
UDC 512.745

I. V. Arzhantsev∗ (Moscow State Univ., Russia),

A. P. Petravchuk (Kyiv Taras Shevchenko Univ., Ukraine)

CLOSED POLYNOMIALS AND SATURATED SUBALGEBRAS
OF POLYNOMIAL ALGEBRAS
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ПОЛIНОМIАЛЬНИХ АЛГЕБР

The behavior of closed polynomials, i.e., polynomials f ∈ k[x1, . . . , xn] \ k such that the subalgebra
k[f ] is integrally closed in k[x1, . . . , xn], is studied under extensions of the ground field. Using some
properties of closed polynomials, we prove that every polynomial f ∈ k[x1, . . . , xn] \ k after shifting by
constants can be factorized in a product of irreducible polynomials of the same degree. Some types of
saturated subalgebras A ⊂ k[x1, . . . , xn] are considered, i.e., such that for any f ∈ A \ k a generative
polynomial of f is contained in A.

Дослiджено поведiнку замкнених полiномiв, тобто таких полiномiв f ∈ k[x1, . . . , xn] \ k, що
пiдалгебра k[f ] є iнтегрально замкненою в k[x1, . . . , xn], у випадку розширень основного по-
ля. З використанням деяких властивостей замкнених полiномiв доведено, що кожен полiном
f ∈ k[x1, . . . , xn] \k пiсля зсувiв на константи може бути розкладений у добуток незвiдних полiно-
мiв одного й того ж степеня. Розглянуто деякi типи насичених пiдалгебр A ⊂ k[x1, . . . , xn], тобто
таких алгебр, що для будь-якого f ∈ A \ k породжуючий полiном для f мiститься в A.

1. Introduction. Recall that a polynomial f ∈ k[x1, . . . , xn] \ k is called closed if the
subalgebra k[f ] is integrally closed in k[x1, . . . , xn]. It turns out that a polynomial f is
closed if and only if f is non-composite, i.e., f cannot be presented in the form f = F (g)
for some g ∈ k[x1, . . . , xn] and F (t) ∈ k[t], deg(F ) > 1. Because any polynomial in
n variables can be obtained from a closed polynomial by taking a polynomial in one
variable from it, the problem of studying closed polynomials is of interest. Besides,
closed polynomials in two variables appear in a natural way as generators of rings of
constants of non-zero derivations.

Let us go briefly through the content of the paper. In Section 2 we collect numerous
characterizations of closed polynomials (Theorem 1). A major part of these characteri-
zations is contained in the union of [1 – 4], etc, but some results seem to be new. In
particular, implication (i) ⇒ (iv) in Theorem 1 over any perfect field and Proposition 1
solve a problem stated in [1] (Section 8).

Define a generative polynomial h of a polynomial f ∈ k[x1, . . . , xn] \ k as a closed
polynomial such that f = F (h) for some F ∈ k[t]. Clearly, a generative polynomial
exists for any f. Moreover, a generative polynomial is unique up to affine transformations
(Corollary 1).

The above-mentioned results allow us to prove that over an algebraically closed field
k for any f ∈ k[x1, . . . , xn] \ k and for all but finite number µ ∈ k the polynomial
f + µ can be decomposed into a product f + µ = α · f1µ · f2µ . . . fkµ, α ∈ k×, k > 1,

of irreducible polynomials fiµ of the same degree d not depending on µ and such that
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fiµ − fjµ ∈ k, i, j = 1, . . . , k (Corollary 2). This result may be considered as an
analogue of the Fundamental Theorem of Algebra for polynomials in many variables.

Moreover, Stein – Lorenzini – Najib’s Inequality (Theorem 2) implies that the number
of “exceptional” values of µ is less then deg(f). The same inequality gives an estimate
of the number of irreducible factors in f + µ for exceptional µ, see Theorem 3.

Section 4 is devoted to saturated subalgebras A ⊂ k[x1, . . . , xn], i.e., such that for
any f ∈ A \ k a generative polynomial of f is contained in A. Clearly, any subalgebra
that is integrally closed in k[x1, . . . , xn] is saturated. On the other hand, it is known
that for monomial subalgebras these two conditions are equivalent. In Theorem 4
we characterize subalgebras of invariants A = k[x1, . . . , xn]G, where G is a finite
group acting linearly on k[x1, . . . , xn], with A being saturated. This result provides
many examples of saturated homogeneous subalgebras that are not integrally closed in
k[x1, . . . , xn].

2. Characterizations of closed polynomials. Let k be an arbitrary field.
Proposition 1. Let f ∈ k[x1, . . . , xn] \ k and k ⊂ L be a separable extension of

fields. Then f is closed over k if and only if f is closed over L.

