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c*-SUPPLEMENTED SUBGROUPS .
AND p-NILPOTENCY OF FINITE GROUPS

¢*-[TOMMOBHEHI HIATPYIIA
TA p-HIJIBIIOTEHTHICTH CKIHYEHHUX I'PYII

A subgroup H of a finite group G is said to be c*-supplemented in G if there exists a subgroup K such
that G = HK and H N K is permutable in G. It is proved that a finite group G which is Sy-free is p-
nilpotent if N (P) is p-nilpotent and, for all z € G\ Ng (P), every minimal subgroup of P N P= N GNr
is c*-supplemented in P and, if p = 2, one of the following conditions holds: (a) Every cyclic subgroup of
PN PN GNe of order 4 is c*-supplemented in P; (b) [Q2(P NPT N GNp), P| < Z(P N GNp); (¢) P
is quaternion-free, where P a Sylow p-subgroup of G and GNP the p-nilpotent residual of GG. That will extend
and improve some known results.

Migrpyna H ckinvenuoi rpynu (G HasuBaeThes c*-pomoBHenoio B (G, skio icHye miarpyna K Taka, mio
G = HK 1a H N K € nepectaHoBovHoio B G. [JoBefieHO, 110 CKiHYeHHa rpyna (G, sika € S4-BiJIbHOIO, €
p-HinbnoTeHTHOIO, SKWO N (P) p-HinbnotentHa i asist Beix © € G\ N (P) KoxHa MiHiMa/IbHa IiArpyna
i3 PN P* N GNP e c*-ponosuenoio B P Ta, SKILO p = 2, BAKOHYETHLCS OJHA 3 HACTYIIHAX YMOB: &) KOXKHA
UMKJIYHA MArpyna nopsaky 4 i3 PN P* N GNp ¢ c*-nonosnenoio B P; b) [Q2(PNP*N GNv ),P] < Z(PnN
N GNp ); ¢) P e 6e3kBarepHioHHO0, e P — custoBebka p-migrpyna rpymu G ta G'VP — p-HIIBIIOTEHTHUI
3ayMLIoK rpynu (G. THM caMuM MOLIMPEHO Ta MOKPALIEHO /IesIKi BiIoMi pe3yJibTaTu.

1. Introduction. All groups considered will be finite. For a formation F and a group
G, there exists a smallest normal subgroup of GG, called the F-residual of G and denoted
by G7, such that G/G7 € F (refer [1]). Throughout this paper, A" and \,, will denote
the classes of nilpotent groups and p-nilpotent groups, respectively. A 2-group is called
quaternion-free if it has no section isomorphic to the quaternion group of order 8.

General speaking, a group with a p-nilpotent normalizer of the Sylow p-subgroup
need not be a p-nilpotent group. However, if one adds some embedded properties on
the Sylow p-subgroup, he may obtain his desired result. For example, Wielandt proved
that a group G is p-nilpotent if it has a regular Sylow p-subgroup whose G-normalizer
is p-nilpotent [2]. Ballester-Bolinches and Esteban-Romero showed that a group G is
p-nilpotent if it has a modular Sylow p-subgroup whose GG-normalizer is p-nilpotent [3].
Moreover, Guo and Shum obtained a similar result by use of the permutability of some
minimal subgroups of Sylow p-subgroups [4].

In the present paper, we will push further the studies. First, we introduce the c*-
supplementation of subgroups which is a unify and generalization of the permutability and
the c-supplementation [5, 6] of subgroups. Then, we give several sufficient conditions for
a group to be p-nilpotent by using the c*-supplementation of some minimal p-subgroups.
In detail, we obtain the following main theorem:

Theorem 1.1. Let G be a group such that G is Sy-free and let P be a Sylow p-
subgroup of G. Then G is p-nilpotent if N¢(P) is p-nilpotent and, for all x € G\N¢(P),
one of the following conditions holds:

(a) Every cyclic subgroup of P N P* N GNr of order p or 4 (if p = 2) is ¢~
supplemented in P;
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(b) Every minimal subgroup of P N P* N\ GN> is ¢*-supplemented in P and, if p = 2,
[Qo(P N P*NGNY), P| < Z(PNGNr);

(¢) Every minimal subgroup of P N P* N GNv is ¢*-supplemented in P and P is
quaternion-free.

