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NON-EXPLOSION AND SOLVABILITY
OF NONLINEAR DIFFUSION EQUATIONS
ON NONCOMPACT MANIFOLDS*

BIACYTHICTb BUBYXY TA ICHYBAHHS PO3B’AA3KIB
JIJIA HEJTHIMHUX JTU®Y3IMHUX PIBHAHD
HA HEKOMITAKTHUX BAT'ATOBUJAX

We find sufficient conditions on coefficients of diffusion equation on noncompact manifold, that guarantee
non-explosion of solutions in a finite time. This property leads to the existence and uniqueness of solutions
for corresponding stochastic differential equation with globally non-Lipschitz coefficients.

Proposed approach is based on the estimates on diffusion generator, that weakly acts on the metric
function of manifold. Such estimates enable us to single out a manifold analogue of monotonicity condition
on the joint behaviour of the curvature of manifold and coefficients of equation.

3HaliIeH0 1OCTaTHI YMOBHM Ha KoedilieHTH IuQy3ifHOro piBHSHHSI Ha HEKOMIAKTHOMY OaraTtoBMi, 3a
SIKHX PO3B’S3KH HE BHOYXalOTh y CKIHUCHHHMH MPOMDKOK 4acy. LIsi BIaCTUBICTh MPHUBOAMTH A0 iCHYBaHHS
Ta €IMHOCTI PO3B’A3KIB BIAMOBIAHUX CTOXaCTUYHHUX PiBHSHb 3 INI00AJILHO HENIMNIINLEBUME KoedilieHTamu.

3anpornoHOBaHMH MiJXiJ CIIUPAETHCS Ha OL[IHKH Ha reHeparop AuQy3ii, mo ci1adKo /i€ Ha METPUIHY
¢yHK1ito OaratoBuy. BUKOPUCTAaHHS TaKKUX OLIHOK J03BOJISIE€ 3HAWTH y3arajlbHEHHS yMOBH MOHOTOHHOCTI
Ha BUMAJIOK 0araTtoBUY, 10 NOEIHYE MOBEAIHKY KPUBUHH 0araToBUay Ta KOe(]ili€HTIB PiBHIHHA.

1. Introduction. A rigorous procedure for the construction of solutions of diffusion
equations on manifold was suggested a long ago, see [1—3] and references therein. In
comparison to the stochastic differential equation on linear space when the solution can
be constructed in a global coordinate system, the main difficulty with manifold was that
it does not have global coordinate system.

Let Ag, A, be C*°-smooth vector fields, globally defined on the oriented smooth
complete connected Riemannian manifold A without boundary and §W denote Strato-
novich differentials of independent one-dimensional Wiener processes WS>, a =1,...,d,

The diffusion, written in Ito — Stratonovich form

d
Sy = Ao(yb)dt + 3" AalyP)SWE,  uf = a, (1)

a=1

can be correctly defined in any local coordinate vicinity U of manifold with the use of
integral equations on random intervals ¢ € (T, Tout)

tATout tATout

d
Yirr. (2) =3 (2)+ / Ajyyds + 3 / AW, =z @)
a=1

Tin Tin

Above Ty, Tou: denote the times when process yi enters and leaves vicinity U, i.e.,
yr € U for all t € (Tin, Tout)-
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The global solution to (1) is first constructed starting from some vicinity of initial
point x. Then it is extended in further domains, where comes process y;, with help
of (2). This procedure of gluing together the local solutions on random intervals into
global solution may be correctly done for diffusion equations with locally Lipschitz
smooth coefficients [1-4]. The resulting solution is well-defined on some random
interval [0, 7o (w)), but not necessarily for all ¢ > 0.

Since compact manifolds always have a finite covering by local coordinate vicinities,
it can be shown that random time 7., = oo in compact case and the solution of diffusion
equation (1) exists for all £ > 0. On the contrary, because Wiener process W; leaves any
bounded ball in R? with non-zero probability, in the noncompact case the explosion may
occur. Depending on properties of coefficients of (1) and geometry of manifold there
may exist a finite explosion time 7, such that process y;’ leaves any bounded vicinity U
of manifold M at time 7..: VUCM y7 ¢ U. Then the solution y; could be correctly
defined only till the explosion time 7o (w).

In the case of non-explosion the probability of set {w: Too(w) < 00} is zero and the
unique global solution y; of equation (1) may be defined for all £ > 0. It represents a
continuous adapted locally integrable process which fulfills an independent on particular
coordinate vicinities variant of (1): for any function with compact support f € C5°(M)

t

d t
) = f(z) + / (Aof)(y2)ds + 3 / (Aaf)(y2)OWE 3

0

Since f(y7?) and (A. f)(y?) are R-valued processes, equation (3) represents Stratonovich
equation on real line R!. Using functions f that coincide with the local coordinates
f(x) = 2" in the coordinate vicinities U of manifold, it is possible to localize equation (3)
back to (2).