Proof. If f = F (h) over k, then the same decomposition holds over L.

Now assume that f is closed over k. Consider an element g ∈ L[x1, . . . , xn] integral
over L[f ]. We shall prove that g ∈ L[f ]. Since the number of non-zero coefficients of
g is finite, we may assume that L is a finitely generated extension of k. Then there
exists a finite separable transcendence basis of L over k, i.e., a finite set {ξ1, . . . , ξm}
of elements in L that are algebraically independent over k and L is a finite separable
algebraic extension of L1 = k(ξ1, . . . ξm).

Let us show that f is closed over L1. The subalgebra k[f ][ξ1, . . . , ξm] is integrally
closed in k[x1, . . . , xn][ξ1, . . . , ξm] [5] (Chapter V.1, Proposition 12). Let T be the set
of all non-zero elements of k[ξ1, . . . , ξm]. Then the localization T−1k[f ][ξ1, . . . , ξm] is
integrally closed in T−1k[x1, . . . , xn][ξ1, . . . ξm] [5] (Chapter V.1, Proposition 16). This
proves that L1[f ] is integrally closed in L1[x1, . . . , xn].

Fix a basis {ω1, . . . , ωk} of L over L1. With any element l ∈ L one may associate an
L1-linear operator M(l) : L → L, M(l)(ω) = lω. Let tr(l) be the trace of this operator.
It is known that there exists a basis {ω?

1 , . . . , ω?
k} of L over L1 such that tr(ωiω

?
j ) = δij

[5] (Chapter V.1.6). Assume that g =
∑

i
ωiai with ai ∈ L1[x1, . . . , xn]. Any ω?

j is

integral over L1 and thus over L1[f ]. This shows that gω?
j is integral over L1[f ]. Set

K = L1(x1, . . . , xn). The element gω?
j determines a K-linear map L⊗K K → L⊗K K,

b → gω?
j b. Since gω?

j is integral over L1[f ], the trace of this K-linear operator is also

integral over L1[f ] [5] (Chapter V.1.6). Note that tr(gω?
j ) =

∑
i
ai tr(ωiω

?
j ). On the

other hand, the elements {ω1 ⊗ 1, . . . , ωk ⊗ 1} form a basis of L⊗K K over K. Hence
tr (ωiω

?
j ) = δij and tr (gω?

j ) = aj is integral over L1[f ]. This shows that aj ∈ L1[f ] for
any j and thus g ∈ L[f ].

The proposition is proved.
Let M be the set of all subalgebras k[f ], f ∈ k[x1, . . . , xn] \ k, partially ordered by

inclusion.
In the next Theorem various characterizations of closed polynomials are collected

(see [1 – 4], etc). A new result here is the implication (i) ⇒ (iv).
Theorem 1. The following conditions on a polynomial f ∈ k[x1, . . . , xn] \ k are

equivalent:
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(i) f is non-composite;

(ii) k[f ] is a maximal element of M;

(iii) f is closed;

(iv) (k is a perfect field) f + λ is irreducible over k for all but finitely many λ ∈ k;

(v) (k is a perfect field) there exists λ ∈ k such that f + λ is irreducible over k;

(vi) (char k = 0) there exists a (finite) family of derivations {Di} of the algebra
k[x1, . . . , xn] such that k[f ] = ∩iKer Di.

Proof. (i) ⇒ (iv). Let us assume that k = k. Consider a morphism φ : kn → k1,

φ(x1, . . . , xn) = f(x1, . . . , xn). We should prove that all fibers of this morphism except
for finitely many are irreducible. But it follows from the first Bertini theorem (see, for
example, [6, p. 139]).

If a perfect field k is non-closed, then Proposition 1 shows that f ∈ k[x1, . . . , xn] is
closed over k implies that f is closed over k.

The theorem is proved.
Example 1 [1]. If the field k is not perfect, then we can not guarantee that a

polynomial f which is closed over k, will be closed over k as well. Indeed, let
F = k(η) with η /∈ k, ηp ∈ k. The polynomial f(x1, x2) = xp

1 + ηpxp
2 is closed over k.

However, one has a decomposition f = (x1 + ηx2)p over F. The same example works
for (i) 6⇒ (iv) in this case.

Now we are going to show that a generative polynomial is unique up to affine
tarnsformations. Here we need two auxiliary lemmas.

Lemma 1. For any f ∈ k[x1, . . . , xn] \ k, the integral closure A of k[f ] in
k[x1, . . . , xn] has the form A = k[h] for some closed h ∈ k[x1, . . . , xn].