Following the proof of Theorem 1.1, we can prove the Theorem 1.2. It can be consid-
ered as an extension of the above-mentioned result of Ballester-Bolinches and Esteban-
Romero.

Theorem 1.2. Let P be a Sylow p-subgroup of a group G. Then G is p-nilpotent if
N¢g(P) is p-nilpotent and, for all x € G\Ng(P), one of the followings holds:

(a) Every cyclic subgroup of P N\ P* 0\ GN» of order p or 4 (if p = 2) is permutable
in P;

(b) Every minimal subgroup of P N P* N GN» is permutable in P and, if p = 2,
[Q(PNP*NGN?), P] < Z(PNGNr);

(¢) Every minimal subgroup of PN P* N GN» is permutable in P and, if p = 2, P is
quaternion-free.

As an application of Theorem 1.1, we get the following theorem:

Theorem 1.3. Let G be a group such that G is Sy-free and let P be a Sylow p-
subgroup of G, where p is a prime divisor of |G| with (|G|,p — 1) = 1. Then G is
p-nilpotent if one of the following conditions holds:

(a) Every cyclic subgroup of P N GN» of order p or 4 (if p = 2) is c*-supplemented
in NG (P),

(b) Every minimal subgroup of PN GN» is c¢*-supplemented in N¢(P) and, if p = 2,
P is quaternion-free.

Our results improve and extend the following theorems of Guo and Shum [7, 8].

Theorem 1.4 ([7], Main theorem). Let G be a group such that G is Sy-free and let P
be a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|. If every minimal
subgroup of PN GV is c-supplemented in N (P) and, when p = 2, P is quaternion-free,
then G is p-nilpotent.

Theorem 1.5 ([8], Main theorem). Let P be a Sylow p-subgroup of a group G, where
p is a prime divisor of |G| with (|G|, p — 1) = 1. If every minimal subgroup of PN\ GV is
permutable in N (P) and, when p = 2, either every cyclic subgroup of PN GV of order
4 is permutable in Ng(P) or P is quaternion-free, then G is p-nilpotent.

2. Preliminaries. Recall that a subgroup H of a group G is permutable (or quasi-
normal) in G if H permutes with every subgroup of G. H is c-supplemented in G if there
exists a subgroup K7 of G such that G = HK; and H N Ky < Hg = Coreg(H) [5,
6]; in this case, if we denote K = Hg Ky, then G = HK and H N K = Hg; of course,
H N K is permutable in G. Based on this observation, we introduce:

Definition 2.1. A subgroup H of a group G is said to be c*-supplemented in G if
there exists a subgroup K of G such that G = HK and H N K is a permutable subgroup
of G. We say that K is a c*-supplement of H in G.

It is clear from Definition 2.1 that a permutable or c-supplemented subgroup must be
a c*-supplemented subgroup. But the converses are not true. For example, let G = Ay,
the alternating group of degree 4. Then any Sylow 3-subgroup of G is c-supplemented
but not permutable in G. If we take G = (a, b|a'® = b* = 1,ba = a3b), then b2 (a’b’) =
= (a'b?)>T2(=1=1p2 Hence (b2) is permutable in G. However, (b2) is not c-supple-
mented in G as (b?) is in ®(G) and not normal in G.
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The following lemma on c*-supplemented subgroups is crucial in the sequel. The
proof is a routine check, we omit its detail.

Lemma 2.1. Let H be a subgroup of a group G. Then:

(1) If H is ¢*-supplemented in G, H < M < G, then H is c*-supplemented in M

(2) Let N <G and N < H. Then H is c*-supplemented in G if and only if H/N is
c*supplemented in G/N;

(3) Let 7 be a set of primes, H a w-subgroup and N a normal w'-subgroup of G. If
H is c*-supplemented in G, then HN/N is c*-supplemented in G/N;

(4) Let L < Gand H < ®(L). If H is c*-supplemented in G, then H is permutable
in G.

Lemma 2.2. Let cbe an element of a group G of order p, where p is a prime divisor
of |G|. If (c) is permutable in G, then c is centralized by every element of G of order p or
4(ifp=2).

