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RE-EXTENDING CHEBYSHEV’S THEOREM 
ABOUT BERTRAND’S CONJECTURE

POVTORNE ROZÍYRENNQ TEOREMY ÇEBYÍOVA 

WODO HIPOTEZY BERTRANA

In this paper, Chebyshev's theorem (1850) about Bertrand’s conjecture is re-extended using a theorem
about Sierpinski’s conjecture (1958).  The theorem had been extended before several times, but this
extension is a major extension far beyond the previous ones.  At the beginning of the proof, maximal
gaps table is used to verify initial states.  The extended theorem contains a constant,  r,  which can be
reduced if more initial states can be checked.  Therefore, the theorem can be even more extended when
maximal gaps table is extended.  The main extension idea is not based on  r,  though.

U danij statti teoremu Çebyßova (1850) wodo hipotezy Bertrana povtorno rozßyreno za dopo-

mohog teoremy wodo hipotezy Serpins\koho (1958).  Raniße teoremu rozßyrgvaly dekil\ka

raziv, ale rozhlqduvane rozßyrennq [ najholovnißym iz poperednix.  Dovedennq poçyna[t\sq z

vykorystannq tablyci maksymal\nyx promiΩkiv dlq perevirky poçatkovyx staniv.  Rozßyrena

teorema mistyt\ konstantu  r,  qka moΩe buty zmenßena pry moΩlyvosti perevirky bil\ßo]

kil\kosti poçatkovyx staniv.  OtΩe, teoremu moΩe buty rozßyreno navit\ bil\ße u vypadku roz-

ßyrennq tablyci maksymal\nyx promiΩkiv.  Prote osnovna ideq rozßyrennq ne bazu[t\sq na  r.

1.  Introduction.  We are going go introduce and prove the following two theorems
(mainly the first one):

Theorem 1.  For each real number  m   not less than  2,  there exists at least one
prime number  p  such that:

m < p < m + 2 × m
mrelog

,    r = 1.207.

Theorem 2.  Each natural number  n  can be written as sum of distinct prime-
based squares and/or base-2 powers of distinct prime numbers or 1:

∀ n ∈ N    ∃ a1, a2, … , ax ,  b1, b2 , … , by  ∈ P ∪ {1}:

∀ 1 ≤ k,  l ≤ x    a ak l≠ ,      ∀ 1 ≤ k,  l ≤ y    b bk l≠ ,

n a
i

x

i
j

y
bj= +

= =
∑ ∑

1

2

1

2 ,

P  is the set of prime numbers and  N  is the set of natural numbers.
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In our proofs, we somehow deal with one conjecture and two theorems:

Conjecture 1 (Sierpinski, 1958).  If we form an  N × N   (N ∈  N – {1})  square

using consecutive natural numbers from  1  to  N2,  then there exists at least one
prime number in each row of this square (the square is called Sierpinski’s square)
[1, p. 732].

Theorem 3.  For each  n ek>   (n, k ∈  N),  there exists at least one prime number
in each first  k  row of Sierpinski’s square [1, p. 732].

Theorem 4 (Chebyshev, 1850).  For each natural number  n,  there exists at least
one prime number  p  such that:

n < p < 2n    (Erdos (1932):  n < p < 2n – 2,  n > 3)  [1, p. 791].

Note that this theorem was extended at least three times after 1932; but extensions
were made such that they were true for numbers upper that a specific non-small
number:

∀ n ∈ N  ∃ p :  n < p < 1 1
5

+



 n  for  n ≥ P10   (Nagura, 1952) [2],

∀ n ∈ N  ∃ p :  n < p < 1 1
13

+



 n  for  n ≥ P119    (Rohrbach & Weis, 1964) [2],

∀ n ∈ N  ∃ p :  n < p < 1 1
16597

+



 n   for  n ≥ P2010761    (Schoenfeld, 1976) [2].

Above theorems are better than our suggested re-extended theorem for some limited
initial states, but after those states, they are weaker than ours for all other unlimited
remaining states.

2.  Extending the Theorem 4.  The Theorem 4 can be extended as follows:
For first  1693182318746371  numbers computer can check the theorem, but it

takes a very long time if an ordinary computer is used.  If we consider the table of
maximal gaps between primes not greater than  1693182318746371  [3], obtained by
super computers, then we can soon realize that the theorem is acceptable for initial
numbers up to  1693182318746371.

