.  (Indeed, by symmetry, there is no loss of
generality to assume that  τ1 ∈  S.  Then  τ4 , τ5 , τ8 ∉  S,  and, moreover, at most one
element from  { τ2 , τ3 , τ6 , τ7 }  can belong to  S.)
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