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ON THE REPRESENTATIONS OF GENERAL SOLUTION
IN THE THEORY OF MICROPOLAR THERMOELASTICITY
WITHOUT ENERGY DISSIPATION

30BPA’KEHHS 3ATAJIBHOTI'O PO3B’A3KY
B TEOPIi MIKPOIIOJIAPHOI TEPMOEJACTHYHOCTI
BE3 PO3CIFOBAHHS EHEPTII

In the present paper, the linear theory of micropolar thermoelasticity without energy dissipation is con-
sidered. This work is articulated as follows. Section 2 regards the basic equations for micropolar
thermoelastic materials, supposed isotropic and homogeneous, and the assumptions on the constitutive
constants. In Section 3 some theorems connected with the representations of general solution are studied.

Po3risHyTO NiHilHY TEOPil0 MIKpPOIOJSIPHOT TepMOEIacTHYHOCTI 6e3 po3citoBanHs eHeprii. CrarTio nody-
ZIOBAaHO TaKUM YMHOM. JIpyrHif MyHKT IPHCBAYCHO 6a30BUM DiBHAHHSAM JUII MiKPOIIOJIIPHHX TepMoeac-
THYHUX MaTepiaiiB, sKi BBaXKAIOTHCA I30TPOIHUMY Ta OJHOPIJHHMH, Ta IPUIYLICHHSAM LIOJO0 OCHOBHHX
KOHCTAHT. Y TPEThOMY MYHKTI JIOBEACHO JIEsIKi TEOPEMH TIPO 300pa)KeHHS 3arajJbHOrO PO3B’SI3KY.

1. Introduction. In [1], Eringen established the theory of micropolar thermoelasticity.
In recent years there has been very much written on the subject of this theory. The basis
results and extensive review of works on the theory of micropolar thermoelasticity can
be found in the books of Eringen [2] and Nowacki [3].

In [4], Boschi and Iesan extended a generalized theory of micropolar thermoelasticity
that permits the transmission of heat as thermal waves at finite speed. Recently, Green
and Naghdi [5] introduced a theory of thermoelasticity without energy dissipation. In
[6], Ciarletta presented a linear theory of micropolar thermoelasticity without energy
dissipation. This theory permits the transmission of heat as thermal waves at finite
speed, and the heat flow does not involve energy dissipation.

Contemporaly treatment of the various boundary-value problems on the elasticity
theory usually begins with the representation of a general solution of field equations in
terms of elementary (harmonic, biharmonic, metaharmonic and etc.) functions. In
the classical theory of elasticity the Boussinesq— Somiliana— Galerkin, Boussinesq—
Papkovitch — Neuber, Green—Lamé and Cauchy —Kovalevski—Somiliana solutions are
well known (see Gurtin [7], Kupradze and al. [8], Nowacki [9]). An excellent review of
the history of these solutions is given in Gurtin [7].

The representations of Galerkin-type solutions in the theory of micropolar thermo-
elasticity without energy dissipation, in the theory of thermoelastic materials with voids,
and in the dynamical theory of binary mixture consisting of a gas and an elastic solid are
established by Ciarletta [6, 10, 11]. In the theories of binary mixtures of elastic solids
and fluid-saturated porous media the representations of general solutions are presented
by Basheleishvili [12], Svanadze [13], and Svanadze and de Boer [14].

In this article the linear theory of isotropic and homogeneous micropolar thermoelastic
materials without energy dissipation [6] is considered. The representations of general
solution of the system of steady oscillations in terms of metaharmonic functions are
obtained.
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2. Basic equations. Let x = (x1,23,23) be the point of the Euclidean three-
dimensional space E>, and let ¢ denote the time variable. We consider a linear mi-
cropolar thermoelastic material which occupies the region Q of E3. The system of
linearized equations of motion in the theory of micropolar thermoelasticity without
energy dissipation for isotropic elastic solids can be written as [6]

