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MULTIPLICATIVE RELATIONS
WITH CONJUGATE ALGEBRAIC NUMBERS*
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31 CIIPA2KEHUMMU AJITEBPAIMYHUMUA YU CJIAMUA

We study which algebraic numbers can be represented by a product of conjugate over a fixed number
field K algebraic numbers in fixed integer powers. The problem is nontrivial if the sum of these integer
powers is equal to zero. The norm over K of such number must be a root of unity. We show that there
are infinitely many algebraic numbers whose norm over K is a root of unity and which cannot be
represented by such product. Conversely, every algebraic number can be expressed by every sufficiently
long product in conjugate over K algebraic numbers. We also construct nonsymmetric algebraic
numbers, i.e., such that none elements of the respective Galois group acting on the full set of their
conjugates form a Latin square.

HociaxeHo, sKi ajre6paiudi 4nucsia MOXKYyTh OyTH 300pazkeHi y BUTJIAL TOOYTKY CHOpPsI2KEHUX Hall
(piKCOBaHUM YUCJIOBUM mosieM K ajire6paidHuX uuces1 y (piKCOBaHMX IJIMX cTeneHsx. Poaruisay-
BaHa 33/1a4ya € HeTPHBIAJIbHOIO, SIKILO CyMa IUX LiJIMX CTerneHiB gopiBHIoe Hy 0. Hopma Han K Tako-
ro yucJsa mae 6yTu KopeHeM 3 ogunuui. [lokasaHo, 10 iCHY€ HECKIHUEHHO 6araTo ajaredpaidHux Yu-
ceJ1, HopMa Hafi, K SKUX € KOPEHEeM 3 OJIMHMILI 1 SIKi He MOXKYTb OyTH 300parkeHi 3rajaHuM 100y TKOM.
Hapnaku, KoXHe ajredpaiuHe 4MCJI0 MOXKHA BHPA3UTH Oy/ib-sKHUM [JOCTATHHO [JOBI'HUM [J00YTKOM
copsikenux Hapy K anreGpaivnux uucesi. [1oOGynoBaHO TakoXK HECUMETPHUYHI ajreOpaiuHi yucJia,
TOOTO TakKi, 110 KOMEeH eJIEeMEeHT BinoBigHoi rpynu ["amya, sika /i€ Ha MOBHil MHOXKHUHI iXHIX crpsi-
KeHb, He popMye JIaTUHCHKUI KBapaT.

1. Introduction. Let K be a number field, i.e., a finite extension of the field of
rational numbers Q. In this paper we investigate multiplicative relations with

conjugate algebraic numbers. More precisely, given B € Q and ki,....k, € Z*, our

k

. . . k .
main concern is to determine whether or not 3 can be expressed as o' ... 0" with

some algebraic numbers o, ..., 0, conjugate over K. (Throughout, as usual, Q
. * .
denotes the set of algebraic numbers, and Z denotes the set of non-zero integers.)

Let M(K; ky, ..., k,) bethesetofall B expressible as chl Ocﬁ". Here, we do
not assume that o, ..., o, are all distinct, nor we assume that the degree of o = o

over K is equal to n. Throughout, we reserve the letter d for the degree of [ over
K. Also, with B, =8, B,, ..., B; being the full set of conjugates of B over K, let

L=K(By,...,B,;) bethe normal closure of K() over K, andlet G=Gal (L/K) be
the Galois group of L/K.
As in [1], it is easily seen that M (K; k;, ..., k,) = Q, unless k; + ... + k,= 0.

n
(Just take o) = ... = o, = B/ETTk) y Algo,
MK, 1,-1) € M(K;ky, ..., k,).

