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SOME INVERSE PROBLEMS
FOR STRONG PARABOLIC SYSTEMS

NESKI OGEPHEHI 3ATAYI
NJIsA CHJIBHO ITAPABOJITYHUX CUCTEM

The questions of correctness and approximate solution of the inverse problems of finding unknown functions
on the right-hand side of the system of parabolic equations are investigated in the work. For the considered
problems, the theorems on the uniqueness, existence, and stability of solution have been proved and examples,
which show the exactness of the established theorems are given.

Moreover, on the set of correctness, the rate of convergence of the method of successive approximation,
suggested for approximate solution of the given problems has been estimated.

HocinKeHo KOpeKTHICTb Ta HabJIIKeHe PO3B’ s13yBaHHs1 0OOEPHEHUX 3a/1a4 BU3HAYCHH I HeBiJOMUX (DYHKIIi
y MpaBiil YaCTUHI CUCTEMU NapaboJIiuHUX PiBHAHb. [JIs LIMX 3a7a4 JI0BE/IEHO TEOPEMHU €JUHOCTI, iCHYBaHH
Ta CTablJIbHOCTI PO3B’sI3KY 1 HABE/ICHO MPUKJIAJM, IO MOKA3yIOTh TOYHICTh BCTAHOBJICHUX TEOPEM.

TakoXK Ha MHOXKMHI KOPEKTHOCTi BCTQHOBJICHO OLIIHKY IUBM/IKOCTI 3012KHOCTi METO/Y MOCJIi/IOBHOI'O
HaOJINKEHHS, 1110 3aIIPONOHOBAHUNA 7151 PO3B’ I3yBaHHs IaHUX 3a/1a4.

1. Statement of the problems. Let D’ C R* ! D C R",and Q = D’ x (a,b) C R"
(a, b are some numbers) be bounded domains with boundaries D', 9D, and dQ € C*+*
letz’ = (x1,...,2,-1) and z = (2, z,,) be arbitrary points of the domains D’ and D or
Q, respectively. The spaces C!+(+)/2(.) 1 =0,1,2,0 < a < 1, and norms in these
spaces were defined in [1, p. 16], |jvi||, = Z:ﬂ

For simplicity, without loss of generality, the following system of parabolic equations
is taken as a model:

|lvk|lce » 0 < T, is a given number.

ukt_Auk :(I)k (x,t,u), k:]-vmv (l)
(z,t) € D x (0,T] ((x,t) € Q x(0,T7),

n 2~
where uy; = W, A= Zi:l % is a Laplace operator, u = (u1, ..., Up),
ug (2,0) = pp(x), x€D=DUAdD (z€Q=QUIQ), )

ug(z,t) = Yp(z,t), (z,t) € 0D x [0,T) ((z,t) € 0Q x [0,T]). 3)

From system (1) —(3) under the corresponding conditions on the input data, it is possible
to define exactly or approximately the functions uy(x,t), k = 1,m. The questions of
solvability of problem (1)—(3) in more general statement were considered, for example,
in the works [1, 2].

Let the right-hand side of equation (1) contain unknown functions and have one of
the following forms: 1) Py (:) = fr(t)gk (z,t,u); 2) Pp() = fr (@' t) gk (x,t,u);
3) ®r(-) = fr (uk) gk (x,t,u) (gx (x,t,u) are the given functions).
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116 A.Y. AKHUNDOV

Then, in system (1) —(3), it is necessary to join some additional conditions. Depend-
ing on the structure of the right-hand side of ®(+), the following inverse problems are
considered:

Problem L. It is required to define the functions { fi(t),u(x,t),k =1,m } from
conditions (1)—(3) and

up (z%,t) = pr(t), x* €D isfixed point, te€0,T]. 4)

Problem IL. [t is required to define the functions {fk («',t) ,up(x,t), k = l,m}
from conditions (1)—(3) and

u (¢',¢e,t) = qi (2',t), c€ (a,b) is fixed point, (2',t) € D" x (0,T]. (5)