Proof. Let x be an element of G with order p or 4 (if p = 2). By the hypotheses,
(x){c) = (c){z). Clearly, if x is of order p, then c is centralized by c. Now assume that
p = 2 and z is of order 4. If [c, 2] # 1, then ¢~ 'zc = 27! and (xc)? = 1. Furthermore,
|{(z){c)| < 4, of course, [¢, z] = 1, a contradiction. We are done.

Lemma 2.3 ([9], Lemma 2). Let F be a saturated formation. Assume that G is a
non-JF-group and there exists a maximal subgroup M of G such that M € F and G =
= F(G)M, where F(Q) is the Fitting subgroup of G. Then:

(1) G /(G is a chief factor of G

(2) G7 is a p-group for some prime p;

(3) G7 has exponent p if p > 2 and exponent at most 4 if p = 2;

(4) G7 is either an elementary abelian group or (G7)' = Z(G7) = ®(G%) is an
elementary abelian group.

Lemma 2.4 ([10], Lemma 2.8(1)). Let M be a maximal subgroup of a group G and
let P be a normal p-subgroup of G such that G = PM, where p a prime. Then P N M is
a normal subgroup of G.

Lemma 2.5 ([11], Theorem 2.8). If a solvable group G has a Sylow 2-subgroup P
which is quaternion-free, then P N Z(G) N GN =1.

Lemma 2.6. Let G be a group and let p be a prime number dividing |G| with
(|IG),p—1) = 1. Then:

(1) If N is normal in G of order p, then N lies in Z(G);

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent,

(3) If M is a subgroup of G of index p, then M is normal in G.

Proof. (1) Since |Aut(N)| = p — 1 and G/C¢(N) is isomorphic to a subgroup of
Aut(N), |G/Cq(N)| must divide (|G|,p — 1) = 1. It follows that G = Cg(N) and
N < Z(G).

(2) Let P € Syl,(G) and |P| = p™. Since P is cyclic, |Aut(P)| = p"~!(p — 1).
Again, N (P)/Cq(P) is isomorphic to a subgroup of Aut(P), so |Ng(P)/Cq(P)| must
divide (|G|,p — 1) = 1. Thus Ng(P) = Cg(P), and statement (2) follows by the well-
known Burnside theorem.

(3) We may assume that Mg = 1 by induction. As everyone knows the result is true
in the case where p = 2. So assume that p > 2 and consequently G is of odd order as
(|G],p — 1) = 1. Now we know that G is solvable by the Odd Order Theorem. Let N
be a minimal normal subgroup of GG. Then N is an elementary abelian ¢-group for some
prime g. It is obvious that G = M N and M N N is normal in G. Therefore M NN =1
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and [N| = |G : M| = p. Now N < Z(G) by statement (1) and, of course, M is normal
in G as desired.

3. Proofs of theorems.

Proof of Theorem 1.1. Let G be a minimal counterexample. Then we have the
following claims:

(1) M is p-nilpotent whenever P < M < G.

Since N (P) < Ng(P), Nas(P) is p-nilpotent. Let a be an element of M\ Nz (P).
Then, since PN P*NMNr < POP*NGNr, every minimal subgroup of PN P* N MN»
is c*-supplemented in P by Lemma 2.1. If G satisfies (a), then every cyclic subgroup of
PN P* N MNv with order 4 is ¢*-supplemented in P. If G satisfies (b), then

[ (PN P* N M), Pl < Z(PNGNo)n (PN MNe) < Z(Pn M),

Now we see that M satisfies the hypotheses of the theorem. The minimality of G implies
that M is p-nilpotent.

2 Oy (G) =1 B B

If not, we consider G = G/N, where N = O,/ (G). Clearly Ng(P) = Ng(P)N/N
is p-nilpotent, where P = PN/N. For any xN € G\Ng(P), since a" — gV N /N
and PN P*N = P*" for some n € N, we have

PPN G\ = (PN P GNP N)N/N = (P P*" 0 GN7)N/N.