Moreover, in contrary to the explosion case, when there is no sense of y7 (w) for w
such that ¢ > 7 (w), in non-explosion case the diffusion semigroup P; f(x) = E f(y¥)
has sense and the applications to the heat parabolic Cauchy problems on manifolds
become possible. Due to (3) semigroup P; is generated by the second order operator of
Hoérmander type

d
£f =53 AulAuf) + Aof. )
a=1

The known conditions for non-explosion and, hence, for the existence and uniqueness
of global solutions yf to problem (1), lie in the global Lipschitz assumptions on the
coefficients of equation Ay, A, and boundedness of the curvature of manifold, e.g.
[1, 2, 4, 5]. Further research of non-explosion for stochastic equations on manifolds
mainly concerned geometric properties of manifold, like its Brownian or martingale
completeness, see, for example, [6, 7] and references therein.

However, in the case of noncompact spaces with zero curvature (like R?) it is also
possible to prove non-explosion for a wide class of equations with nonlinear globally
non-Lipschitz coefficients, that fulfill a kind of monotone conditions of dissipativity and
coercitivity [8, 9]. Arises a natural question whether the global Lipschitzness assumption
on the coefficients of equation can be avoided in the case of noncompact manifold.
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In this article we discuss conditions on the joint behaviour of coefficients Ag, A,
of equation (1) and curvature tensor R of noncompact manifold M that guarantee non-
explosion, i.e., the existence and uniqueness of solutions to (1). The found conditions
generalize the dissipativity and coercitivity conditions from linear space to the manifold
and permit to work with essentially nonlinear diffusion with globally non-Lipschitz
coefficients.

The main idea is that the following estimate on the metric distance function p on
process yi':

Ep’(0,y7) < e™*(1+ p*(0,2)), (5)

leads to the non-explosion: for all £ > 0 p(o,yf) < oo almost everywhere. Here 0 € M
is some fixed point of manifold and p(o,x) denotes the shortest geodesic distance
between points o and x.

At the first look, estimate (5) can be obtained from the formal application of Ito—
Stratonovich formula (3) to the metric function f(y7¥) = p?(0,y¥)

l d
1
Ep?(0,47) = p*(0,z) + /E {Aél +5 Z(Aﬁf)z} p*(0,y%)ds, (6)
a=1

0

where we used notation A’/ for vector field A acting on the second variable 2 of function
p(o,x): AIIp2 (0,2) = (A(x), V1>p2 (0, ).
Then, if operator £ fulfills the following estimate on function p(o, ):

d
HKzﬂfmm={%HQEJMW}Mmm<Ku+fwm» )
a=1

formula (6) leads to

t

M%w@éfw@+K/me%wM®
0

and gives non-explosion estimate (5).

However, in comparison to the Euclidean case with smooth metric p?(0,z) = |jo —
— x||?, for the case of general manifold M function p?(o0, ) may be non-differentiable
for points x € N from some hypermanifold N C M of lower dimension. Then operator

1 «—d
AN+ 5 > (Al )2} in the right-hand side of (6) is bad defined on it and formal
a=
reasoning (5)—(7) does not work.
One more problem in estimation of (7) is that metric p?(0, x) does not have a direct

representation, as in the linear case ||o —z||%. It is a minimum of length functional along
paths from o to x

1

p*(0,x) = inf /H(f)‘Qdf, ¥0)=0, vy(1) ==z 3y, where +(¢)
0

0

®)
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therefore it is hard to provide the implicit representations for arbitrary differential
operators, acting on it. The known approaches were mainly adapted for Laplace-—
Beltrami A or similar operators and related with the use of geodesic deviations formulas
and Jacobi fields, e.g. [10, 11], survey [7] and references therein.

In [12] it is found a way to obtain upper bound (7) on the generator £, acting on
the metric function at points of its C2-regularity. Since in general situation the metric
function is not everywhere twice differentiable, results of [12] are not directly applicable
to the study of non-explosion.

The article consists of two parts. First, in Lemma 1 we develop upper bounds of
[12] outside of geodesic between points o and = and estimate difference approximations
of second order operators. Then, in Lemma 2, we prove estimates on operator £ that
weakly acts on metric function.