Indeed, the equality k; + ... + k,= 0 with non-zero &, ..., k, implies that n > 2.
The above inclusion now easily follows, by setting o, = ... = o, and observing that

M(K; kky, ..., kk,)=M(K; k..., k,) for ke 7" (by Theorem 1 below).
The structure of M (K; ky,...,k,) isnontrivial if n=2 and k; + ... + k,=0 (see,
for instance, Corollary 2 in Section 5). Note that if f € M(K; k;, ..., k,) with k, ...
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MULTIPLICATIVE RELATIONS WITH CONJUGATE ALGEBRAIC NUMBERS 891

k, € Z" such that ki +...+k,=0, then its norm over K, namely, Norm (}) =

Lk,
=By, ..., B; must be a root of unity. Indeed, setting F for the normal closure of

L(o) over K and substituting = ()c{cl (xﬁ", we deduce that

n
k.
Normg/x(B) = [] o®) = [[Normpx(a;)” = Norm ()1 + = 1,

Geg j=1

where G = Gal (L/K). Since Normpg,g(B) is a natural power of Norm (f), the latter

number is a root of unity.

In the next section, we state the main results of this paper. Their comparison with
earlier results (in particular, with additive results) will be discussed in Section 3. In
Section 4, we prove Theorem 1 and Corollary 1. Section 5 contains the proofs of
Theorems 2 and 3 which show that the condition on the norm of B is not sufficient for

it to belong to M (K; ki, ..., k,). In Section 6 we prove Theorem 4 which asserts that

every B whose norm is a root of unity can be represented by every sufficiently long
multiplicative form. We also present an example showing how, for a given 3, one can
find the respective «. The last section contains the construction of nonsymmetric
numbers (see the definition at the end of Section 2).

2. Main results. Below, ky,..., k, are integers, K 1is an arbitrary number field,

L 1is the normal closure of K(B) over K, and G = Gal(L/K). Also, for re Q, the

number B" = exp{rlogP} is defined by taking the principal branch of the logarithm.
Our first theorem shows that the set M(K; k;, ..., k,) is invariant under

multiplication by roots of unity. This implies that the search for possible a can be
reduced to those numbers whose powers lie in the field L.

Theorem 1. Suppose that B e M(K; k,,....k,), re€ Q, and { is a root of
unity. Then (B, B € M(K; ki, ..., k,).
I3 k

Corollary 1. Given integers ki, ..., k,, assume that B = o' ...a,", where
oy, ..., 0, are all conjugate to o. over K. Then o can be chosen so that one of

its natural powers lies in L.
In the next two theorems we show that not all algebraic numbers whose norm is a

root of unity lie in the set M (K; k, ..., k,), where k; + ... + k,= 0. The proof of

Theorem 3 is constructive and, at the same time, it is rather unusual for this kind of
proofs. It uses, for instance, some elementary properties of the Pell equation.

Theorem 2. Suppose that B € M(K; ky,..., k) with kq,...,k,€ Z* such
that ki + ... + k,= 0. Then there is a subgroup H of G, generated by n — 1

(not necessarily distinct) elements, such that 1_[Ge " 6(B) is a root of unity.

Theorem 3. Assume that ki, ..., k, € Z" are such that ki+ ...+ k,=0. Then

there exists an algebraic number B¢ M (K;ky,...,k,) of degree d =2" over K

whose norm over K is equal to 1.
Our final theorem shows that the condition on Norm () to be a root of unity is not

only necessary, but also sufficient for B to lie in M (K; ky, ..., k,), provided that n
is sufficiently large.

Theorem 4. Assume that ky,...,k, € Z*, and B is an algebraic number of

degree d over K whose norm over K is a root of unity. If n >2d-5, then

Be M(K;ky,...,k,).
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892 A. DUBICKAS

Similarly to Theorem 3 in [1], the inequality n = 2d — 5 can be replaced by n >

>2[d/2]-1 for symmetric B. Here, [...] stands for the integral part, and B e K
of degree d over K is called symmetric over K if there exist ©,,...,0,€ G such

that the matrix H o, /)H~ S where o, stands for the identity, is a Latin square,
i j=t,...,

namely, each of its rows and each of its columns is a permutation of B;,..., ;. In
Section 7 we will prove the result which was announced in [1]: the smallest possible
degree for nonsymmetric numbers to occur is equal to 6.