Because zN € G\Ng(P), 2n € G\Ng(P). Now let Py = PyN/N be a minimal
subgroup of PN P"" N v we may assume that Py = (y), where y is an element of
P N P*™ 0 GNv of order p. By the hypotheses, there exists a subgroup Ky of P such
that P = PyKj and Py N K is a permutable subgroup of P. It follows that PN/N =
= (PyN/N)(KoN/N) and (PyN/N)N(KoN/N) = (PoNKoN)N/N.If PN KoN =
= Py then Py < PN KgN = Kj and consequently Py = Py N Ky is permutable in
P. In this case, Py is permutable in P. If Py N KoN = 1 then Py is complemented in
P. Thus Py is c*-supplemented in P. Assume that G satisfies (a). Let P; = P|N/N
be a cyclic subgroup of P N PN A G of order 4. We may assume that P, = (z),
where z is an element of P N P*™ N GV of order 4. Since P} is ¢*-supplemented in P,
P = P, K and P; N K is permutable in P. We have PN/N = (PyN/N)(K;N/N) and
(PLN/N)N(K{N/N) = (PPNK;N)N/N.If PLNK;N = 1 then P is complemented
in P.If P, N K1 N = (2%), since 22 < ®(P) and (22) is c*-supplemented in P, (z?)
is permutable in P by Lemma 2.1. Furthermore, (22) N/N is permutable in PN /N and
P, is c*-supplemented in P. If P, N K;N = P, then P, = P, N K, is permutable in P
and P; is permutable in P. In a ward, P is c*-supplemented in P. Now assume that G
satisfies (b), then

[P P™ nGY"), P| = [2a(P0 P70 GN7), P N/N < Z(P N GY)N/N,
namely

[P0 P0G P| < 2(PnG").

If G satisfies (c) then P = P is quaternion-free. Therefore G = G /N satisfies the
hypotheses of the theorem. The choice of G implies that G is p-nilpotent and so is G,
a contradiction.
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(3) G/O,(Q) is p-nilpotent and Cz(O,(G)) < O,(G).

Suppose that G/O,(G) is not p-nilpotent. Then, by Frobenius’ theorem (refer [12],
Theorem 10.3.2), there exists a subgroup of P properly containing O,(G) such that its
G-normalizer is not p-nilpotent. Since N¢(P) is p-nilpotent, we may choice a subgroup
P, of P such that O,(G) < P, < P and Ng(FP1) is not p-nilpotent but N (Ps) is p-
nilpotent whenever P; < P, < P. Denote H = Ng(FPy). Itis obvious that P, < Py < P
for some Sylow p-subgroup Py of H. The choice of P, implies that N (FPp) is p-nilpotent,
hence Ny (Pp) is also p-nilpotent. Take x € H\Ng (FPy). Since Py = P N H, we have
x € G\Ng(P). Again,

PoNPENHN < PN P*NGNr,

so every minimal subgroup of Py NPy NH N» is ¢*-supplemented in Py by Lemma 2.1. If
(a) is satisfied then every cyclic subgroup of PyN Py NH Nv of order 4 is ¢*-supplemented
in Py. If (b) is satisfied then

[Q2(Po N P§ N HN?), Py] < Z(PNGN?) N (Pyn HN?) < Z(Py  HM).

If (c) is satisfied then Py is quaternion-free. Therefore H satisfies the hypotheses of the
theorem. The choice of G yields that H is p-nilpotent, which is contrary to the choice
of P;. Thereby G/O,(G) is p-nilpotent and G is p-solvable with O,/(G) = 1. Conse-
quently, we obtain C(O,(G)) < O,(G) (refer [13], Theorem 6.3.2).

4) G = PQ, where @ is an elementary abelian Sylow g-subgroup of G for a
prime ¢ # p. Moreover, P is maximal in G and QO,(G)/0,(G) is minimal normal
in G/O,(G).

For any prime divisor ¢ of |G| with ¢ # p, since G is p-solvable, there exists a Sylow
g-subgroup ) of G such that Gy = PQ is a subgroup of GG [13] (Theorem 6.3.5). If
Go < G, then, by (1), Gy is p-nilpotent. This leads to @ < Cg(Op(G)) < O,(G), a
contradiction. Thus G = P(Q) and so G is solvable. Now let T'/O,(G) be a minimal
normal subgroup of G/O,(G) contained in O, (G)/O,(G). Then T = O,(G)(T' N Q).
KT NQE < @, then PT < G and therefore PT is p-nilpotent by (1). It follows that

1<TNQ < C(0p(G)) < 0p(G),

which is impossible. Hence T' = O, (G) and QO,(G)/O,(G) is an elementary abelian
g-group complementing P/O,(G). This yields that P is maximal in G.