These weak estimates are used in Lemtma 3 to demonstrate, in analogue to arguments
of [5], that process 1 + p*(0,y¥) — K / {14 p?(0,y")}ds represents supermartingale
for sufficiently large K. This leads to m%ment estimate (5) and, in fact, replaces the Ito
formula arguments (5)— (7).

Finally, in Theorem 2 estimates (5) are extended from p?(o0, ) to the polynomials
of metric function.

2. Main results. Let us implement the following conditions on coefficients Ay, A,
and curvature R. In particular, they generalize the classical dissipativity and coercitivity
conditions [8, 9] from the linear Euclidean space to manifold:

coercitivity: Jo € M such that VC € R 3 K¢ € R! such that Vo € M

d
(Ao(2), V7p*(0,2)) + C Y [[Aa(@)|? < Kc(1 + p?(0,2)); ©)

a=1

dissipativity: YO, C' € Ry 3 K¢ € R! such that Vo € M, Vh € T,M

(VAo (@)[h], 1) + C Y || VAa(2) (]|~

a=1
d
—C"Y (Ry(Aa(x), h)Au(x), h) < Kol|h|)?, (10)
a=1
— 1 «—=d
where Ag = Ao + > Va,Aq and [R(A,R)A]™ = R} APA'h? denotes the
a=
curvature operator, related with (1, 3) curvature tensor with components

8F123 81_\124

Ozt Ox3

For simplicity of further calculations we denoted by numbers the positions of correspon-

2 _
R134_

+T/,0 % T/ T A (11)

ding indexes. By tradition the repeating indexes mean silent summations.
Notation V H [h] means the directional covariant derivative, defined by

(VH(2)[h])" = V;H (z) - h. (12)

Main result of article is the following:
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Theorem 1. Suppose that conditions (9), (10) are fulfilled. Then equation (1) has
a unique solution that does not explode in a finite time and fulfills estimate (5).

Proof. To localize equation (1) consider open set UCM with compact closure U
and function ¢V with compact support such that \/¢V € C§°(M, [0,1]) and ¢Y(2) =1
for z € U, 0 < ¢Y < 1 outside of U. Introduce operator

d d
LU= VLf = 3 3 VAT Auh) + U Aof — 5 3 VT (Aa/TT)Auf,
a=1 a=1

that corresponds to the localized Stratonovich diffusion
14
5y (z) = (CUAO —32 ¢<U<AN¢U>A@> (y2)ds+
a=1

d
+D VW AW, g = . (13)
a=1

Equation (13) has globally Lipschitz coefficients with all bounded derivatives, therefore
it has a unique solution which is C'*°-differentiable on the initial data x [1, 2, 4, 5].
Since for initial data = outside of support ¢V we have yY (z) = z for all t > 0, its
diffusion semigroup (PY f)(z) = Ef(yY (z)) preserves the space C§°, (M) of non-
negative continuously differentiable functions with compact support. ’

Now let us prepare the independent on U weak estimates on generators £Y: 3K
WY € (M, [0,1]), ¢V | =1 ¥ip € Cg%, (M)

[ (€10 emdo) < K [ @)1+ 0a)do() (14)
M M
where do denotes the Riemannian volume on M.

As [LY]* = [¢YL]* = L£*¢Y, estimate (14) follows from the weak estimate on

operator £
3K V¢ € Cg2 (M):

/ (C7(2))pP (0, 2)do(x) < K / B (1 + (0, 2))do () (15)
M

M

if one substitutes first 1y = (Y and then applies 0 < ¢V < 1. Here L* =
1 d

=3 > _ [ALJ? + A5 with the adjoint field X* to vector field X defined by X*f =

=—(divX)f—X/.

To prove (15) let us first note that for any smooth vector field X in a vicinity of
some point z of manifold N and smooth function f on N representations are satisfied
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S

d , ey _
Xf( )—;l_r%g/Xf dS— hm /gf(zﬂds:gl_r}%w,
0
(16)
X(Xf)(z) = liin—g/ds/X(Xf)(zl)de:
0 —s

— timy 5 [{OENG) = (XN ds = lim 55 [ 07 + () pds =
0 0

o JE) A 20

e—0 52

1>
Here we used notation 2° for the differential flow along field X: 2¢ = 2+ / X (2°%)ds.
0

Therefore, due to the compactness of support of function v in (15), the following
representation of the left-hand side of (15) is valid

[ uensio niot) = 1 /w NAE LIRLE IR
M

E—>0+

Zd: p*(0,25(x)) + p* (o, (17)

1
2

£2

7)) ~ 20, ) } doz).

a=1

Here 2§(z), 25 (x) denote the shifts along vector fields Ag, A, with initial data 2] (z) =
=z, 20(r) = 2.