Proof. Since tr.degkQ(A) = 1, we have by the theorem of Gordan (see for
example [4, p. 15]) Q(A) = k(h) for some rational function h. The subfield Q(A)
contains non-constant polynomials, so by the theorem of E. Noether (see for example [4,
p. 16]) the generator h of the subfield Q(A) can be chosen as a polynomial. Note that
k(h) ∩ k[x1, . . . , xn] = k[h] because any rational function (but polynomial) of a non-
constant polynomial cannot be a polynomial. Therefore A ⊆ k[h]. Since the element
h is integral over A and A is integrally closed in k[x1, . . . , xn], we have h ∈ A and
A = k[h].

The lemma is proved.

Note that in the case char k = 0 this lemma follows immediately from the result of
Zaks [7].

Lemma 2. Let k be a field. Polynomials f, g ∈ k[x1, . . . , xn]\k are algebraically
dependent (over k) if and only if there exists a closed polynomial h ∈ k[x1, . . . , xn]
such that f, g ∈ k[h].

Proof. Assume that f, g are algebraically dependent. By the Noether Normalization
Lemma, there exists an element r ∈ k[f, g] such that k[r] ⊂ k[f, g] is an integral
extension. By Lemma 1, the integral closure of k[r] in k[x1, . . . , xn] has a form k[h]
for some closed polynomial h.

Conversely, if f, g ∈ k[h] then these polynomials are obviously algebraically
dependent.

The lemma is proved.
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Corollary 1. Let f ∈ k[x1, . . . , xn] \ k. The integral closure of the subalgebra
k[f ] in k[x1, . . . , xn] coincides with k[h], where h is a generative polynomial of f. In
particular, a generative polynomial of f exists and is unique up to affine transformations.

3. A factorization theorem. Let us assume in this section that the ground field k is
algebraically closed. Theorem 1 states that for a closed polynomial h ∈ k[x1, . . . , xn]
the polynomial h + λ may be reducible only for finitely many λ ∈ k. Denote by E(h)
the set of λ ∈ k such that h + λ is reducible and by e(h) the cardinality of this set.
Stein’s inequality claims that

e(h) < deg h.

Now for any λ ∈ k consider a decomposition

h + λ =
n(λ,h)∏

i=1

h
dλ,i

λ,i

with hλ,i being irreducible. A more precise version of Stein’s inequality is given in the
next theorem.

Theorem 2 [Stein – Lorenzini – Najib’s inequality]. Let h ∈ k[x1, . . . , xn] be a clos-
ed polynomial. Then ∑

λ

(n(λ, h)− 1) < min
λ

(
∑

i

deg(hλ,i)).

This inequality has rather long history. Stein [8] proved his inequality in characteristic
zero for n = 2. For any n over k = C this inequality was proved in [9]. In 1993,
Lorenzini [10] obtained the inequality as in Theorem 2 in any characteristic, but only for
n = 2 (see also [11] and [12]). Finally, in [13] the proof for an arbitrary n was reduced
to the case n = 2.

Now take any f ∈ k[x1, . . . , xn] \ k, µ ∈ k and consider a decomposition

f + µ = α ·
n(µ,f)∏

i=1

f
dµ,i

µ,i

with α ∈ k× and fµ,i being irreducible.
Let us state the main result of this section.
Theorem 3. Let f ∈ k[x1, . . . , xn] \ k. There exists a finite subset E(f) =

= {µ1, . . . , µe(f) | µi ∈ k} with e(f) < deg f such that:
(1) for any µ /∈ E(f) one has f + µ = α · fµ,1 · fµ,2 . . . fµ,k, where all fµ,i are

irreducible and fµ,i − fµ,j ∈ k;
(2) fµ,i − fν,j ∈ k× for any µ, ν /∈ E(f) with ν 6= µ; in particular, the degree

d = deg(fµ,i) does not depend on i and µ;
(3) deg(fµ,i) ≤ d for any µ ∈ k;

(4)
∑

µ

(
n(µ, f)− deg(f)

d

)
< min

µ

(∑n(µ,f)

i=1
deg(fµ,i)

)
.

Proof. Let h be the generative polynomial of f and f = F (h). Then

F (h) + µ = α · (h + λµ,1) . . . (h + λµ,k)

for some λµ,1, . . . , λµ,k ∈ k. Hence for any µ with λµ,1, . . . , λµ,k /∈ E(h) we have a
decomposition of f + µ as in (1). Note that λµ,i 6= λν,j for µ 6= ν. This proves (2) with
d = deg(h) and gives the inequalities

e(f) ≤ e(h) < deg(h) ≤ deg(f).
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Any fµ,i is a divisor of some h + λ. This implies (3).
Finally, (4) may be obtained as:∑

µ

(
n(µ, f)− deg(f)

d

)
≤
∑

λ

(n(λ, h)− 1) <

< min
λ

(∑
i

deg(hλ,i)

)
≤ min

µ

∑
j

deg(fµ,j)

.