5) P 0,(G)| = p.

Clearly, O,(G) < P. Let P, be a maximal subgroup of P containing O,(G) and
let Gy = PyOpy (G). Then P, is a Sylow p-subgroup of G. The maximality of P in G
implies that either Ng(Py) = G or Ng(Fy) = P. If the latter holds, then N¢,(Py) = P.
On the other hand, in view of (3), we have GNr < 0,(G), hence P N P* N GNr =
= GNr for every x € G. Now it is easy to see that G satisfies the hypotheses of the
theorem. Thereby Gy is p-nilpotent and @) < Cg(O,(G)) < O,(G), a contradiction.
Thus N¢(Fy) = G and Py = O,(G). This proves (5).

(6) G = GNr L, where L = (a)[Q] is a non-abelian split extension of Q by a cyclic
p-subgroup (a), a? € Z(L) and the action of a (by conjugate) on @ is irreducible.

From (3) we see that GNVr < 0,(G). Clearly, T = GNi »() < G. Let Py be a maximal
subgroup of P containing GNr. Then, by the maximality of P, either Ng(Py) = P
or Ng(Po) = G. If Ng(Po) = P, then NM(P()) = PU7 where M = P()T = P()Q
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Evidently, Py N Pf N MN» < GNe for all z € M\Ny(Pp), hence M satisfies the
hypotheses of the theorem. By the minimality of G, M is p-nilpotent. It follows that
T = GN»Q = GNr x Q and so Q <1 G, a contradiction. Thereby Ng(Py) = G and
Py < O,(G). This infers from (5) that O,(G) = P, and hence P/G» is a cyclic
group. Now applying the Frattini argument we have G = GV» N¢(Q). Therefore we
may assume that G = GN» L, where L = (a)[Q] is a non-abelian split extension of a
normal Sylow g-subgroup @ by a cyclic p-group (a). Noticing that |P: O,(G)| = p
and O,(G) N Ng(Q) < Ng(Q), we have a? € Z(L). Also since P is maximal in G,
GN»Q/GNr is minimal normal in G/GN? and consequently a acts irreducibly on Q.

(7) GM» has exponent p if p > 2 and exponent at most 4 if p = 2.

By Lemma 2.3 it will suffice to show that there exists a p-nilpotent maximal subgroup
M of G such that G = GN» M. In fact, let M be a maximal subgroup of G containing
L. Then M = L(M N GNP) and G = GNe M. By Lemma 2.4, M N GN» 4 G, hence
M = ({(a)(M NGN?))Q. Write Py = (a)(M NGN>) and let M, be a maximal subgroup
of M containing Py. Then My = Py(My N Q) and GN» My < G. By applying (1) we
know that GN» My is p-nilpotent, therefore

MoNQ < Ca(0,(Q)) < 0,(Q).

It follows that My N @ = 1 and so Py is maximal in M. In this case, if Py << M, then
(a) = Py N L < L, which is contrary to (6). Hence Ny (Py) = Py and M satisfies the
hypotheses of the theorem. The choice of GG implies that M is p-nilpotent, as desired.

Without losing generality, we assume in the following that P = GV» (a).

(8) If GN» has exponent p, then GN» N (a) = 1.

Assume on the contrary that GV N (a) # 1if GN» has exponent p. Then we can take
an element ¢ in G»N(a) such that c s of order p. Since P is not normal in G, GNrN(a) <
< {(a). Consequently ¢ € (a?) < ®(P) and {c) is permutable in P. By (6), (7) and
Lemma 2.2, we see that ¢ is centralized by both GN» and L, hence ¢ € Z(G). If G satisfies
(c) then, since GNr < GN, ¢ =1 by Lemma 2.5, a contradiction. If G satisfies (a) or
(b), we consider the factor group G = G/(c). It is obvious that N(P) = Ng(P)/(c) is
p-nilpotent, where P = P/(c). Now let (y)(c)/(c) be a minimal subgroup of G /(c),
where y € GV». Since y is of order p, by the hypotheses, (y) has a ¢*-supplement K
in P. If (y) N K = 1 then K is a maximal subgroup of P and {c¢) < K. It follows that
P/le) = ((y){e) /() (K /(e)) with (y)(e)/{c) N K/{c) = 1.1 {y) N K = (y) then (y)
is permutable in P and hence (y){c)/(c) is permutable in P/{c). That is {y){c)/{c) is
c*-supplemented in P/(c), therefore G satisfies (a) or (b). The choice of G implies that
G/({c) is p-nilpotent and so G is p-nilpotent, a contradiction.