Representation (17) follows from (16) and form of adjoint field X*, because due to
the Stokes formula X -dS = / div X do the increment of volume along field X

oD D
d do (25
is equal to e Ezo(f;z)&(?)) = (div X)(x). Indeed, for ¢,1 € C5°(M) one has

[wwpdo = [ues)io -
M

M

, $(25(x) — (25 (2))
=€£%1+/¢<””>{ e
M

d z, (X)) — ZOSU
Z p(za"(2)) — 20(A( >>}d0(x)
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do (2 (x))
do ()

where to get the last line with p(x) we shifted back along fields {—Ag, —A,}. For
¢ € C§°(M) and vector fields Ag, A, expression in figure brackets in (18) converges
to L£*i uniformly on M. Due to the compactness of support of 1) we can close
(18) from o(x) to p?(o,z) and, making a reverse shift along fields Ay, A,, obtain
representation (17).

2= (x) } }¢mx>do<x>, ()

Now let us estimate fractions in the right-hand side of (17).
In the vicinity of geodesic y(¢), ¢ € [0, 1] from 7(0) = o to (1) = x that minimizes
(8) consider smooth vector field H. Introduce a family of paths

[0,1) x (=0,0) > (¢,s) — v(£,8) € M

such that at s = 0 path (¢, s) |s:0 = v(¢) gives geodesic «y from o to x and parameter
s corresponds to the evolution along H:

(t5) = HO(E5)). (19)

Note that for s # 0 each path {v(¢,s), ¢ € [0,1]} must not be geodesic, unlike
in formulas for geodesic deviations. Later we will choose field H to be H({,s) =
= (2Ao(v(€,5)) or H({,s) = LA, (y({,s)) for the first and second order differences
in (17).

Lemma 1. The following estimates on difference operators on metric function are

Sulfilled:
p2(7<075)77(1u€)) — p2(07$) <
5 <
1 8 e 1 82
<[ 5| pwalas [ [ or] aas (20)
4 5=0 0 0

P2(1(0,€),7(1,€)) + p*(7(0,),7(1, =€) = 2p*(0,7) _

g2 -
1 52 1
/a— 5(€,8)|2dl + = //‘ \’yés dlds, 1)
0 0
S 0
where we used notation y({, s) = @’y(f, s).
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The right-hand side terms in (20), (21) have the following representations in terms
of field H:

d . e o .

2
S SRR = [VHE) P~ (3, RULAH) + (3, V(T )R, (3)

3
The third derivative has representation %H(Z, s)|? = (¥, D[3]) with operator D that
depends on the field H up to its third order covariant derivative and on curvature tensor
and its covariant derivative.

Proof. Let’s apply (16) with N = M x M, X = H' ® H'! and function f(z) =
= p(o,z) for z = (0,z). Using the minimal property of geodesic, i.e., that the path
~(¥¢, s) is longer than geodesic from (0, s) to (1, s), we can estimate terms with ¢ in
(17) from above and obtain

1 1
P0.90) - P _ Jy 1P [ BEOP
o €

2 SEeZ)
P (1(0,2),7(1,9)) + (3(0,2),7(L, —2)) — 26%(0,) _
g2 -
1 1 1
/ (e, e)|2de + / (0, —e)[2de — 2 / 15(6,0) P
< Jo 0 = 0 ) (25)

Above we actually get rid of a problem of implicit representations for operators on
metric functions (8). Remark also that the only term with s = 0, i.e., p*(0,z), was
written exactly along geodesic (¢, 0) from (8).

Let h(s / |4(¢, 5)|?d¢l. Then estimates

€

h(e) — h(0) = /h'(s)ds =eh'(0) + / [h'(s) — h'(0)]ds =

0 0

=eh'(0 —|—/ /h” Ydr | ds =¢eh’(0 / /h” Yds | dr =

0

5

—eh(0) + / W (Fydr << | 10 / B (7)dr |,

0
h(s) + h(—s) — 2h(0 /h’ ds—/h’ ds—/h’() B (—s))ds =
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_ / { / h”(T)dT} ds = €2 (0) + / ( / [h”(T)—h”(O)]dT) ds <
0 —5

0 — S

geh”(0)+/g (/{/m dé}dr) ds < &2 (h” /Ih”’ |d6)

0 — S
lead, due to (24), (25), to the statements (20), (21).

am
Now let us find expressions for e ‘fy l, s)| in (20) and (21).
S

Let us use that by continuity arguments, for any ¢ and sufficiently small §(¢) the
path {~(¢, Z)}ze(—é(é) 5(8)) completely lies in some coordinate vicinity (z°). In this
coordinate system relation (19) has integral form