The theorem is proved.
Remark 1. It follows from the proof of Theorem 3 that

E(f) =
{
−F (−λ) | λ ∈ E(h)

}
;

if f is not closed, then e(f) <
1
2

deg(f).

Corollary 2. Let f ∈ k[x1, . . . , xn] \ k. Then for all but finite number µ ∈ k, the
polynomial f + µ can be decomposed into the product

f + µ = α · f1µ · f2µ . . . fkµ, α ∈ k×, k > 1,

of irreducible polynomials fiµ of the same degree d not depending on the number µ and
such that fiµ − fjµ ∈ k, i, j = 1, . . . , k. The number of exceptional µ

′
s for which such

a decomposition does not exist is at most deg f − 1.

Example 2. Take f(x1, x2) = x2
1x

4
2 − 2x2

1x
3
2 + x2

1x
2
2 + 2x1x

3
2 − 2x1x

2
2 + x2

2 + 1.

Here h = x1x2(x2 − 1) + x2 and F (t) = t2 + 1. It is easy to check that E(h) =
= {0,−1}, thus E(f) = {−1,−2}. We have decompositions:

µ = −1: f − 1 = x2
2(x1x2 − x1 + 1)2;

µ = −2: f − 2 = (x2 − 1)(x1x2 + 1)(x1x2(x2 − 1) + x2 + 1);
µ 6= −1,−2: f+µ =

(
x1x2(x2−1)+x2+λ

)(
x1x2(x2−1)+x2−λ

)
, λ2 = −1−µ.

In this case deg(f) = 6, d = 3,
∑

µ
(n(µ, f)− 2) = 1 and

min
µ

(∑
i

deg(fµ,i)

)
= min{3, 6, 6} = 3.

4. Saturated subalgebras and invariants of finite groups. Let k be a field.
Definition 1. A subalgebra A ⊆ k[x1, . . . , xn] is said to be saturated if for any

f ∈ A \ k the generative polynomial of f is contained in A.

Clearly, the intersection of a family of saturated subalgebras in k[x1, . . . , xn] is again
a saturated subalgebra. So we may define the saturation S(A) of a subalgebra A as the
minimal saturated subalgebra containing A.

If A is integrally closed in k[x1, . . . , xn], then A is saturated. By Theorem 1, if
A = k[f ], then the converse is true. Moreover, the converse is true if A is a monomial
subalgebra. In order to prove it, consider a submonoid P (A) in Zn

≥0 consisting of
multidegrees of all monomials in A. Then monomials corresponding to elements of
the “saturated” semigroup P ′(A) = (Q≥0P (A)) ∩ Zn

≥0 are generative elements of A.

On the other hand, it is a basic fact of toric geometry that the monomial subalgebra
corresponding to P ′(A) is integrally closed in k[x1, . . . , xn], see for example [14]
(Section 2.1).

Now we come from monomial to homogeneous saturated subalgebras. The degree of
monomials deg(αxi1

1 . . . xin
n ) = i1 + . . . + in defines a Z≥0-grading on the polynomial
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algebra k[x1, . . . , xn]. Recall that a subalgebra A ⊂ k[x1, . . . , xn] is called homogeneous
if for any element a ∈ A all its homogeneous components belong to A.

Consider a subgroup G ⊂ GLn(k). The linear action G : k[x1, . . . , xn] → k[x1, . . .

. . . , xn] determines the homogeneous subalgebra k[x1, . . . , xn]G of G-invariant polynomi-
als.

Theorem 4. Let G ⊆ GLn(k) be a finite subgroup. The subalgebra A =
= k[x1, . . . , xn]G is saturated in k[x1, . . . , xn] if and only if G admits no non-trivial
homomorphisms G → k×.

Proof. Assume that there is a non-trivial homomorphism φ : G → k×. Let Gφ be
the kernel of φ and Gφ = G/Gφ. Then Gφ is a finite cyclic group of some order k and
it may be identified with a subgroup of k×.

Lemma 3. Let H be a cyclic subgroup of order k in k×. Then any finite dimensi-
onal (over k) H-module W is a direct sum of one-dimensional submodules.