(9) The exponent of GN» is not p.

If not, GN» has exponent p. Let P, be a minimal subgroup of GV» not permutable
in P. Then, by the hypotheses, there is a subgroup K; of P such that P = P; K; and
P, N K; = 1. In general, we may find minimal subgroups P;, P, ..., P, of GNv and
also subgroups K1, Ko, ..., K,, of P such that P = P;K; and P, " K; = 1 for each ¢
and every minimal subgroup of GN» N K N...NK,, is permutable in P. Furthermore, we
may assume that P, < Ky N...NK;_1,i=2,3,...,m. Henceforth K1 N...NK;_1 =
= P;(KiN...NnK;) fori =2,3,...,m.Itis easy to see that GN»NK; is normal in P and
(GN» N K;)(a) is a complement of P; in P, so we may replace K; by (GN* N K;)(a) and
further assume that (a) < K; for each i. Now, K1N...NK,, = (GN*nKN...NK,,){a).
Since, forany 2 € GNr N K1 N...N K,,, (x){a) = (a)(x), we have
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2% e (GNP NKi N...NKy)N (@) {a) = (z).

This means that a induces a power automorphism of p-power order in the elementary
abelian p-group GNe N Ky n...Nn K,,. Hence [GNp NKiyN...N Kp,a] = 1 and
KiNn...NnK,, is abelian.

Now we claim that p is even. If it is not the case, then, by [13] (Theorem 6.5.2),
KiN...N K, < 0,(G). Consequently, P = GN»(K; N...N K,,) < 0,(G), a con-
tradiction. We proceed now to consider the following two cases:

Casel. |(a)| =2",n > 1.

Since K1 N ... N K,, is an abelian normal subgroup of Pand a € K; N ... N K,,,
O(KiN...NK,) = (a?) <P and so Q;((a2)) = (¢} < Z(P), where ¢ = a2" . Again,
¢ € Z(L) by (6), so c € Z(G). If G satisfies (c) then we obtain ¢ = 1 by Lemma 2.5,
which is absurd. If G satisfies (a) or (b), then, with the same arguments to those used in
(8), we may prove that G/(c) satisfies the hypotheses of the theorem. The minimality of
G implies that G/(c) is 2-nilpotent and therefore G is also 2-nilpotent, a contradiction.

Case 2. |(a)| = 2.