3. Comparison with earlier results and comments. There are several types of
problems concerning additive and multiplicative relations in conjugates of an algebraic
number. Given a field K, an algebraic number B over K, and k,...,k, € K, one
can ask, for instance, whether [ can be expressed as k; o) + ... + k,0,, with distinct

oy,..., 0, conjugate over K. Similarly, for integer kq, ..., k,, one can ask whether
k

B is expressible as ocfl ...o". Thecases P =0 (and B =1 in the multiplicative
setting, respectively) were studied earlier by V. A. Kurbatov [2], C. J. Smyth [3, 4],
K. Girstmair [5, 6], J. D. Dixon [7], M. Drmota and M. Skalba [8] (see also [9, 10]).
Similar problems were also studied by E. M. Matveev [11], the author [12] and
T. Zaimi [13 - 15].

Given a positive integer n and non-zero ky, ..., k, € K, one can also ask which
algebraic numbers B over K can be written as

B =ko+..+k,0,

with algebraic numbers o, ..., o, conjugate over K. For n =2, the complete
answer was given in [16]: an algebraic number B can be written as a difference o —

— 0, of algebraic numbers o, 0, conjugate over a number field K if and only if
v-1

there is 6 € G such that zi:O

(o) generated by ©.) The case n >3 was the main subject of our paper [1].
Similarly, B can be written as a quotient o;/a, of algebraic numbers o, o,

Gi(B) = (0. (Here, v is the order of the cyclic group

conjugate over a number field k if and only if there is ¢ € G such that H:; o' B)

is a root of unity. Note that in Hilbert’s Theorem 90 (see, e.g., [17, 18] and also [19,
20] for generalizations), where both 3 and o are only allowed to lie in a fixed cyclic
extension of K, the answer is different.

* . .
Let k;,...,k,€ Z . Assume that B = ocfl ...ocl;" with o, ..., 0, conjugate to o
over a number field K. In [1] we asked whether it is true that o. can be chosen so that

its natural power is equal to aPy’ ...B;* with integer a, a,...,a,? This, as we
claimed, would be sufficient in order to give the additive theorems of [1] in the
multiplicative form. In the present paper, we use a much weaker version of this
statement (Corollary 1), but still attain the same goals as in [1].

There is nothing like Theorem 1 needed in the additive case, because, for r € Q,

the numbers ro. and ro’ are conjugate over K if so are o and o’. This is, in

general, false in the multiplicative case: o and of” need not be conjugate for o and
o being conjugate. Theorem 2 is a direct analogue of the respective additive theorem
in [1] both in terms of the result and in terms of the proof. The proof of Theorem 3 is

much more subtle compared to its additive analogue (see the construction before
Corollary 1 in [1]), because now we cannot use the normal basis theorem. The present

construction uses, for instance, the fact that the Pell equation X 2 _my?*= 1, where m
is square-free, has infinitely many solutions in positive integers X, Y. It also involves
an extra part of combinatorics. Finally, Theorem 4 looks essentially the same as does
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its additive analogue (Theorem 3 in [1]), although, because of what was said earlier, the
practical computation becomes more difficult (see the example in Section 6). In

particular, for d = 4, it follows that every B of degree <4 over Q can be

represented by every form ocf‘oclzczocg3 of length 3 with fixed &, k,, k5 € 7" and some

algebraic numbers o, 0, 03 conjugate over Q. Thus, for d =4, the inequality n >

>3 of Theorem 4 is sharp. It cannot be replaced by n =2, which is shown by the
example of B=1+ 2 ++6 ¢ M(Q; 1,—1) (see [16] or apply Theorem 2 with n =

=2 combined with the fact that, for this B, G is the Klein 4-group).
4. Restrictions on algebraic numbers. Proof of Theorem 1. Write B =

= Oc{‘1 ocﬁ” with o, ..., o, conjugate over a number field K. Assume that m is a
positive integer and ..., {, are arbitrary mth roots of unity. We will show first
that there is a positive integer a such that Clal/mocl, et Cnal/mocn are conjugate over

