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SOME PROPERTIES OF THE CAUCHY-TYPE INTEGRAL
FOR THE MOISIL - THEODORESCO SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS

HESKI BJIACTUBOCTI IHTEI'PAJIIB TUITY KOIII
NJIsA CUCTEM MOICIVI-TEOJOPECKO
NUOEPEHIIAJIbHUX PIBHAHDb

3 YACTUHHUMMU INOXITHUMU

Our main interest is the analog of the Cauchy-type integral for the theory of Moisil — Theodoresco system of
differential equations in the case of a piecewise Liapunov surface of integration. The topics of the paper concern
theorems which cover basic properties of that Cauchy-type integral: the Sokhotski—Plemelj theorem for it as
well as the necessary and sufficient condition for the possibility to extend a given Holder function from such a
surface up to a solution of Moisil — Theodoresco system of partial differential equations in a domain. A formula
for the square of the singular Cauchy-type integral is given. The proofs of all these facts are based on intimate
relations between the theory of Moisil — Theodoresco system of partial diferential equations and some versions
of quaternionic analysis.

Po6oTy B OCHOBHOMY NpPHUCBAYEHO BUBUEHHIO aHaJora interpasa Tuny Ko aia Teopii cuctem Moicis—
Teonopecko audepeHiiaIbHUX PiBHAHb Y BUMAJKY KYyCKOBOI MOBEPXHi iHTerpyBaHHs JlsanyHosa. Posrsiga-
I0THCS TEOPEMU, 1110 OXOITIIOI0Th 6a30Bi BJIACTUBOCTI IbOT0 iHTerpasia Tumy Ko, a came Teopema CoXolbKo-
ro—I1nemesb 171 HHOTO, a TAKOK HEOOXi/IHA 1 JOCTATHS YMOBA NPOOBKYBAHOCTI 3a/1aHoi pyHK1ii ['enbaepa
3 Ha3BaHOI BULLE MOBEPXHI /10 po3B’A3Ky cucteMn Moicis1—Teonopecko qudepeHiialbHIX PiBHAHb 3 YaCTHH-
HHMU NOXiAHUMH B 0671acTi. HaBeneno copMyJty KBasipaTa cHHIyJIsipHOrO inTerpasia Tummy Komi. JoBeneHHst
BCiX ux pakTiB Oa3yeTbCs Ha OJIM3BKMX 3B’sA3KaX MixkK Teopieto cucteM Moicini—Teonopecko nudepeH-
Lia/IbHUX PIBHSAHD 3 YACTMHHUMU MOXiTHUMH 1 NeIKMMH BEpCisIMU KBATEPHIOHHOTO aHAJIi3Y.

1. Introduction. As is well known, the role of the Cauchy-type integral in holomorphic
function theory of one complex variable is very important. In this article, we investigate
the properties of the Cauchy-type integral for the first order elliptic system in R3. Let Q
be a domain in R3. Suppose that f = fo + f € C1(Q, R*). The homogeneous system

divf =0,
grad fo + rotfz 0

is called Moisil — Theodoresco system and is the simplest analog of the Cauchy — Riemann
system in the three-dimensional case. Thus, the theory of solutions of the Moisil — Theodo-
resco system of differential equations reduces, in some degenerate cases, to that of com-
plex holomorphic functions. Hence, one may consider the former to be a generalization
of the latter.

Note that if fy = 0, we have

divf = 0,

1
rotf = 0. W

Solutions to system (1) are called solenoidal and irrotational vector fields (cf. [1], where
some applications to geophysics are given. It is known that solutions of (1) satisfy the
Laplace equation and are sometimes called Laplacian or harmonic vector fields. In [2], we
studied some properties of the Cauchy-type integral for the Laplace vector fields theory,
also.
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In the present paper, we follow the approach presented in paper [3] in which we stud-
ied the analog of the Cauchy-type integral for the theory of time-harmonic solutions of
the relativistic Dirac equation in the case of a piecewise Liapunov surface of integration.
The paper is organized as follows. In Section 2, we formulate a series of theorems which
cover basic properties of the Cauchy-type integral for the theory of Moisil — Theodoresco
system of differential equations in the case of a piecewise Liapunov surface of integra-
tion. The proofs of all of them one can find in Section 4 in the form of more or less direct
corollaries of the corresponding facts valid for hyperholomorphic function theory, which
is developed in Section 3 and [4].