Problem IIL. It is required to define the functions { fi (ur),u(z,t),k=1,m}
from conditions (1)—(3) and

up (z*,t) = h(t), z* € D s fixed point, t € [0,T]. (6)

Relative to the input data of Problems I—III, we suppose that:

19) g (z,t,w) € Lip(joe) B, |gr(-)] > v1 > 0, (2,t,w) € B (in Problems I, Il —
B =D x[0,T] x R', and in Problem IT — B = Q x [0,7T] x R');

29) pp(z) € C?* (D) , by (z,t) € C*+1+2/2(9D x [0,T)) , r(z) = ¥y (2,0),
x € 8D (in Problem I — ¢ (z) € C*T* (Q), Yi(x,t) € Cresl+a/2(9Q x [0,T)),
or(r) = Y (2,0), z € 0Q);

39 [thwe (2,0) — Apw ()] gi (@, T, (2,T)) = [twe(x, T) — Atp(2, T)] gi(x,0,
o(x)), z € OD;

) pi(t) € CH (0,77, pi(0) = o (2%);
) qr (2,t) € C?F 1*”‘/2 (D' x[0,T]), q = (2',¢), 2" € D';

6%) hi(t) € CH[0,T], hi(0) = py (x*), g hk( ) <wvs, t€[0,T];

7°)  [Ywe (2,0) = Apr(@)] gi (25,0, 0(2)) = [pre(0) — Ap(2)|o=a+] gr (2, 0,
o(x)), z € ID;

8%) [Wwe (2,0) — Ak ()] gk (2,0,0(2)) lo,=c = [are(2', 0) — App(2) |z, =c] gr (2,
0,¢(x)), z € 0Q;

9) et (2,0) — Agi(a)] gu (27, 0.5() = [hie(0) — Ay ()]oma-] g0 (.0,
o(x)), x € OD.

Definition 1. The functions {fk(t), uk(z,t), k =1,m }, are called the solution of
Problem 1, if .

D fr(t) € C([0,T)), 2) ug(x,t) € C** (D X [O,T}), 3) correlations (1)—(3), (5)
are satisfied.

Definition 2. The functions {fk. (a:’,t) , up(z,t), k = I,_m} are called the solu-
tion of Problem 1L, if: 1) fy (z',t) € C (D' x [0,T]), 2) ug(z,t) € C*'(Q x [0,T7]),
3) correlations (1)—(3), (6) are satisfied.

Definition 3. The functions {fk(uk), up(z,t), k = L—m} are called the solution of
Problem 111, if: 1) fi (ugx) € C(RY), 2) ug(x,t) € C*1 (D X [O,T]) , 3) correlations
()—=Q@), (7) are satisfied.

Consider Problems I-1III relatively the class of incorrect Hadamard’s problems. The
solution of these problems does not always exist, and if it exists, then it can be nonunique
and unstable.

ISSN 1027-3190. Ykp. mam. xypH., 2006, m. 58, N° 1



SOME INVERSE PROBLEMS FOR STRONG PARABOLIC SYSTEMS 117

The inverse problems of finding the right-hand side of the scalar equation of parabolic
type were considered earlier in the works [3—13] (see also the bibliography in these
works).

2. Uniqueness and estimation of the solutions stability. It is know that the unique-
ness theorem and also estimation of solution’s stability of the inverse problems take cen-
tral place in the investigation of their correctness questions [13]. Under the fairly general
suppositions, the following theorems of solution’s uniqueness of Problems I—-III have
been proved and the estimations of solution’s stability have been established.