K. Here, a™ denotes the positive mth root of a.
Indeed, let F be the normal closure of K(o, u,,) over K, where p, is the

primitive mth root of unity. Take a positive integer a such that the polynomial 7" —
—a is irreducible over F. (This is possible, e.g., by Theorem 16 on p. 221 in Lang’s
1/m

book [18].) Then, firstly, o, ..., o, are all conjugate over K(a

/my " We thus get

_ [K@"™, o) : K@)][K(o): K] _
[K(a""): K]

), for otherwise

the minimal polynomial of o over K is reducible over K(a

D > [K@@'™, o): K(a"™)] [K(o):K] = D,

where D is the degree of o over K, a contradiction. Secondly, F(a”m)/F and
F/K are both Galois extensions, hence there are automorphisms 7, ..., 7T, in the

Galois group of F(a'/™)/K fixing F and taking 4" to {d'™, ....Cd"™,

respectively. Finally, F(a'/™)/ K(a'™) is a Galois extension whose Galois group
isomorphic to that of F/K (see, for instance, Theorem 4 of Ch. VIII in. [18]). Thus

there are automorphisms G, ..., 0, in the Galois group of F(al/m)/K fixing
K(@™) and taking o to Oq,...,0, respectively. Note that ‘cjcj(al/moc) =
= rj(a”mocj) = Cja”’"ocj, where j=1, ..., n. It follows that Cla”ma], e Cna”’"an

are all conjugate over K, as claimed.
Write { = exp{2n\—lu/m} with u<m coprime. Let k’ be the greatest common

divisor of ky, ..., k,. We can certainly assume that k=1, for otherwise the initial set

of conjugates 0., ..., @, can be replaced by the set oc{‘,, ey Otfl,. Clearly, there exist

nonnegative integers ry,...,r,<m suchthat rik; + ... + r,k, isequal to ¥ modulo

Umo, ..., 8, = wra'’™o, are conjugate over K.

m. Take ae 7 sothat 8, = p'la
Using ky + ... + k, = 0 (which can be assumed without loss of generality, for

otherwise M (K; ki ..., k,) = @, and there is nothing to prove), we obtain that

T R N S TEA B 1)
Consequently, (B e M(K; ky, ..., k,).
For every re Q, there are roots of unity ;, ..., {, such that {ay,...,¢,0, are

all conjugate to o” over K. (Recall that o = exp{rloga} is defined by taking the
principal branch of the logarithm.) Thus B = ocf L OLI,‘," implies that
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GoD . Gan) = B’
with some root of unity {. Hence CB’ lies in M (K; ki, ..., k,), and, by the above,

sodoes (B =P

Proof of Corollary 1. Let F be the normal closure of L(o) over K, and let
G ==Gal (F/K). We have that K c L c F. By the main theorem of Galois theory, G
== G/H, where

H ={ceG|o(x)=x forall xe L}.
Assuming that H = {cG{,...,0,,}, we set
0(x) = 6;(x) ... G,,(x)

forevery x€ F. Clearly, ¢(B)=p", since pe L. On applying @ to the equality

B= ocfl ..ok we deduce that

B" = oo)h ... oo,
Also, as H isagroup, 6;(¢(a)) = @(a) forevery j=1,...,n Hence

¢(a)e L = {xe F|o(x)=x forall ce H}.

1/m 1/m

The numbers o) '™, ...,  ,0(a,) are conjugate over K for some m th
roots of unity (;, ..., {,. Now, as in the proof of Theorem 1, it follows that there is a
positive integer a such that f = 5]f1 ..8M where &, = {ia' ™o)™, ..., 8, =

= {,a"""p(ar,)"'™ are all conjugate over K. This completes the proof, since 8" =
=§8"=ap(a)e L.
5. On numbers which cannot be represented. Proof of Theorem 2. Suppose

that B can be expressed as od‘l aﬁ". By Corollary 1, there is a positive integer m

such that o € L. On replacing B, ay,..., 0, by their mth powers (without
changing the notation for o), we see that the new o lies in L. It follows that Bm =
= a¥o,() ..o, () with 6,,...,06,€ G. Setting H = (G, ...,0,), we
deduce that
my _ ky ky k,\ _ ky+...+k, _
[To®™ = J]o(@ oy ...0,@™) = [] o =1,
ceH ceH ceH

which implies Theorem 2.