Vs =10+ [ H ) (26)
with point «(¢) on initial geodesic from o to x. Therefore
§(65) =50+ [0t (2625 6,2
0

and

(L) = OH () (0 5) = (ViH' — T HYAALs), @)

where we changed to the covariant derivatives. In particular, from above formula and
(19) it follows commutation

00 , 0 0
——7"(¢ 4,s).
858f7(’s) 8£8 7(?5)
Relation (27) and autoparallel property of Riemannian connection
akgmn (il?) = ghnrkhm + gmhrkhn (28)
lead to relation (22):

SR = 1 [0 8)3 (6 3 (0, 5)] =

0 . i L0
= OiYij %’Yk Y'Y 4 2gi5% %’Y] =
= 2,4 (Ve HI)3* = 2(5, VH[A]).

In a similar way

LT B = 2 (9, VHE . 9) = 2 a7 [V ()]} =

= Omgij (VH™5' [V HI (A + g { (Ve H = T,1 1 )A™ HV R H (7)]55+
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+9i5Y [0m Ve H? (7) - H™(M]F* + 9i5(0)F Ve H (N (Ve H* = T8 1)3™ )

where, after the differentiation of product, we substituted relations (19) and (27).
Using property (28), transforming partial derivative d,, V H’ to covariant V.,V H’
and contracting the terms with connection I' we have

1 0? N -
352/1be O = gij (Vi H)Y™ (V. H)AF +

+ 9 (Vi Vi H)H™ 5% + g3 (7)Y (Ve HY ) (Vo HY )™

Next commute the covariant derivatives in the second term V,,,V, H/ = VV,,, H +

+ R/, H" to obtain
10?% .
§@|7(5a5)| = |[VH[Y]|*+

907 (ViV H + R H"YH™ 5 + g4 (Vi HY ) (Vi H )™ =
= [VHR? = (5, RUH, ) H) + iy (Vi Vi H ) H™ 5+
+9i5 (Ve HY ) (Vi HY ) 5™
with curvature operator R(H, 7). Redenoting indexes m < k in the third term we have
37 4 4" terms = ;3 (Vo Vi HI ) HE 5™ + g,54 (Vi HY ) (Vo HF )3 =
= 95V (Vi {H V. HT )™
which leads to (23).

3

By similar calculation the third derivative gg |%(£, 5)|? depends on the field H and
its covariant derivatives up to the third order and on the curvature tensor R and its first
order covariant derivative.

The lemma is proved.

Now we apply Lemma 1 to find estimates on difference approximation (17) of
operator L.

Lemma 2. Under coercitivity and dissipativity assumptions (9), (10)

SK Yo G 00: (£ 0@)o.0)do(e) < K [ ()1 + 0. 0)doo)
M M
(29)

Proof. Let us make a particular choice Hy(¢,s) = (?>Ag(vo(¢, s)) and H, (£, s) =
=LAy (7o (4, 8)) in (20), (21) with (4, s), 7o (¢, s) generated by Hy, H,. Then due to
H(0,s) = 0 the point (0, s) = o for all s € [—¢, €] and we have from (22), (23)

{p2<o, 0(1,¢)) = p*(0, )

3

_|_

2

d
1 Z ’ya ]- 5 + P2(0a ’Ya(]-v _5)) — 2p2(07 LE) <
2 >

a=1
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1 e 1
S/I d€+//J ))dlds (30)
0 0

where terms at s = 0 are equal to

d
I(3) =2 <v <€2A0 + % Z Via, WLA) [ﬂd> +

zd: {|v (€A) (R(ﬂAa,ﬁ)éAa,w}

and rest terms have form

83

T (E9) = | 2zlin(e. o) 33\ (6,91

I4 I4
Using that V/{[{] = % =land Vy (0= % = 0, which leads to

V(Viea, LA = V5PV 4, Ax) = PV (Va, Aa) 3] + 20V 4, A,
we can further rewrite term (%)

I(%) = 203(V Ao[], %) + 46{ Ao, )+

d
+ 3" {PIVABI P+ 26(Aa, VALD + |Aal — 2 (R(Aas ) Aa, )+
a=1
A (Va, A ) + 2609 4, AasA) }- (1)

Using estimate

. 4 a2, 1
(VAalil, Aa)| < 5[V AL + 55140l

we find

d
Iw><e2<<VAo +2Z|VA Z A, ) m>>+

+40(Ag (v +2Z |Aal*. (32)
Using that

V1O p2(0,7(0)) = 2p(0,7(£)) V") p(0,7(£)) = 2£p(0, ) p?;gi) = 204,

we have
20(A(7),4) = (Ao(7), V" Op2(0,9(0))).
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Finally, applying the coercitivity and dissipativity assumptions (9), (10) to (32), we
conclude

1 1
[16ae< [ {2KelP + Ko+ po2(0) Jde < KL+ 520,2)), (33)
0 0

where we also used that £ < 1 and path (¢,0) = ~(¢) realizes the geodesic between o
and z.