2. Moisil — Theodoresco system of partial differential equations and the Cauchy —
Moisil - Theodoresco integral. 2.1. Let 2 denote a domain in R3 and let I' := 9 be
its boundary. For Q C R3 consider an R*-valued function f = (fo, f1, f2, f3), which
satisfies the following system of partial differential equations:

Of1 , 0% , Ofs

O 8oy T B0y T a5
9fo Of | Ofs
0x1 +0 Oz + dry 0,
dfo , 0f1 0fs
Oz + O0xs oy 0,
Afo  Ofr | Of

8.2?3 81‘2 61‘1

It is usually called a Moisil—Theodoresco system. Let Vg := (é 2) with a =

= (6F)3 ., (8} is the Kronecker symbol), & = (0,z1,z2,x3)", and di: = (0, dxpy,
—dac[Q], dx[g] )T, where d;zc[k] denotes, as usual, the differential form dx; A dxo A dzs with
the factor dxj omitted. The integral

K1) = - [ = BUVE (=) BUVE - d)f (). a g,
r

plays the role of an analog of the Cauchy-type integral in the theoryof the Moisil —
Theodoresco system of partial differential equations with f : I' — R* (see [5]). We
shall call it the Cauchy — Moisil — Theodoresco-type integral.

2.2. For reader’s convenience, we collect here some definitions which we use in
the sequel. Let H,,(T', R*) denote the class of functions satisfying the Holder condition
{f eRY|f(t1) — f(ta)| < Lylts — t2|" V{t1,t2} C T, Ly = const} with the exponent
0 < u < 1. Here, | f| means the Euclidean norm in R* while |¢| is the Euclidean norm in
R3. We say (see, e.g., [6]) that the surface I' in R? is a Liapunov surface if the following
conditions are satisfied:

1. Ateach point ¢t € T', there is the tangential hyperplane.

2. There exists a constant number B > 0 such that for any point ¢ € T, the set
I N B3(¢, R) is connected and lines, that are parallel to the normal 7i(¢) to the surface I'
at the point ¢, intersect ' B3 (¢, R) at not more than one point. Here, B3 (¢, R) is an open
ball in R? centered at the point ¢ and with radius R.

3. The normal vector field 77 : I' — R? satisfies the Holder condition.

A conical surface in R? is a surface generated by a straight line (the generator), which
passes through a fixed point (the vertex or conical point) and moves along a fixed curve
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(the directing curve). A solid angle in R3 is a part of the space R® bounded by some
conical surface. A tangential conical surface to I' at the point ¢( is the conical surface
generated by straight tangent lines to surface I" at point ¢( (the conical point of tangential
conical surface). In particular, for a smooth point, the tangential conical surface is its
tangential plane. The measure of a solid angle in R? is the surface area cut out by the
solid angle from the unit sphere having its center in the vertex; the value of the measure
is defined in accordance with the orientation of the conical surface.

Let 1 be a smooth, closed, and simple curve on the surface I' C R? such that T’ \ lis
a Liapunov surface. Then the curve 1 is called an edge of the surface I" and I is called a
Liapunov surface with edge.

For 1 as above, let tg € 1. Then the normal plane to the curve at the point ¢ intersects
the surface I' by the curve l;,. The curve I, is a smooth curve except, possibly, to.
Assume that the curve [;, has both one-sided tangents P; and P» at £y. Let p be a tangent
line to the curve 1 itself at point ¢y. Then the plane 77, passing through P; and p, and the
plane T5, passing through P» and p, generate a dihedral angle which is called tangential
dihedral angle.

A linear measure of the tangential dihedral angle is the value of the angle formed by
the one-sided tangents P; and P». Denote it by 7)(¢). In the sequel, we take 7(to) = const
on 1, the constant being different from 0 and 27. If n(¢t) = 7 on 1, then I is a smooth
surface. In particular, for a smooth surface, any closed, smooth, and simple curve is an
edge.

A solid measure of the tangential dihedral angle is the surface area cut out by the
planes 77 and 75 from the unit sphere having its center at the point ¢y € 1; the value of
the measure is defined in accordance with the orientation of the surface with edge.

Let I be a surface in R? which contains a finite number of conical points and a finite
number of nonintersecting edges such that none of the edges contain any of conical points.
If the complement (in I') of the union of conical points and edges is a Liapunov surface,
then we shall refer to I' as a piecewise Liapunov surface in R>.

2.3. Theorem (Sokhotski — Plemelj formulas for the Cauchy —Moisil — Theodoresco-
type integral with the piecewise Liapunov surface of integration). Let 2 be a bounded
domain in R® with the piecewise Liapunov boundary. Let f € H P (T,R*). Then the
following limits exist:

o dim V() = VK[ (1)

moreover, the following identities hold:

el 0 = (1 52 £+ Vel = (1- 52 ) 50+ 5 s,

Ar 4T
Vet Kplf] () = _%f(t) + Ve Kp[f](t) := —% (t) + % Y Se(f1(¢)

forallt € T, where
Vet Splf1(t) =2 Y K7 [f](2),

the integrals being understood in the sense of the Cauchy principal value, Y(t) is the
measure of a solid angle of the tangential conical surface at the point t or is the solid
measure of the tangential dihedral angle at the point t.