Let K be a number field, and let p,, ..., p, be prime numbers such that /p,
¢ K. \pyeg K\p) . VPy 8 K(pooos\[Paoy)- Let Sy, ..., S beall 1=2"—1
nonempty subsets of the set {p;,...,p,} (inan arbitrary order). Set m; = Hpe 5P
Assume that x;, y; are solutions of the Pell equations

X —my* =1

2
(in positive integers), where i=1, ..., [, satisfying x; > (2xi+1)l for 1<i<[-1.
Consider the number

!
B = [TGxi+ym).

i=1
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Lemma 1. The number B is a unit of degree 2" over K such that no product
of fewer than 2" of its conjugates is a root of unity.

Proof of Lemma 1. We see at once that B is a unit, because it is a product of
units x; + y;+/m;. Since

[K(Wprs s fPar): K] = 20,

it follows immediately that the degree of B over K is at most 2". The Galois group
of K(JF, s Jpj)/K is generated by n elements of order 2, say oy, ...,0,, where

G; maps . p; to —ij and every other \/p;, i#j, toitself. The conjugates of B
are all of the form

!
p = H(xi + &N m;),
i=1
where €;€ {1,-1}. Wecall (g, ¢€,,...,¢€) the signature of ’. The signature of
every B’ is uniquely prescribed by the n signs € which correspond to S; containing

exactly one prime number. Consider the table with 2" rows and 2" — 1 = [ columns,

whose first row contains 2" — 1 of plus signs, and whose other 2" — 1 rows
correspond to the signatures of different [’.

n—1

We first show that every row except for the first contains 2°  — 1 of plus signs

and 2! of minus signs. This is, of course, the case for n = 1. Assume that this is
true with n—1 instead of n. By adding the square root of the p,th prime with plus

"2 The total number

sign, we increase the number of plus signs by 1 + (2"72 -1)=2
of plus signs will be 2”72 — 1 + 2" 2=2""! _ 1. Similarly, after adding the square
root of the p,th prime with minus sign, the total number of plus signs will be 212
142" 2= 1, unless all square roots  py, ..., \fpn_l were with plus signs.
The latter situation however could be also achieved by adding the square root of the
P,,—1 th prime with minus sign which leads to the former situation. Alternatively, if just

one p, is with minus sign, then one can find the total number of minus signs by the

formulae
n-—1 n-1 ne1
1+n—1+( )+...+( )=2 .
2 n—1

Furthermore, every column of the table contains 2 =1 of plus signs and PN

minus signs. Indeed, if the sign of the column is determined by the sign of the product
of v signs, then it is minus in

((le) + (Z) + ...+ (2[(0_ 1’;/2]4_1)) on=v _ pv-ltn—v _ on-1

cases. The product of B and all different " is thus equal to 1. Clearly, B and all B’
are positive. Both remaining claims of the lemma will therefore follow if the product

of <2" (not necessarily distinct) conjugates B is newer equal to 1.