Theorem 1. Let conditions 1°), 2°), 4°), 7°) be fulfilled. Then if the solution of
Problem 1 exists and belongs to the set K1 = {(fr,ur, k =1,m) /fe(t) € C*[0,T],
up(z,t) € C*rel+e/2(D x [0,T])}, then it is unique and the estimation of stability is
true:

= ally + 117 = Flly < My [lg = gllg + e = @l + ¥ = B, +llp = 51l |

where My > 0 depends on data of Problem 1 and the set K1, {(fk(t),ﬂk(x, t), k =

= 1, m)} is a solution of Problem 1 with data gy, (+), @x(-), ¥x(-), pr(-), which satisfy
conditions 19), 20), 49), 79), respectively.

Theorem 2. Let conditions 1°), 2°), 5%), 8°) be fulfilled. Then if the solution of
Problem 11 exists and belongs to the set

Ky — {(fk7uk, k=T,m)/fi(2',t) € C*/% (D' x [0,T]),
wy(z,1) € CHOHe/2(Q x [0,7))},
then it is unique and the estimation of stability is true:
= ally + 17 = Flly < M2 [llg = gllo + Il = @lly + [ = Fl., + lla =l -

where My > 0 depends on data of Problem 11 and the set Ko, {fk(x’,t), g (z, t),
k= I,—m} is a solution of Problem 11 with data Gi.(-), ?x(-), ¥r(-), @r(+), which sat-
isfy conditions 1°), 29, 5%, 89), respectively.

Theorem 3. Let conditions 1°), 2°), 6°), 9°) be fulfilled. Then if the solution of
Problem 111 exists and belongs to the set

K3 = {(f’f’“kvk =Lm)|fu(-)€C” (Rl) ) HfHC(R’) <
<Nl ) () € C2H142 (D [0, 7))},
then it is unique and the estimation of stability is true:
= ally + |1 = Flly < Ms [llg = gllg + llp = @lly + [[¢ = |, + [l = All,] - D

where M3 > 0 depends on data of Problem 1l and the set K3, {f (), ar(x,t),

7k
k=1, m} is a solution of Problem T with data gi.(-), @x(+), VYx(+), hx(-), which satisfy
conditions 1°), 2°), 6°), 99), respectively.
Theorems 1 -3 are proved with close method. Let us show the proof of Theorem 3.
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Proof. From equation (1) as x = z* taking into account the conditions of Theorem 3
for the function fy, (ux), we obtain:

fr (hi(t)) = [P (8) — Aug|o=o-] /gr (2%, 1, h(1)) , (8)
E=1,m, (x,t)eQ=Dx(0,T],

Define the function [2, p. 87]

pr(z,t) € Crattal/2 (Q) . pr(2,0) = pr(z), x€D,

9
pe(z,t) =Y(z,t), k=1,m, (z,t)€S=0Dx][0,T]. ®

Let zk(x,t) = uk(x,t) - ﬂk(l’,ﬁ), Ak (uk,ﬂk) = fr (uk) — fk (uk) , 01k (x,_t,u) =
= Gk (:E,t,u) - gk_(xatvu) ) 52k(x) = @k(x) - @k(x)v 63k($vt) = dJk(fU,t) - wk(xat)v
54k(x) = hk(t) - hk(t), 55k(1’,t) = pk([L'7t) - ﬁk(l',t), k=1m.

It is easy to check that the functions { A, (uptiy),Vk(z,t) = 2z
k=1, m} satisfy the system:

k(x,t) — ds(x,t),

Ve — AU = Mg (uk,ﬂk)gk (x,t,u)JrFk(x,t), (.%,t) € Q, (10)
g (2,0) =0, z€D; Vg(x,t)=0, (x,t)€S, (11)
Ak (hk7 Bk) = Hk(t) - Azk‘z:x*/gk (w*vtv h(t)), le [OaT] ) (12)