Due to (22), (23) and analogous representation of the third derivative, the rest terms
J(%) in (30) are estimated by

d
JH) < To Rl ) + D T Fall, 5)|?

a=1

with some functions 7y, T, depending on the coefficients of equation and curvature
tensor and their covariant derivatives up to the third order. Since in (17) the support of

1 is compact and the limits are taken in some J-vicinity of point z, the possible paths
~(¢, s) belong to the bounded set

Zpos = {y € M: y lies on some geodesics from o to € B(supp v, 6)}

Therefore
1

1 d 1
/ J()de < sup  |{To,Ta}(2)| - / [Fo(€, )2l + / Fa(l, 5)|*dl
0 0

) 2€24y 0,5 a=1

1

Due to (22) the integrals v, = / |%(£, 5)|?d¢ are estimated in the following way
0

S S

1
vs <o+ /U;ds = p*(0,2) —|—/ (VHY(L,5)],%(¢,5))dl | ds <
0 o \0

S

<o)+ swp [VH@)|- / h(s)ds
YEZy, 0,5 A

which gives

YE€ELy, 0,6

vs<p2(0,$)e><p{s sup IVHI(y)}~

We come to

e 1
O/ { J(3)deds <

< 5P2 (07 Z’) © sup M(A07 VAOa V2A07 Aa7 VA(,H VQAOM VSA(X) R7 VR)

YE€EZy 0,6

with a finite resulting constant sup M due to the compactness of set Zy . s.
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Combining the above estimate with (33) and (17), and taking limit liI(I)l+ we have (29).
£—

The lemma is proved.

Let us recall that we developed weak estimates on £ because metric p? (o, z) may be
non-differentiable at all points = and Ito formula arguments were not applicable. Now,
similar to [5], we replace the Ito formula approach to non-explosion estimate (5)—(7)
by weak estimates (29) and a statement that some process on manifold represents a
supermartingale. By definition, process X; is supermartingale with respect to the flow
of o-algebras F; if for all 0 < s < ¢ it is satisfied E(X¢|F;s) < X;. Here E(:|F;)
denotes the conditional expectation with respect to o-algebra F;.

Lemma 3. Under coercitivity and dissipativity conditions (9), (10) there is an
independent on sets UCM constant K such that process

t
1+ /(0,57 K/ 1+ p%(0,yY (x))]ds (34)
0

is an integrable supermartingale with respect to the canonical flow of o-algebras Fi,
related with d-dimensional Wiener process W, a=1,...,d, in (1).

Proof. First recall, that semigroup PU, generated by localized process y” () (13),
preserves the space C5°, (M) of nonnegative continuously differentiable functions with
compact support. Therefore the integrals below are finite and weak estimate (29) implies

Vo e O 00 5 [ o) (P L+ P09} (a)do (o) =

dt
- %/{[Pt[]]*@} (z)(1+ p*(0,2))do(x) =
:/[ﬁU]* {IPYT ¢} (z) - (1+ p*(0,2))do(x) =

=/ (V@) {[PYT 0} (@) - (1 + p2(0,2))do(z) <

M

<K/{ (PP o} () - (1 + p*(0,2))do( K/ (@){PF 1+ p*(0,)) } (x)do(z),

where we used that due to the compactness of support of function ¢V > 0 the integrand
¢ = CY(x) {[PP]*¢} € C§°, (M), then applied (29) and property ¢V < 1. To come to
the last line we also applied that £1 = 0.

Therefore for all ¢ € C§%, (M) we have estimate

/ o(@) - {PY(1+ p%(0,)} (x)do(z) <

M

< / o@) | (14 20.2) + K / [PU(1+ (0. )} (2)ds | do(x)
0

M
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and its pointwise consequence
t
[PV (14 p%(0.)} (&) < (L + pP(0,2)) + K / {PY(1+p*(0.)} (a)ds.  (35)
0

Next we use the Markov property of process 4 (). In particular, for semigroup P
it gives

(P )y (2)) = B(f (s (@) | Fo), t5 20, (36)

which permits to substitute process y; instead of initial data . Property (36) can be
checked by taking ¢, = E([PY . f](yY,.) | F;) and using Ito formula for depending on
time functions to get ¢, = 0, s € [0,¢]. Therefore ¢o = ¢; and (36) is true. After that
(36) should be closed from C? to continuous functions.