Suppose, contrary to our claim, that the product of some s < 2" conjugates of B is
equal to 1. Let s; of these be P itself, and let s—s, be different from . There is
no loss of generality to assume that s; > 1, since we can map arbitrary B’ to 3. Now,

consider the table with s rows and 2" — 1 columns which correspond to the
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896 A. DUBICKAS

conjugates involved in the product, where every row is taken with corresponding
multiplicity. The total number of plus signs in the new (smaller) table is equal to

552" =1 + (s—s)@2" =1 = 52" =1) #5277

This number is greater than s(2" —1)/2, so that the number of plus signs is greater
than the number of minus signs. By our construction, the product of conjugates is
equal to

I
[T +yiim) =1,

i=1

where e; is the difference between the number of plus signs and the number of minus
signs in the ith column. The last equality can be also written as

[IGe +yiafmp™ = TT0u + yifme) ™,
J k

where j are all indices with positive e;, and k are all indices with negative e;.
(Here, at least one side is greater than 1, because e;+ ... + ¢,>0.)
Assume that ¢ is the smallest number among all j and all k. The side which

contains the index ¢ is at least x, +y,\m, > x,. We immediately have a

q q
contradiction if ¢ = /. Otherwise, since |¢;|<s</ and x; +y;ym; <2x;, the other

side is at most (2xq+1)l(l_q) < (2xq+1)l2 < x, a contradiction again. The proof of
Lemma 1 is now completed.

Proof of Theorem 3. Consider B as defined before Lemma 1. Every element of
G, except for identity, is of order 2. Furthermore, G is abelian. Therefore, every

subgroup of G generated by n — 1 of its elements has the order at most A By

Theorem 2, it follows that if B e M (K; ky,..., k,), then the product of at most ot
of its conjugates is a root of unity. This is however not the case, by Lemma 1, a
contradiction. This completes the proof of Theorem 3, because, by Lemma 1 again, the

degree of B over K is 2". (Norm(B) = 1, because every column in the table of
signatures contains equal number of plus and minus signs.)

Corollary 2. Let ky,... .k, e 7 be such that k, + ... + k, = 0. Then M (K;

ky, ..., k,) is not a multiplicative semigroup.

By the results of [16], every algebraic number of prime degree whose norm is a root
of unity belongs to M (K; 1, —1). Thus, as every quadratic unit x; + y;+/m;, where
x;, y; are positive integers and m; is an integer which is not a perfect square, is a

quotient of two conjugates over a number field K, this number belongs to every M (K;
ki, ..., k,). For the proof of Corollary 2, note that the algebraic number B considered
in Theorem 3 (see Lemma 1) is the product of quadratic units x; + y;+/m;, but B ¢
¢ M(K; k,, ..., k,), by Theorem 3.

6. Representation by sufficiently long forms. The next lemma is a part of
Lemma 2 proved in [1].

Lemma 2. Suppose that the d X d matrix, where d > 4, with negative real
entries in the main diagonal and nonnegative real entries outside the main diagonal is
such that the sums of its elements in every row and in every column are all equal to
zero. If the first row contains at least d — 2 positive entries, then the rank of the
matrix is equal to d — 1.
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Proof of Theorem 4. For d =1 the theorem follows from Theorem 1, whereas
for every B of prime degree d (including d =2 and d = 3) it follows from the fact
that already M (K; 1,—-1) contains B. It therefore suffices to prove the theorem for

the case d >4 and Z;:lkj =0, where k,...,k, € Z*. As n>2d-5, atleast d —

—2 elements of the multiset kq, ..., k, are either positive or negative. Without loss of
generality we may assume that k,, ..., k, ; are all positive. On replacing of the
remaining ones k; and kg, ...,k, by k; +k;+ ... + k, and n —d + 1 zeroes,

respectively, and writing k; again for the sum k; + k;+ ... + k,,, we will show that

there isan m € 7" such that

md _ ki ky
B™ = o ..o,

where k;=0, has a solution in conjugates of o over K.