where

Fi(z,t) = f (ag) [gr (2, t,u) — gr (2, t, @) + 01k (z,t,7)] — Ospe (2, 1) + Adsp,
Hy(t) = 6ar(t)/gr (7,1, h) —
—[01k (m*,t,ﬁ) + gk (%, t,h) — g (.T*,t,/_l)]/ [gk (x*,t,h) - gk (ac*,t, B)] )
Under the conditions of Theorem 3 and from the definition of the set K5 it follows that
coefficients and right-hand side of equation (10) satisfy the Holder condition. It means

that there exists classical solution of definition problem of ¥ (x, t) from conditions (10),
(11) and it can be represented in the form [1, p. 468]

t

ﬁk($7t)://Gk (2, t:6,7) | M (uk, an) gr (&, 7, u) + Fi (&, 7) [dédr,  (13)
D

0

where d§ = d&; ...d¢,, Gy (x,t;€,7) is Green’s function of Problem (10), (11), for
which the following estimations [1] (Chapter V) are true:

G (2,167 < N (£ = 7) "2 exp (~Nale — €2/ (t — 7).

/\Din (z,t:6,7)|dE < Ns(t —7) D2 1=0,1,2, (14)
D

here, va~ are various derivatives in x; of order [ and V; > 0,4 = 1,2, 3, depend on data
of Problem III.

Taking into account that 9y (x,t) = zx(x,t) — dsr(z,t), & = 1,m, from (13) we
obtain
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SOME INVERSE PROBLEMS FOR STRONG PARABOLIC SYSTEMS 119

t

(2, 1) = Op(a, ) +//Gk (@ 1:6,7) Do (g, ) g (6,72 10) + Fi (€, 7)) dédr
D

0
15)

Assume that

® = Hu—ﬂH0+Hf_fH0'

Under the conditions of theorem and from definition of the set K3, taking into account
estimation (14), we obtain

2w, O < Ma [|85]ly,, + [91]lg] + Mz t, (2,1 € 2, (16)
Ak (s )| < Mg (161l + 184l + 18511, | + My ¢/2, € (0,7). (17)

Inequalities (16), (17) are satisfied for any values (z,t) € . Therefore, they must be
also satisfied for maximum values of the left parts.
Consequently,

© < M [[01llg + 4]l + 11351l | + Moze /2. (s)

Let 77, 0 < Ty < T, be such number that Mng /2 < 1. Then we obtain from a7
thatif (x,t) € D x [0,71], then the estimation of stability (18) for solution of Problem IIT
is true.

By induction method, we show that estimation (18) is true for all ¢ € [0, T).

So, it is proved that the estimation of stability (7) holds for all (z,t) € D x [0,7].
The uniqueness of the solution of Problem III follows from estimation (7) if gy (x, t, w) =
= gk (x,t,w), or(x) = Gr(x), Yr(x, t) = Pr(z,t), hi(t) = hy(t).

So, Theorem 3 is completely proved.

3. The method of successive approximations. The method of successive approxi-
mations is applied for approximate solution of the considered inverse problems.

The method of successive approximations with reference to Problem I consists of the
following:

Let {fks) (), ul? (2, 1), k = 1,m} € K; be already found. Consider the problem on
definition of u,(fﬂ) (x,t), k = 1, m, from the conditions

u,(ftﬂ) — Augfﬂ) = f,gs)(t)g;C (x,t, u(s)) , (z,t) e Q=D x(0,T], (19)
ugfﬂ) (7,0) = pi(x), =€ D; u,(fﬂ)(x,t) = p(x,t), (20)

(x,t) € S=0D x (0,T].
This problem has a unique classical solution (if input data will satisfy conditions 1),

20),49),79)) belonging to C2F:1+/2 (Q) [1, p. 364].

§€s+1)(177 t), k = 1, m, from the condition

Then, under the functions u
SO = [pralt) = 8D | fgr (6,4 ) oo, 1€ 0,71, 21

f,gsﬂ)(t) € C*[0,T], k = 1,m, are defined and these functions are used for the next
step of iteration. So, if we choose £\ (t) € C[0,T], u\”(x,t) € C2Hol+e/2 (@),
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k =1, m, from system (19)—(21) for s = 0,1, 2, ..., we consequently find the functions
) e 2 0,7], ul (2, 1) € CFrelte/2(Q) k=T m.