2.4. We shall call the operator Vs St the singular Cauchy — Moisil — Theodoresco in-
tegral operator. 1It’s appeared that many properties which are of interest for us, can be
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expressed better in terms of another operator

Ver SL[F](t) = 27r;77j(le)f(t) + Y Sr[f](t)

for any ¢t € I". We shall call Vet St the modified singular Cauchy— Moisil — Theodoresco
integral operator.

2.5. Theorem (Plemelj— Privalov’s-type theorem for the Moisil — Theodoresco sys-
tem of partial differential equations theory). Let Q be a bounded domain in R3 with
piecewise Liapunov boundary. Then

f e Hy(D,RY) = V= Sp[f](t) € H,(T,R*) )

for 0 < p < 1.

2.6. Theorem (extension of a Holder function given on I" up to solution of the Moisil —
Theodoresco system of partial differential equations). Let 2 be a bounded domain in R3
with piecewise Liapunov boundary.

1. In order that a function f € H,L(F,R4) be a boundary value of a function f
which satisfies a Moisil — Theodoresco system of partial differential equations in Q™ and
is continuous in QF, it is necessary and sufficient that

f(t)=""Sp[f](t) VteTl.

2. In order that a function f € H,L(F,R4) be a boundary value of a function f
which satisfies a Moisil — Theodoresco system of partial differential equations in 2~ and
is continuous in )~ and vanishes at infinity, it is necessary and sufficient that

f(t)=="Sp[f](t) VteTl.

2.7. Theorem (on the square of the operators Y+t S and Ve Sp). If T is a piecewise
Liapunov surface, then we have the following formulas for f € H, (T, R*),0 < pu<1:

Ver SEFI(E) = ax(8) f(t) + az(t) V= Sp[f](t) + V>* Sr[as f1(t), (3)
Ve SRF(E) = £(2) )

forallt €T, i.e., the modified singular Cauchy — Moisil— Theodoresco integral operator
Vit Sp is an involution on H,(T,RY, 0<pu<1,

VSt =1,

where

)y )= 20

al(t) = a2(t) = ? )

T 472’

The proofs of these theorems can be found in Section 4.

3. Hyperholomorphic function theory: general information. In this section, we
provide some background on quaternionic analysis needed in this paper. For more infor-
mation, we refer the reader to [7-9].

3.1. We consider the skew-field of real quaternions H:

H := {$ = Xolo + T111 + T2lo + X3i3; (.’L‘o, X1, T2, {,C3)T S R4}7

where i is the unit, and i1, i, i3 are the quaternionic imaginary units with the properties:
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‘2 o _ .2 . . s . s .
i5 =19 = —iy, lolp = igxlp =i, Kk € Nz;
i1y = —igly = 13, 203 = —igia = i1, 1311 = —i1i3 = i2.

Letz = Zi:o iy € H. Then
3
xg =: Sc(x) and Z:= ka -4 =: Vect(x)
k=1
are called, respectively, the scalar and the vector part of a quaternion. We can write

T =1z + T.

In vector terms, the multiplication of two arbitrary real quaternions z, y can be rewritten
as follows:

z-y=(z0+&) (yo+7) =20 yo— (T, %) +zof + voT + [Z, 7],
where (-,-) and [-,-] denote the usual scalar and vector products of three-dimensional
vectors. In particular, if xg = yg = 0, then we have

oy = (@) + 7.7
The quaternionic conjugation of © = xgig + T1%1 + X2t + T3tg IS given by
T = Tglg — T1%1 — Toly — T313.
We use the Euclidean norm |z| in H, defined by
lz| := Var = \/m%+x%+x§+x§.

An important property is that

|zy| = [ - |yl
3.2. Let the matrix
bo —bi —by —b3
by by —b3 by
Bi(b) := ®)
ba bs bp —bi
bs —by b1 bo
be the left regular representation of real quaternion b, and, respectively, let the matrix

bp —by —ba —b3
b1 bo bs —ba
by —b3 bo by
bs by —b; bo

be the right regular representation of real quaternion b. Then H can be identified as a
skew-field with B; := {B;(b) | b € H}. The same holds for B, := {B,(b) | b €
€ H} and H. Moreover, the left-multiplication by the real quaternion b corresponds to the
multiplication by the matrix B;(b), i.e.,

B.(b) :=

bz« By(b) - ($07$17$27$3)Ta

Zo
T
€2
xs3

where (19, 21, 22, 73)T =
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3.3. We shall consider functions ranged in H and defined in a domain Q C R3.
Notations C?(Q, H), p € N U {0}, have the usual componentwise meaning. A function
f is called left-hyperholomorphic if