Let us substitute instead of x initial data yY(z) in (35) to obtain from (36) for
function h(x) = 1+ p?(o, z) that

E(h(y-(@))|F) = (P h)(y7 () < h(yy (@) + K/ {PIn} (y7 (x))ds =
0

t+7
—h(¥ @)+ KE | [ 1 @)ds |7, | G7)
Inequality (37) actually means that the process (34) is supermartingale. Indeed, the
supermartingale property

t+7 T
E | sl (@) - K / hl (@)ds | 7, | < h (@) - K / h(y? (x))ds
0 0

coincides with (37). The integrability of process (34) follows from the compactness of
the closure of set {z : ¢Y(x) > 0}.

The lemma is proved.

End of proof of Theorem 1. Suppose that initial data x € U. Introduce stopping
time

V(W) = inf{t >0: yf € U}.

The Doob—Meyer free choice theorem, e.g. [13], permits to substitute any finite
stopping times 0 < S < T into the supermartingale property E(X7|Fs) < Xg. Let’s
apply it with S = 0 and T = t A 7Y to supermartingale (34). Due to E(:|.Fy) = E(-)
we have

tATY

me = B(1L+ p*(0,y,0 (2)) < (14 p*(0,2)) + KE / 1+ p*(0, ()))ds <
0

t

¢
<mg+ KE/(I + p%(0,yY, v (2)))ds = mo + K/msds,
0 0
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where yY,_ (z) = yY (x) for s > 7V is a stopped process on the boundary of U and

we enlarged the upper limit of integral.
Gronwall — Bellmann inequality implies that

E(1+ p?(0,yp,0 (2))) < " (14 p?(0,2)). (38)

Choose now a sequence of balls U,, = {z € M : p(o0,z) < n}, then after number
no such that p(o,x) > ng, the sequence of stopping times 7V is monotone increasing.
Due to (38)

E L{wisr0n @)} - (L+ 00, Yfro (@) <
< E(1+ p*(0, ypa,o(2))) < 1+ p*(0,2))

with characteristic function 14 of set A.
Since for t > U p(0,y¥) = n, we have

K1+ 2oa))
1+ n?

E 1{w:tZTUn (w)} <

and almost everywhere

Too = lim 7Y
n—oo

" = 00, (39)

As (Y ’ﬁ = 1, the processes y. " (z) and y”™ (z) coincide till the first exit time
from vicinity U, am. Therefore the unique solution 7 to problem (1) equals to solutions
yU () till the first exit time ¢ < 7Un.

Property (39) implies that for coercitive and dissipative coefficients in (1) the limit
process yy = lgn ygj " (x) is correctly defined for all ¢ > 0 as a unique solution to (1).
In particular itndo::os not explode in a finite time.

The theorem is proved.

In next theorem we generalize statement of Lemma 3 to the polynomials of metric
function. Remark that the convex function of supermartingale should not be a supermar-
tingale again, therefore the application of coercitivity and dissipativity conditions (9),
(10) is necessary to find appropriate constant K p in (41).

Theorem 2. Let P be a positive monotone polynomial function on half-line R
such that

3C Vz>0: (142)P'(2) <CP(2), (1+2)|P"(2)]<CP\(2). (40)
Under coercitivity and dissipativity assumptions (9), (10) there is constant K p such that

Jor any vicinity U the process

t

Hﬁ@ﬁ@m—Kg/mfmwumﬁ @1)
0

is integrable supermartingale.
Moreover, a unique solution yi to problem (1) fulfills
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EP(p*(0,y7)) < e"7'P(p*(0,x))

and process

t

P(p*(0,y})) _KP/P(pQ(Ovy':))dS
0

represents supermartingale.

1469

(42)

(43)

Proof. This statement is verified like in the previous theorem, the only difference is

that due to the monotonicity of P the first order estimate (20) transforms to

P(p*(7(0,¢),v(1, 8))) — P(p*(0,x)) _

([ ) ([ rars)
_P(O/llﬁ(&S)zdl’)+j . (/Ws QdE) ds =

1

/ﬁ
0Os
0
o2 v
sa? ([ o)

Similarly, the second order estimate (21) becomes

P(p*(7(0,),7(1,¢))) + P(p*(+(0,),7(1, =¢))) = 2P(p*(0, x)) _

P} =

<9
— 0Os

with Jp(¥,) =

E
1 1 1
P( / w<e7s>|2de)+P( / w<ae>2d4)2p ( / W,O)Zdﬁ)
< 0 0 62 0
1 £ 1
/|'<z )[2de +1/ 25 /\'(z 2de || ds =
0 0 0