(1 + K)AT + (A + p) grad div il + kcurl @ — mgrad 0 = p(u — G'),
VAP + (a + B) grad div @ + k curl 1 — 26 = p1p — pG”, (1)

koAg— aTOLéV— mTO lel~l = —pS,

where 1 = (u1, Ug, u3) is the displacement vector, @ = (¢1, ¥2, ©3) is the microrotation
vector, 6 is the temperature measured from the constant absolute temperature T, (T >
> 0); A\, i, 6, m, «, B, 7, a, ko are constitutive coefficients, p (p > 0) is the reference
mass density, p; (p1 > 0) is a coefficient of inertia, G’ is the body force density, G” is
the body couple density, and S is the heat source density [6]; A is the Laplacian, and
ou = 9*u
ot T o

If the body forces G’, G” and the heat source density .S are assumed to be absent,
and the displacement vector u, the microrotation vector ¢ and the temperature 6 are
postulated to have a harmonic time variation, that is

(x, 1) = Re [u(x)e "], @(x.t) = Re [p(x)e "], B(x,1) = Re [f(x)e~"],

dot denotes differentiation with respect to ¢: u=

then from the system of equations of motion (1) we obtain the following system of
equations of steady oscillations (steady vibrations):

(u+ K)Au + (X + p) grad divu + & curl o — mgrad 6 + pw?u = 0,
YAp + (a+ B) graddivep + kcurlu + 1 = 0, 2)
k()Ag + 04)9 —+ myg divu = 0,

where 111 = pyw? — 2k, ag = aTpw?, my = mTpw?, and w is the oscillation frequency
(w>0).

Throughout this article, it is assumed that all functions are continuous and differenti-
able up to the required order on €. We assume that the constitutive coefficients satisfy
the conditions [6]

3IN+2u+ k>0, 2u+ k>0, K> 0, ko > 0,
3o+ B+v>0, v+ 6 >0, a > 0.

In this article the representations of general solution of system (2) in terms of
metaharmonic functions are obtained.
3. Representations of general solution. We consider separately two possible cases:

2
w # wg and w = wyp, where wy = —ﬁ.
P1
1. Let w # wy. In the sequel we use the following lemmas.
Lemma 1. If (u,,0) is a solution of system (2), then

u= [grad(,uo divu —mf) — (u + k) curl curlu 4 £ curl go} ,

_W

0 1 ®)
¢ = —— graddivp + —(ycurl curl p — K curlu).
M1 M1
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From system (2) directly follows (3).
Lemma 2. If (u,,0) is a solution of system (2), then

(A +ED(A + Ek3)diva =0, (A + k2 (A + k3 curlu = 0, 4)
(A + Ek2)dive =0, (A +E3) (A + k2 curlp = 0, ®)
(A+E)(A+k3)0 =0, (6)

where k3, k3 and k2, k3 are the roots of the equations (with respect to &)
poko&? — (pko + aTopo + m*To)w?E + aTppw® =0
and
Yk + 8)E = [pw?y + p (p+ k) + K7€ + pw?pn =0,

respectively, g = A+ 2u + k, k2 = &, Yo=a+[+7.
8l

0
Proof. Applying the operator div to Eq. (2), we obtain Eq. (5);. Applying the
operator div to Eq. (2); and taking into account Eq. (2); we get

(oA + pw?) divu — mAf = 0,

(7
modivu + (koA + aO)H =0.

From system (7) we have

[okoA? + (pro 4+ aTopo + m2?To)w? A + aTppw] divu = 0,

(3)
[okoA? + (pro + aTopo + m2To)w? A + aTppw]d = 0.

On the basis of (8) we obtain Egs. (4); and (6).
Applying the operators (YA + p1) curl and curl to Egs. (2); and (2),, respectively,
we get

(YA 4 p1)[(pr + £)A 4 pw?] curlu + £(YA + p1) curl curl = 0,
©
(YA + p1) curl o + K curl curlu = 0.

Taking into account Eq. (9), and equality curl curlu = grad divu — Au from (9); we
have

{(’}/A—F/.Ll)[(/,L—FK)A—‘rpr]+K2A} curlu = 0. (10)

Obviously, from Eq. (10) we obtain Eq. (4);. In the same way from Egs. (2); and (2),
we get Eq. (5)s.