Proof. The polynomial Xk − 1 annihilates the linear operator P in GL(W )
corresponding to a generator of H. By assumption, Xk − 1 is a product of k non-
proportional linear factors in k[X]. This shows that the operator P is diagonalizable.

Lemma 4. Let H ⊂ G be a proper subgroup. Then k[x1, . . . , xn]H 6= k[x1, . . .

. . . , xn]G.

Proof. Let K be a field and G a finite group of its automorphisms. By Artin’s
Theorem [15] (Section 2.1, Theorem 1.8), KG ⊂ K is a Galois extension and [K : KG] =
= |G|. This implies k(x1, . . . , xn)H 6= k(x1, . . . , xn)G. The implication

f

h
∈ k(x1, . . . , xn)G =⇒

f
∏

g∈G,g 6=e g · f
h
∏

g∈G,g 6=e g · f
∈ k(x1, . . . , xn)G

shows that k(x1, . . . , xn)G (resp. k(x1, . . . , xn)H ) is the quotient field of k[x1, . . . , xn]G

(resp. k[x1, . . . , xn]H ), thus k[x1, . . . , xn]H 6= k[x1, . . . , xn]G.

The lemma is proved.
Now we may take a finite-dimensional G-submodule W ⊂ k[x1, . . . , xn]Gφ which

is not contained in k[x1, . . . , xn]G. Then W is a Gφ-module. By Lemma 3, one may
find a Gφ-eigenvector h ∈ W, h /∈ k[x1, . . . , xn]G. Then hk ∈ k[x1, . . . , xn]G and
k[x1, . . . , xn]G is not saturated.

Conversely, assume that any homomorphism χ : G → k is trivial. If h is a generative
element of a polynomial f ∈ k[x1, . . . , xn]G, then for any g ∈ G the element g · h is
also a generative element of f. By Corollary 1, the generative element is unique up to
affine transformation. Without loss of generality we can assume that the constant term
of h is zero. Then the element g ·h has obviously zero constant term and by Corollary 1
this element is proportional to h for any g ∈ G. Thus G acts on the line 〈h〉 via some
character. But any character of G is trivial, so h ∈ k[x1, . . . , xn]G, and k[x1, . . . , xn]G

is saturated.
The theorem is proved.
Remark 2. Since all coefficients of the polynomial

Ff (T ) =
∏
g∈G

(T − g · f)

are in k[x1, . . . , xn]G, any element f ∈ k[x1, . . . , xn] is integral over k[x1, . . . , xn]G.

Thus Theorem 4 provides many saturated homogeneous subalgebras that are not integrally
closed in k[x1, . . . , xn].
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Corollary 3. Assume that k is algebraically closed and char k = 0.

(1) The subalgebra k[x1, . . . , xn]G is saturated in k[x1, . . . , xn] if and only if G

coincides with its commutant.
(2) The saturation of k[x1, . . . , xn]G is k[x1 . . . , xn] if and only if G is solvable.
Example 3. In general, the saturation S(A) is not generated by generative elements

of elements of A. Indeed, take any field k that contains a primitive root of unit of degree
six. Let G = S3 be the permutation group acting naturally on k[x1, x2, x3] and A3 ⊂ S3

be the alternating subgroup. The proof of Theorem 4 shows that any generative element
of an S3-invariant is an S3-semiinvariant and thus belongs to k[x1, x2, x3]A3 . On the
other hand, S(k[x1, x2, x3]S3) = k[x1, x2, x3].

Example 4. It follows from Theorem 4 that the property of a subalgebra to be
saturated is not preserved under field extensions. Let us give an explicit example of this
effect.

Let k = R and G be the cyclic group of order three acting on R2 by rotations. We
begin with calculation of generators of the algebra of invariants R[x, y]G. Consider the
complex polynomial algebra C[x, y] = R[x, y]⊕iR[x, y] with the natural G-action. Then
C[x, y]G = R[x, y]G⊕ iR[x, y]G. Put z = x+ iy, z = x− iy. Clearly, C[x, y] = C[z, z],
and G acts on z, z as z → εz, z → εz, where ε3 = 1. This implies C[z, z]G =
= C[f1, f2, f3] with f1 = z3, f2 = z3 and f3 = zz. Finally, R[x, y]G = R

[
Re(fi),

Im(fi); i = 1, 2, 3
]

= R
[
x3 − 3xy2, y3 − 3x2y, x2 + y2

]
.

By Theorem 4, the subalgebra R[x, y]G is saturated in R[x, y]. On the other hand,
the subalgebra C

[
x3− 3xy2, y3− 3x2y, x2 + y2

]
contains x3− 3xy2 + i(y3− 3x2y) =

= (x− iy)3.
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