1

82
o) [ 53,
0

54, 8)[2de+

g

IW(&S)IW] +/Np(%)d87

0

1
+P"(p*(0, %)) [ / % )
0 5=

with N (4,) = ‘ </01 (L, S)de) ‘
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Therefore we have additional term with P” in comparison to (21). Its multiple is
treated in a similar way

1 a 1
(0, s)>de = 2 A)dl =
/ 9s |, oo /
0 0
1 1 1/2 1/2
_ 2/<Aa OV AL, A)de < 2 / A + (VAL e / 14 2de
0 0 0

1
Due to / |%(¢, 0)|?dl = p*(o, ) we have
0

2

(€, 5)Pde] <
=0

18

P00 | [ 2
0/855
<P (o)) (00) [ |40+ VALl Pl <

1
<8CP(p / ([Aal? + 2|V AL[3]2)de.
0

This leads to additional terms in the right-hand side of (31) and, due to the coercitivity
and dissipativity assumptions (9), (10), gives estimate on all terms in lines (44) and (45)

line (44) + line (45>gP’(p%ow))~K(1+p2<o,m>>+/{Jp(%)+Np<vs>}ds <

€

< KCP((0.2)) + [ {Jn(ia) + Ne(i)}ds.
0

Therefore (33) transforms to

{H&mwu@»—mﬁmm>+

9

*éiép va1€»>+P@%;me@»2Pw%mm>}§
< KCP(P o)+ sw {Jp(is) + Ne(is)}. (46)

Like in the proof of Lemma 2, the rest terms with Jp, Np vanish for ¢ — 04.
Therefore (29) adopts form
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[@ o) P oandots) < Kp [P o.0)ot). @D
M

M
Proceeding further like in Lemma 3, we obtain that (41) is a supermartingale.
In particular, an analogue of estimate (38) is true

EP(p*(0, yir,v () < P P(p* (0, x)). (48)

Next consider measurable random set V,,(t) = {w: Vs € [0,#] yf(w) € U,} that
corresponds to paths of process yf(w), staying inside of set U, till time ¢. Then
yF(w) = thA"TUn (z,w) for all w € V,,(¢) and (48) leads to

E 1y, o P (0% (0,47 (2)) <EBP(p*(0,930,0, (2))) < €57 P(p*(0,2)).  (49)
Due to non-explosion lim 7Y=(w) = oo, each path y¥(w) completely lies in some

U, for sufficiently large n. Therefore sequence V;,(t) is increasing to the full probability

space and lower limit lim 1y, ;(w) = 1 a.e. The application of Fatoux lemma | i.e.,

n—oo

that for f,, > 0 the lower limits fulfill / lim f,dy < lim fndu> to the left-hand

side of (49):

E P(p*(0,y(2))) < lim BP(p*(0,y"" 0., (2))) < €57 P(p%(0,))

n—oo

leads to the statement (42).

To check that (43) represents supermartingale, let us apply Doob—Meyer free choice
theorem with S = s A7V and T = t A 7Y to supermartingales (41). It follows that
processes

tATUn

0y = P(p*(0,y 0 v,)) — Kp / P(p*(0,y"r 1)) ds
0

represent supermartingales, i.e., forall 0 < s < ¢ and A € F;
E0714 <EO714. (50)

Since for all w € V,,(¢) and s € [0, ¢] process 67" coincides with the limit process

01 (w) = 62°(w) S P(p (0,57 (w))) - KP/P(P2(07 Ys (w)))ds,
0

we can replace 07 by 65°, s € [0, t], on set V,,(¢) in the calculation below
E (Ly, 007 + (1 = 1v,)0F) 14 =
=E014 <Ef714,=E (1Vn(t)0§o +(1- 1Vn(t))9?) 14. (51)

Here we also applied property (50).
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Then notice that the independent on n estimate is true

sup sup E[07]? < o0
n>1 s€[0,t]

due to (48) applied to function P? instead of P (this function again fulfills (40)). Then,
because (1 — 1y, (+))1a — 14 a.e. for n — oo, the terms with (1 — 1y, () in (51) tend
to zero.

Moreover, due to estimate (42), process |05°] is integrable sup E|0°| < oo and

s€|0,t

gives an integrable majorant for 1y, (,03°14 for s € [0,1]. Using[ th]at Ly, — 1ae.
one takes a limit in (51) to get the supermartingale property VO < s < t Ef°14 <
< EH2°1 4 for process 6° (43).
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