3 3
= Z Zkaan Z ikOk[f
k=1 k=

11
holds in 2. Let § = — | | be the fundamental solution of the Laplace operator. Then
47

the fundamental solution to the operator D, KC, is given by the formula (see [9])
1< 1 .
K(z):=—-D = _”Zl 3 47” ; —Bi(VL ), (6)
where st := {iy,42,13}. Set
oy = i1dx)y) — iadzy) +izdry),
where dz(;) denotes, as usual, the differential form dz; A dxa A dzs with the factor dxy

omitted. Note that if " is a piecewise smooth surface in R? and if 7i(7) = (n1(7), n2(7),
ns(7)) is the outward unit normal to surface I at 7, then

M

o |lr=7i(1)ds,; =: ng(7)igds,,

k=1
where ds is the differential form of the two-dimensional surface I' in R3. Let Q = Q1 be
a domain in R? with the boundary I" which is assumed to be a piecewise Liapunov surface;
denote Q= := R3\ (QT UT). If f is a Holder function, then its left-hyperholomorphic

Cauchy-type integral is defined as follows:
x) :/IC(T—x)-JT~f(T), z e QF
r

For more information about hyperholomorphic functions, we refer to [7—10] (see
also [11]).

4. Proofs of the theorems from Section 2. In this section, we prove all theorems
from Section 2 using the relations between the Moisil — Theodoresco system of partial
differential equations theory and the theory of hyperholomorphic functions.

4.1. We start this section with a brief description of the relations between the Moisil —
Theodoresco system of partial differential equations theory and the theory of hyperholo-
morphic functions.

On the set C1(Q, H), the well-known Moisil — Theodoresco operator is defined by the
formula

.0
D := e ——.
;lkafﬂk

Using matrix (5), the equality D[f] = 0 (the Moisil — Theodoresco system) can be also

rewritten as
.0
B r— | fF =0
(Srm)7
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0 .9 _90 _9
31'1 81'2 3:1;‘3
0 0 0
. o 0 0w om
Bi| Y ins— | =
pe il 9 9 0o -9
0xo Oxs 01
9 90 9 0
O3 0xo o0y
Thus,
0 92 _90 _9
81’1 81‘2 8333
9, 0o (P
0 Ox 0
Dlfj =0 | 7 S I A )
e N B
0xo Oxs 0xy f3
0 0 0 0

dxg vy Om
i.e., one can identify the class of the solutions of the elliptic system of the partial differ-
ential equations with the constant coefficients by the set of hyperholomorphic functions.
By the equality (6) for R*-valued function f, we have

Kelfl(e) = 3= [ = BilVE - (r= o) BVE - d9) (7). ¢T.

So, the integral Kr[f](z) coincides with Vst Kp[f](z). In the same way,

SelfI(t) = 2Kr[f](t) =

LY T T g
_%/T_tSBl(vst (r = )B(VL -d7)f(r) WteT,
r

so, the integral St for f € H,,(T',R*) coincides with V+* Sp[f].
4.2. Proof of Theorem 2.3. Let f € H,(I',R*). Consider V** Kp[f](z). It was
proved that

Ve Kr[f)(x) = Kr[f](z).
By [4] (Theorem 2.1 for e = 0), see also [7, 8], there exists K1[f]*(¢) and

Kol = (1- 22 0 + melnio = (1- 22 g0+ Jselno,
Kelf1= 0 = =22 g0y 1 kel = -2 )+ sl
]:t

Hence, there exists Vst Kp[f
required result. Set

(t) and, after not complicated computation, we obtain the

& ) :27r77(t)

SelA(e) = T () + Sl

forany ¢t €T
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4.3. Proof of Theorem 2.5. Let f € H,(I',R*), consider Vs* Kr[f](x). By Theo-
rem 2.3, there exists V** K1[f]* (¢) and

VK [f (1) = 5[F(0) + Sl

1

Vot KT [f]~ (8) = 5[—f(t) + Ve Sp[f1(B)],

where VS"éF was defined in Subsection 2.4. By Subsection 4.1, f € H, (T, R*), hence,

Y

onT, Vst S [f] = Sr [f]- In [4] (Subsection 2.2 for = 0), it was proved that St satisfy
the Holder condition. So, recalling the relationship between the operators Sr and V=t Sp,
we have that V St[f] € H,,(T, RY).

4.4. Proof of Theorem 2.6. This proof follows from [4] (Theorem 2.3 for o =
= 0) taking into account the above relation between the class of solutions of the Moisil —
Theodoresco system of partial differential equations and the set of hyperholomorphic
functions.

4.5. Proof of Theorem 2.7. Let f € H,(T',R3). Consider V** Kp[f]. In Subsec-
tion 4.1, it was proved that

feH,(I,RY) = f e H,(I,R*).

So, we obtain (3) after taking into account [4] (Theorem 2.4 for « = 0), see also [8],
combined with a straightforward calculation. Using the definition of the modified singular
operator V¢ St, we obtain (4).
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