Since (B, ...B,)" =1 for some positive integer m, we see that
d=lymp— - d d
pl-bmgsm By = By = g
X Xa

Write o = ;' ... B4 with unknowns x,...,x; € Z. Choose the automorphisms
Gy,...,04€ G such that o;3)) =B;, i =2,...,d, andlet o, be the identity.
Setting o; = G;I(OL), where i=1,...,d, we deduce that

—1 k -1 k d-1 — -
ol ..o (ol = BBy LB = B,

if
t t
M(x), x5, ..., x5) = ((d=Dm,—m,...,— m)
has a solution in xi, ..., x;€ Z. Here, ¢t stands for the transpose, and M is the d x d
matrix Hm,] Hi,j:l ’’’’’ ,» Where mj;= Zkr and the sum is taken over every r such that
c,.B;) =B

By Lemma 2, the rank of M is equal to d— 1. Summing the rows of the d X (d +
+ 1) matrix M" which is obtained by adding the (d + 1) st column

((d -Dm,-m,...,— m)
to M, we see they are linearly dependent over Q. It follows that d — 1 = rank M <

<rankM" <d -1, thus rank M = rankM" = d — 1. By the Kronecker — Capelli
theorem, we conclude that the linear system has a non-zero rational solution. Let x” be

the least positive integer such that x'x; € Z" for every i =1,...,d. On replacing

every x; by x’x; and m by x'm, we get the desired conclusion.

If in Lemma 2 the condition on the first row of the matrix to contain at least d — 2
positive entries is replaced by the condition to contain at least [d/2] positive entries,
and, in addition, the d X d matrix is a Latin square, then, by Lemma 2 of [1], its rank
is also equal to d— 1. Hence, if B is symmetric over K andif n>2[d/2] -1, then
at least [d/2] elements among kq, ..., k, are either positive or negative. Thus we can

argue as above with the automorphisms G, ..., 6, such that | o;(B;)|, il 82

Latin square. This shows that, for symmetric 3, in Theorem 4 the inequality n > 2d —
—5 can by replaced by the inequality n=2[d/2]- 1.
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Example. Let K=Q, B=1+ v2+~6, d=4, n=3, ky=ky =1, ky=-2.
Then o. can be chosen as ((8 +5v2 + 443 +346)/2)"2.
By Theorem 4, we know that the equation

B=1+v2++6 = ocloc2oc§2

has a solution in conjugate over Q algebraic numbers o, 0,,, 0i3. We will show how
to find some solutions.

Let us choose the following indices: B; =1+ ~v2++6, B, =1—- N2 -~6, B3 =
=1-+v2++~6 and B, =1+ V2 —~+6. Now, following the proof of Theorem 4 with
m — 1, we obtain the system of linear equations

xl+)C2—2.X3 = 3,

xl+X2—2.X4=—1,
—2xl+X3+X4 :—1,
—2X2+.X3+X4 = —1.

(Of course, there is no need to put the negative elements of M on the main diagonal.
It suffices to assume that every row and every column of M contains precisely one
negative element.) One of its solutions is x; = x, =0, x3 =-3/2, x4, =1/2. So we
can choose x” =2, which gives the integer solution x; =x,=0, x3 =-3, x4 =1 for
m = 2. This choice shows that

B* = 5,8,8;,
where 9, = [3;3[34, 5, = [33[323, O3 = [31_3[32. On replacing & by -0, we compute
8 =38, = (1+V2-V6)*(7+43) = 11591 — 819672 + 66923 — 4732+/6.

The minimal polynomial of & over Q is

0(z) = z* - 463647° + 109507 — 2847 + 1.

Since the polynomial
0(5z%) = 625z% - 5795500z%* + 2737507'° — 142028 + 1

is irreducible over Q, the equation [} = (xloczoc;2 is solvable in conjugates of

a = (8/5Y8 = ((11591 — 8196~2 + 66923 — 4732/6)/5)"/®

of degree 32.

It is not the smallest possible degree for o. The polynomial Q(z%) is the product
of three irreducible polynomials z8 + 16z + 20z* + 822 + 1, z8 — 162 + 20z* — 872 +
+1, and z'®+216z'2 + 14678 + 24z + 1. In this example, it happens that the roots of
Q(z%) satisfying 1++/2++/6= (xloczocgz are all roots of the second polynomial,
namely, z8 — 16z% +20z* — 822 + 1 (which is not always the case). The roots are o =

= (8+5vV2+4V3+3V6)/2)"2, o, = ((8-5V2+4Y3-3V6)/2)"* and o, =

= ((8+5V2 43 - 3«/8)/2)”2, giving the second solution with o of degree 8§, as
claimed.