Remark 1. 1t is easily seen that

i) k2 >0, k2 >0, k2 # k2,

i) k2 >0, k2 >0, k2 # k2, k2 > 0 for w > wg, k2 > 0, k2 < 0, k2 < 0 for
w < wp,

iii) pok3 — pw® # 0, (1 + K)ki — pw® # 0.
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In the following we use the notations

2 2 2 2
a1 = koki — ao, Qg = —m, as = —moki, oy = poks — pw”,

By =7ks —p1,  Pa=rky,  Bs=k,  Bi=(p+r)ki—pw’,

A1 = agazks — agagk? = koki (k3 — k¥)ay.
It is obvious that
/L()Oéjk?JFQ + mao; 4o = pw2aj,
(1 + K)B; — KB 12lkf e = pw?B;,
75g‘+27€?+2 — K05 = p1Bj12,

(/Cok? — ao)o{j+2 + mOéijQ» =0, 57=1,2.
Let
¢1 = )\1(A + k%)(,uo divu — m@),
2 = —Aokoki(A + k)0,

Y3 = 0 giv ®.
M1
On the basis of Egs. (4)1, (5); and (6) we have
(A+E)p; =0, j=1,2,3.

On the other hand, by virtue of (7) and (11), from (13) follows that

’L/)l = )\1(&4 divu+a2k§9), 1/)2 = 7)\1(0[3 divu+a1k%0).

From Egs. (13); and (15) we get

divu = —(041/?%1/11 + 042]‘7%1/12)7 divep = —%1/13,

0 = g1 + caio.
We introduce the notation

1
w1 = (w11, Wiz, w13) = W(A + k3) curl ¢,

1
wa = (W21, W2, we3) = m(A + k3) curl .
1(v3 — R}

Taking into account Egs. (4); and (5)3, from (17) we have
(A+Ekjpo)w; =0, divw; =0, j=1,2,

and

)

(12)

(13)

(14

(15)

(16)

(I

(18)
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curl p = ﬁgk§w1 + ﬁ4kiW2. (19)
By virtue of Eq. (12); and (19) from (9), we get

1 1
curl curlu = —@(WA + 1) curlp = % [B185k3 w1 + Baki (VK] — p1)wa] =

= k3w + Bakiwa. (20)
From Eq. (9), it follows that

curlu = — [(1 + Kk)Acurlu + & curl curl ] =

pw?

1
= —W[—(,u + k) curl curl curl u 4 & curl curl ¢]. (21

On the basis of Egs. (19) and (20) from (21) we obtain
curlu =

1
=" (1 + k) curl(Bi k2w + Bak2ws) — ki curl(Bsk2wy + ﬂ4k§w2)] -

2
1
e Z (1 + K)B; — KBj12] k3 o curlwy. (22)
=1

In view of (12), from Eq. (22) we have
curlu = curl(fiwy + Gawa). (23)
Theorem 1. [fw # wy and (u, @, 0) is a solution of system (2), then
u = grad(aq 1 + aoth2) + S1wi + Bawo,
¢ = grad ¢3 + curl(Bswy + Bawa), (24)
0 = azyr + aqtpa,

where 11, V2, V3 are metaharmonic functions and w1, wWo are metaharmonic vectors
satisfy Egs. (14) and (18), respectively; aj and B;, j = 1,2, 3,4, are defined by Egs. (11).

Proof. Let (u, p,0) be a solution of system (2). Taking into account Egs. (16), (19)
and (20), from Eq. (3); we have

u=

_W{ grad [ — po(on k3 y + askits) — m(asyy + autha)|—

(gt R (Bukwa 4 fokiwa) + (Bakiw + Bikiwa) | =

2
1
= W Z {(,anjka- + maj+2) grad ; + [(,u + Ii)ﬂj — Kﬁj+2]kj2'+zwj}~ (25)
j=1

In view of Egs. (12) from (25) we obtain Eq. (24);.
On the basis of Egs. (16),, (19) and (23) from (3), we get

2
1
o = grad s + o curl > (VB 42k3 1o — KB;)W;. (26)

j=1
By virtue of (12); from Eq. (26) we have Eq. (24),.
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Theorem 2. Ifw # wy and u, @ and 0 given by Egs. (24), where 1, V3, 3
and w1, Wy satisfy Eqs. (14) and (18), respectively, then (u,,0) is the solution of
system (2) in €.