If we assume  r = 1.207  and  m  ≥ 1693182318746371  (m  is a positive integer),

then we can write  m ≥ ( )re 29   and thus  logre m ≥ 29.  On the other hand, first

derivative of  1 207. x  – 8 ×  x  is positive for  x ≥ 29.  Thus  1 207. x  – 8 ×  x   is an
increasing function for  x ≥ 29  and we know that this function is positive for  x = 29.

Therefore  1 207. x  – 8 × x > 0,  for  x ≥ 29,  that concludes  8 × x < 1 207. x ,  x ≥ 29.  We
can substitute  1.207  by  r,  and  x  by  logre m.  We will have

log log
re

mm r re× <8 . (1)

Reversing both sides and multiplying them by  m  we can claim that

m
r

m
mre m

re
log log ( )

<
× 8

. (2)

If we replace  m  with  ( )logre re m   in left side, we will have

( )
log ( )

log

log
re
r

m
m

re

re

m

m
re

<
× 8

. (3)
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If we take natural logarithm from both sides, we will have

log ln
log

.re
re

m m
m

< 





− 2 07. (4)

So we can write

m m
m

m
mre re

< 





−



log

ln
log

.2 07 . (5)

According to  m ≥ 1693182318746371,  we can write  ln
log

m
mre







 – ln
log

m
mre






 <

< 0.01  (to  prove this we can raise  e  to the power of both sides and rewrite the sides

according to  x = m
mrelog

 > e30  and  [x] ≥ x – 1  and  x
x − 1

 = 1 + 1
1x −

  and  e0 01.  >

> 1.005) .

And then we can write

m m
m

m
m

m
m

m
mre re re re

< 





− + − 





− 















log

ln
log

. . ln
log

ln
log

2 07 0 01 . (6)

Obviously

m m
m

m
mre re

< 





−



log

ln
log

.2 06 . (7)

If  x ≥ en ,  n ≥ 1,  then  ln x < x
n

,  therefore according to  m  ≥ 1693182318746371,

which means  m
mrelog

 > e30  we can write  ln
log

m
mre

 < 0.06 × m
mrelog

;  therefore

ln
log

m
mre






 – 2 < 0.06 × m

mrelog
;  so

m m
m

m
m

m
m

m
mre re re re

< 





−





+ × − 





−



log

ln
log

. .
log

ln
log

2 06 0 06 2 . (8)

We will have

m m
m

m
mre re

< −











−



log

ln
log

1 2 . (9)

We can write

m m
m

m
mre re

< 











−



log

ln
log

2 . (10)

Assuming  n = m
mrelog

  we conclude  m  < n (ln n – 2).  According to  [ln n] ≥ ln n – 1

we will have  m < n ( [ ln n ] – 1) .  Using the Theorem 3 we can write  ∃ k :  k = [ ln n ].
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So we conclude

m  <  n ( k – 1) . (11)

Using the found  n, m  is somewhere in the first  k – 1  rows of the Sierpinski’s square
where there is at least one prime number in each row.  The worst case takes place when
m  is prime and the next prime is in the last column of the next row.  So we can write

∀ m ∈ N    ∃ p :  m < p < m + 2n,    m ≥ 2. (12)

So

∀ m ∈ R    ∃ p :  [m] < p < [m] + 2 × [ ]
[ ]

m
mrelog

,    m ≥ 2, (13)

p  is natural,  m – [m]  is less than  1  and by taking derivative we can prove that
m

mrelog
  and thus  f m( )  = m + 2 × m

mrelog
  are increasing functions for  m ≥ re,  so,

because  m ≥ [m],  f m( )   is not less than  f m[ ]( ) = [m] + 2 × [ ]
[ ]

m
mrelog

,  m  ≥ re.

Therefore we have

∀ m ∈ R    ∃ p :  [m] + m m− [ ]( )  <  p  <  m + 2 × m
mrelog

,    m ≥ re. (14)

So

∀ m ∈ R    ∃ p :  m  <  p  <  m + 2 × m
mrelog

,    m ≥ re. (15)

Therefore, based on  2 × m
mrelog

 > 2  if  m > 1,  the theorem can be extended as:

The extended theorem.  For each real number   m  > 1,  there exists at least one
prime number  p  such that:

m  <  p  <  m + 2 × m
mrelog

,    r = 1.207.