7. Nonsymmetric numbers. Clearly, every [ of prime degree d over K is
symmetric, since the Galois group G contains a d-cycle. If, for d =4, G does not
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contain a 4-cycle, then it is the Klein 4-group, so the respective B is also symmetric.
Hence the smallest d for nonsymmetric J must be greater than or equal to 6. We
will show now that nonsymmetric numbers of degree 6 exist. For this, we first
introduce an ,,auxiliary” number «.

Let o be of degree 4 over K with the Galois group of K(0y, 0, ti3, 04) /K
isomorphic to the full symmetric group on four symbols. Assume that +o; + o, +
to3 oy #0. (Itisclear that such o exist.) Set B =P, =0, + 0. Such B is of
degree 6 over K with the remaining conjugates being B, = o, + 03, B3 = 03 + 0Oy,
Bs=ay+0y, Bs=04 + 03, Bg =0, + 04, and with Galois group G of order 24.
We claim that 3 is nonsymmetric.

Assume that [ is symmetric over K. Then some five elements of the full
symmetric group actingon o, 0., 03, 0,4y can be chosen so that their action on the
row B,..., B together with identity form a Latin square. Let S be the set of these
five elements. Evidently, none of the elements in § is a transposition nor it is a
product of two transpositions. The remaining fifteen elements are the identity T,, and
the following fourteen elements: T; = (123), 1T, =(132), 13 = (124), T4 = (142), 15 =
=(134), 15 =(143), 1, =(234), 13 =(243), 19 =(1234), 1,y = (1243), T{; = (1324),
T1o = (1342), T3 =(1423), T4 = (1432), five of which do form the set S. Their
actionon By, ..., s canbe described as follows:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 5 6 4 2 6 5 4 2 6 3 5 3 4
2 5 1 3 5 6 1 3 6 3 4 6 4 5 1
34 6 5 2 4 5 6 2 4 5 1 6 1 2
4 6 3 1 6 5 3 1 5 1 2 5 2 6 3
s 1.2 2 3 3 4 4 1 6 1 2 3 4 6
6 3 4 4 1 1 2 2 3 5 3 4 1 2 5

Here, the symbol i in the first row means T;, whereas in other five rows i stands
for B;.

Since 11(By) = 113(B1) T10(B2) =T12(Ba). To(Bs) = T14(Bs). the set S
contains at most one element from the pair {7, T|3}, at most one from {7y, T\ },
and at most one from {t,;,t;3} If 1;,€ S, then 1, ¢ S, since T,(Bs) = 1,;(Bs)
(see the table). Similarly, T3, 75, Tg € S, because T3(PBs5) = t;;(B5) and T5(B,) =
=13(B,) =71;;(By).- So,if 1/, € S, then the elements of Sg={71;,...,Tg} belonging
to S all must lie in the set S; = {7, T4, T¢, Ty} Similarly, if T35€ S, or T;g€ S, or
Tp€S, or Tge §, or T4 € S, then the elements of Sg belonging to § must lie,
respectively, in S_; ={7,, T3, Ts, Tg}, 5o = { Ty, T4, T5, T7 1, S_» = {11, T3, Ts, Tg }»
S3={1y, T4, T4, g}, S_3={T;,T3,T5,T7}. Note that S;NS_; =& for i=1,2,3
and, for any choice of signs, ‘SJ_,I NS N SJ_,3‘ = 1. We can therefore conclude by
observing the following. If |S N {Tq, ..., T4} =3, then [SNSg|=1, so [S| =3+
+ 1 =4, acontradiction. If however |S N {Ty,..., Tj4}| <3, then, once again, |S| <
<3 + 2 =15, because \S N SS\ < 2. (Indeed, by symmetry, there is no loss of
generality to assume that T, € S. Then 74, T5, Tg ¢ S, and, moreover, at most one
element from {7,, T3, T4, T;} can belongto S.)
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