Proof. From Egs. (24) we get

2
Au = — Z [ajk? grad v; + ﬁjk]2-+2wj],
j=1

2

graddivu = — Z ok grad v, (27)
=

2

curl p = Z 6j+2k:j2-+gwj.
j=1

Taking into account Egs. (12), (24); and (27) we have

(p+ K)Au + (X + p) grad divu + & curl o — mgrad @ + pw?u =

2
(,uoozjk:? + Mmoo — pwzaj) grad ¢+

j=1

2
+ 3 [+ mIR2 o — 9?8 — 1By 2k2 s =0,
j=1
On the other hand from Egs. (24) follows that

2
Ap = —kZ grad s — Y Bj4ak o curle;,
= (28)
grad div ¢ = —kZ grad 93,
curlu = curl(Biw1 + Baws).
By virtue of Egs. (12), (28) we get

YA + (a + 8) grad div ¢ + k curlu + 1+

2
= (—VOkg + ) grad ¢s + Z('}/ﬂj+2k32'+2 — KB — p1Bj42) curlw; = 0.
j=1

Similarly, in view of (12) and
A0 = —askiyy — auk3ys,
divu = —a1 ki1 — aok3)y

we obtain

2
koAO + apf + mydivu = Z [(k‘ok‘? — ao)aj+2 + moajk:z] ’(/)j =0.

J=1

Hence, we have Eq. (2)s.
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Thus, the general solution (u, ¢, 8) (vector with seven components) of system of
homogeneous equations (4) in terms of nine metaharmonic functions v;, wq; and woy,
j =1,2,3, is obtained.

2 2
2. Let w = wy. Obviously, 1 = ky = ks = 0, k3 = M. From system (2)
. v(p+ k)
we obtain Egs. (3)1, (4)1, (6), and
Adive =0, A(A + E2) curlu = 0, quadA(A + k3) curl p = 0. (29)
We introduce the notations
* * K * * * *
B = k3, 52:_W’ N=a+B—-7+260;, p =v—rb. (30)
0

Theorem 3. [fw = wy and (u,p,0) is a solution of system (2), then
u = grad(a1¥1 + aghs) + B7v + 55 curl ug,
@ =1up+ Kkcurlv, 3D

0 = azpr + outha,

where 11, o satisfy Eq. (14), the vectors v = (v1,v2,v3) and ug are solutions of
following equations:

(A+Ek3Hv=0, divv=0, (32)
and
pAug + (A + p*) grad divuj = 0; (33)
respectively, ay, s, aiz, g are defined by (12).
Proof. Let
1
v=——>Acurly, ug = ¢ — Kkcurlv. (34)
kks

Taking into account Eq. (29); from (34); we have (32).

On the basis of Egs. (11), (13) and (31) from (3); we obtain Eq. (31);. By virtue of
Egs. (31); and (34) we get

w*Aug + (A" + ) graddivug =
= (v —KB3)Aug + (a + B+ kB3) grad divug + (8] — vk3 )k curl v =
= y(Aug — k3 curl v) + (o + 3) grad div ug+
+k(67 curl v + 55 curl curl ug). (35)

In view of Eq. (2); from (35) we have Eq. (33).

Obviously, from (34), it follows Eq. (31),.

Thus, ifw = wy, then the general solution of system (2) is presented by 5 metaharmonic

functions v, Y9, v1, v2, v3 and by vector function ug, that is solution of the homogeneous
equilibrium equation of the classical theory of elasticity with Lamé constants A\* and p*.
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Remark 2. As in classical theory of elasticity [7, 8], by virtue of Theorems 1 to 3

it is possible to construct the solutions of boundary-value problems in the linear theory
of micropolar thermoelasticity without energy dissipation.
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