Important note.   We  can  reduce   r    if  we  satisfy  part (1)  with  a  large   m.
According to the computational power of the computers which have been used to
produce the maximal gaps table (in Appendix), it is provable that  r = 1.207  (or  “r”
greater than  1.207  that we do not need).

3.  The new theorem (Theorem 2, provable using the extended theorem).  We
will use following lemma to prove Theorem 2:

Lemma.  For each  n ≥ 121  there exists  p  such that  n
2

 < p2  < n.

Proof.  It is sufficient to check a few initial states, and then use the Nagura
theorem (page 2) to obtain  ∀ m  ≥ 11  ∃ p  :  m < p < 2 m.  For each natural  n  not

less than 121, if we assume  m = n
2

,  then  n
2

 ≥ 11  and  n
2

 ∈  R,  therefore there

exists  p  such that   
n

2
 < p < 2 n

2
.  So:  n

2
 < p2  < n,  n ≥ 121.
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Theorem 5.  Each natural number  n  can be written as sum of distinct prime-
based squares and/or base-2 powers of distinct prime numbers or  1:

∀ n ∈ N    ∃ a1, a2, … , ax ,  b1, b2 , … , by  ∈ P ∪ {1}:

∀ 1 ≤ k,  l ≤ x    a ak l≠ ,      ∀ 1 ≤ k,  l ≤ y    b bk l≠ ,

n a
i

x

i
j

y
bj= +

= =
∑ ∑

1

2

1

2 .

Besides, it can be shown that  bj   can be kept less than or equal to  5  and thus  y
can be kept less than or equal to  4.

Proof.  For  n  less than 121, the theorem can be easily verified.  To use strong
induction, it’s enough to prove that if the theorem is true for  1  to  n,  then it is also

true for  n + 1.  According to the lemma, we can find  p  such that  
n + 1

2
 < p2  < n + 1.

It is sufficient to assume that,  p  is one of  “ai”s  and obtain other  “ ai”s  from  n + 1 –

– p2   for which, the truth of theorem is previously proved according to induction
assumption.  Obviously based on induction assumption, obtained  “ ai”s  from  n + 1 –

– p2   are different (as well as  “ bi ”s)  and  p  is different with all   “ ai”s  it
  follows

from the relation  n  + 1 = p2  + q   that  0 ≤ q ≤ 
n + 1

2
 ≤ p2 ,  and hence, the

representation  q = ′=∑ aii

x 2
1

 + 
j

y bj

=
′∑ 1

2   contains  ′ai  < p  for every  i = 1, … , x)  .

Therefore out theorem is true for  n + 1;  so, based on strong induction, the theorem is
true for all natural  n.

4.  Conclusions.  The extended theorem is a fundamental theorem in prime number
theory.  Based on this extension, several other extensions can be made to related
theorems.

In the extended theorem, if the truth of the theorem is proved for all  m < C  then
the coefficient  r  can be reduced to approach  1+.  C  depends on  r  and is a very large
number if  r  approaches  1.  C  can be obtained from part (1) of the proof and is the
least  m  that satisfies the  “<”  sign according to  r.  The number  “8”  in part (1) can be
a little reduced currently by minor changes to the proof.

For large  C  (but not very large), the truth of the theorem for all  m < C  can be
checked by super computer.  Reduction of  r  is limited by the computational power of
the computer and the efficiency of the algorithm.  By using more efficient programs or
more powerful computers we can check initial states for a greater  C  (for all  m < C)
and reduce  r  even more, approaching  r = 1.

One important result of the article is that if Sierpinski’s conjecture is proved, the
theorem can be considerably re-extended by a proof method similar to the one
discussed in the article.
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Appendix.  In the following table we list the maximal gaps through  1131.  These
are the first occurrences of gaps of at least of this length.  For example, there is a gap of
879  composites after the prime  277900416100927.  This is the first occurrence of a
gap of this length, but still is not a maximal gap since 905 composites follow the
smaller prime  218209405436543 [5].
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Gap Following the prime Reference

0 2

1 3

3 7

5 23

7 89

13 113

17 523

19 887

. .

. .

. .

581 1346294310749

587 1408695493609

601 1968188556461

651 2614941710599

673 7177162611713

715 13829048559701 [4]

765 19581334192423 [4]

777 42842283925351 [4]

803 90874329411493 [5]

805 171231342420521 [5]

905 21820940543643 [5]

915 1189459969825483 [6]

923 1686994940955803 [6]

1131 1693182318746371 [6]
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