Since a acts irreducibly on @), a is an involutive automorphism of @); consequently,
Q is a cyclic subgroup of order ¢ and b* = b~!, where Q = (b). In this case, GN2
is minimal normal in G. In fact, let N be a minimal normal subgroup of G contained
in GV2 and let H = NL. Since N{a) is maximal but not normal in H, we see that
Np(N{(a)) = N{a). Noticing that N (a) N H"?> < N every minimal subgroup of N (a)N
N HM2 is ¢*-supplemented in Ny (N(a)) = N{a) by Lemma 2.1. If further H < G,
then the choice of GG implies that H is 2-nilpotent. Consequently, NQ) = N x @ and
sol # NNZ(P) < Z(G). The choice of N implies that N = N N Z(P) is of order
2. This is contrary to Lemma 2.5 if G satisfies (c). Now assume that G satisfies (a) or
(b). In this case, if N £ ®(P), then N has a complement to P. By applying Gaschiitz
Theorem [12] (I, 17.4), N also has a complement to G, say M. It follows that M is a
normal subgroup of G. Furthermore, G /M is cyclic of order 2 and so N < GN: < M ,
a contradiction. Hence N < ®(P). Now we go to consider the factor group G/N. For
any minimal subgroup (y) N/N of (G/N)N2 = GN2 /N, by the hypotheses, P = (y) K
and (y) N K is permutable in P, where y € G2, Since N < K, we have P/N =
= ((y)N/N)(K/N) and ((y)N/N)N (K/N) = ({y) N K)N/N is permutable in P/N,
so (y)N/N is c*-supplemented in P/N. This yields at once that G/N is 2-nilpotent and
s0 is G. Hence H = G and G> must be a minimal normal subgroup of G; of course,
G2 is an elementary abelian 2-group. Since GV? N Ng(Q) <1 No(Q), we know that
GM2n N¢(Q) = 1 and so b acts fixed-point-freely on G2, We may assume that N; =
={1l,c1,¢2,...,¢q} is a subgroup of GN2 with ¢; € Z(P) and b = (c1, ca, .. ., Cq) isa
permutation of the set {c1, ca, . .., ¢,}. Noticing that b* = b~" and (¢1)* " = (¢1)"
(c2)® = ¢4 By using (b1)% = b~ and (¢;)® ' = (¢1)? ", we see that (ci1)® =
= cq_it1 fori =1,2,...,(q+ 1)/2. Hence N; is normalized by both G2 and L and
so N is normal in G. The minimal normality of G2 implies that GV? = Ny, thus we
have Z(P) = {1,¢1}. Since G2 N K, N ... N K,, is centralized by both G2 and
(a),wehave 1 < GN> N K, N...NK,, < Z(P).In view of P is not abelian, we get
®(P) = P’ = Z(P), namely P is an extra-special 2-group. By applying Theorem 5.3.8
of [12], there exists some positive integer h such that |P| = 22"+1 Hence |GV2| = 22,
However, 22" —1 = (2" +1)(2" —1) and ¢ = 22" — 1, hence h = 1, ¢ = 3 and |P| = 23.
Now we see that L = S5 and GN2Q 2 Ay, therefore G = Sy, which is contrary to the
hypothesis on G.
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(10) The final contradiction.

From (7) and (9) we see that p = 2 and the exponent of GM2 s 4. By applying
Lemma 2.3, Z(GV2) = ®(GN?) is an elementary abelian 2-group. If ®(G2) N (a) # 1
then there exists an element ¢ in ®(G*2) N (a) such that ¢ is of order 2. Since ®(GV2) N
(a) < (a), we have ¢ € (a?) < Z(L). But c is also centralized by G"> by Lemma 2.2,
so ¢ € Z(@G). If ®(GN2) N (a) = 1 then a induces a power automorphism of 2-power
order in the elementary abelian 2-group ®(G™2), hence [®(GV?),a] = 1. In view of
Lemma 2.2, ®(GV2) is also centralized by G2, hence ®(G?) < Z(P). Furthermore,
by the Frattini argument,

G = No(®(GM?)) = Ca(®(GN2))Na(P).

Noticing that N (P) = P and P < Cg(®(G2)), we get Ci(®(GN?)) = G, namely
®(GN?) < Z(G). Thus we can also take an element c in ®(G*V2) such that c is of order
2 and ¢ € Z(G). This is contrary to Lemma 2.5 if G satisfies (c). Now assume that
G satisfies (a). Denote N = (c) and consider G = G/N. It is clear that Ng(P) =
= Ng(P)/N is 2-nilpotent because N¢(P) is, where P = P/N. For any y € GVz,
since (y) is ¢*-supplemented in P, there exists a subgroup T" of P such that P = (y)T
and (y) N T is permutable in P. However, 3> € ®(G*?), hence (y?) is permutable in
P and (y?)T forms a group. Because |P : (y*)T| < 2, N < (y2)T. It follows that
PN = () N/N)((*)T/N) and

(W)N/N 0 (y*)T/N = (y*)({y) N T)N/N

is permutable in P/N. This shows that G satisfies (a). Thereby G is 2-nilpotent and
so is GG, a contradiction. Finally we assume that G satisfies (b). Let M be a max-
imal subgroup of G containing L. Then M is 2-nilpotent by the proof of (7), hence
®(GN2)Q is 2-nilpotent and [®(GN2), Q] = 1. Write K = Cg(GN? /®(G?)). Then,
by the hypotheses, P < K <1 G. The maximality of P yields that P = K or K = G.
If the former holds, then G = Ng(P) is 2-nilpotent, a contradiction. If the latter
holds, then [G2, Q] < ®(GN2). This means that Q stabilizes the chain of subgroups
1 < ®(GM2) < GN. 1t follows from [13] (Theorem 5.3.2) that [GN>,Q] = 1 and Q is
normal in GG, which is impossible. This completes our proof.

Proof of Theorem 1.3. By applying Theorem 1.1, we only need to prove that N¢ (P)
is p-nilpotent.

If Ng(P) is not p-nilpotent, then N (P) has a minimal non-p-nilpotent subgroup
(that is, every proper subgroup of a group is p-nilpotent but itself is not p-nilpotent) H. By
results of Itd [2] (IV, 5.4) and Schmidt [2] (III, 5.2), H has a normal Sylow p-subgroup
H, and a cyclic Sylow g-subgroup H, such that H = [H,|H,. Moreover, H, is of
exponent p if p > 2 and of exponent at most 4 if p = 2. On the other hand, the minimality
of H implies that HN» = H,. Let Py be a minimal subgroup of H,, and let K be
a c¢*-supplement of Py in H. Then H = PyK, and Py N K is permutable in H. If
Py N Ky = 1 then K is maximal in  of index p. By applying Lemma 2.6 we see that
Ky isnormal in H. It follows from Kj is nilpotent that H, is normal in H, a contradiction.
If Py N Ky = Py then P, is permutable in H. In this case, if Py, = H, then H, = P,
is cyclic and H is p-nilpotent by Lemma 2.6, a contradiction. Hence PyH, < H and
PyH, = Py x H,. Thus Q4 (H,) is centralized by H,. If further Cy (21 (H,)) < H then
Cr (4 (Hp)) is nilpotent normal in H. This leads to H, <1 H, a contradiction. Therefore
O (Hp,) < Z(H). If Hp has exponent p, then H, = Qy(H,) and H = H, x H,
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again a contradiction. Thus p = 2 and H» has exponent 4. If G satisfies (b) then H» is
quaternion-free and, by Lemma 2.5, H,, acts trivially on Hs, thus H, is normal in H, a
contradiction. Now assume that G satisfies (a). Let P; = (x) be a cyclic subgroup of Hy
of order 4. Since P; is c¢*-supplemented in H, H = P} K; with P, N K is permutable
in H.If |H : K;| = 4 then |H: K;(2?)| = 2, hence K;(2?) << H and so H, < H,
a contradiction. If |[H: K;| = 2 then K; < H. We still get a contradiction. Therefore
K, = H and P is permutable in H. Now Lemma 2.6 implies that P; H, is 2-nilpotent
and consequently H, is normalized by H>. This final contradiction completes our proof.

11.
12.
13.

Doerk H., Hawkes T. Finite solvable groups. — Berlin; New York, 1992.

Huppert B. Endliche Gruppen I. — New York: Springer, 1967.

Ballester-Bolinches A., Esteban-Romero R. Sylow permutable subnormal subgroups of finite groups //
J. Algebra. — 2002. — 251. — P. 727-738.

Guo X., Shum K. P. p-Nilpotence of finite groups and minimal subgroups // Ibid. — 2003. — 270. — P. 459 —
470.

Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented // Ibid. — 2000. — 224. —
P. 467-478.

Ballester-Bolinches A., Wang Y., Guo X. C-supplemented subgroups of finite groups // Glasgow Math. J.
—2000. — 42. - P. 383 -389.

Guo X., Shum K. P. On p-nilpotence and minimal subgroups of finite groups // Sci. China. Ser. A. —2003.
—46.-P. 176-186.

Guo X., Shum K. P. Permutability of minimal subgroups and p-nilpotency of finite groups // Isr. J. Math.
—2003.-136. - P. 145-155.

Asaad M., Ballester-Bolinches A., Pedraza-Aguilera M. C. A note on minimal subgroups of finite groups
// Communs Algebra. — 1996. — 24. — P. 2771 -2776.

Wang Y., Wei H., Li Y. A generalization of Kramer’s theorem and its applications // Bull. Austral. Math.
Soc. —2002. — 65. — P. 467 -475.

Dornhoff L. M-groups and 2-groups // Math. Z. — 1967. — 100. — P. 226 —256.

RobinsonD. J. S. A course in the theory of groups. — New York: Springer, 1980.

Gorenstein D. Finite groups. — New York: Chelsea, 1980.

Received 03.05.2006

ISSN 1027-3190. Ykp. mam. xypH., 2007, m.59, N* 8