Let us show uniform boundedness of the sequences { f,gs) (t)} and {u,(f) (z, t)} k=
= 1, m, which we need below.

Lemma 1. Let conditions 1°),2°), 4°), 7°) be fulfilled. Then if f{”(t) € C*[0,T7,
u,(co) e C?talta/2 (Q) , then the functions {f,gs) (1), u,(f)(x, t), k =1,m} found from
system (19)—(21) for s = 1,2, ... are uniformly bounded (by sup norm) at (z,t) € €.

Proof. As stated above, if we choose { éo) (t), u,&o)(m,t), k= L—m} € Kj, then
under the conditions of Lemma 1 and by virtue of statement of the theorem proved in [1,
p. 364] it follows that { f{”)(¢), u") (z,t), k = T,m } € K, forany s = 1,2, ... Then,
by Green’s function [1, p. 468], we find the expressions for solution of the problem of
definition of u§:+1) (x,t), k =1, m, form (19), (20):

ug ™t (@, 1) = pr(e, t) +
t
¥ O/ L[ Gic (e, 1:6,7) [£5) () gk (6mu9) = pir (€,7) + A dedr,  22)

where pi(x,t) is defined in (9), G, (z,t; &, 7) is Green’s function of problem (19), (20)
for which estimations (14) are true.

Taking into account estimations (14) and the conditions of Lemma 1, from (22) and
(21) we obtain

DLl @, )] < Nalloly, + Ns |17 (1) 134072,

k=1,m, 1=0,1,2, (x,t)€Q,

A 0] < Nollpll, + N7 [D2u™D @ 0| 72, te 0.7,
or
Y < N [llplly s + lIpl | + Nat/y
where
2
19 = 3 o]+ ],
=0

From the last inequality, we have
YD < Nig [l + Iplh | (1= 0%) /(1= 0) +0*7®, o = Not/2.

Let T5, 0 < Ty < T, be such a number that NQT; /2 < 1. Then we obtain that the
sequences { és)(t)}, {Diuff) (, t)}, 1=0,1,2, k = 1, m, are uniformly (on sup norm)
bounded if (z,t) € D x [0, T3).

Considering problem (19)—(20) is turn for the intervals (7%, 27%), (21%,375) and
etc., for finite number of steps we shall obtain the uniform boundedness of the sequences

{fés)(t)}, {D;u,(j)(x,t)}, 1=0,1,2,k = T,m, forall (z,£) € D x [0,T].
Theorem 4. Let: 1) conditions 1°), 2°), 4°), 7°) be fulfilled, 2) Problem 1 have a
unique solution belonging to the set K. Then the functions {f,gs)(t), ul(es)(;v,t), k=
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SOME INVERSE PROBLEMS FOR STRONG PARABOLIC SYSTEMS 121

=1,m }, found from system (19) —(21) uniformly tend to the solution of Problem 1 with
rate of geometric progression.

Proof. From equation (1) with x = z*, taking into account the conditions of Theo-
rem 4 for the functions fx(¢), we obtain

fu(®) = [Pre(t) = Aurlo=a] /gx (27,8, p(t)) £ €0, T]. (23)

Subtracting from the correlations of system (1), (2), (23) the corresponding correla-
tions of system (19)—(21), we obtain that the functions

0 =£0 - 1705 @0 = ula ) — @), k=Tm |

satisfy the conditions of the system

At = A5 = A (e () + A7) g0 (0, t0) = gi (2. 8,u) ] 24
(z,t) € Q,
zl(:ﬂ) (r,0) =0, =z € D; z,(:ﬂ)(x,t) =0, (z,t)€Ss, (25)

ATV = Az s Jgi (@ 4, (1) + [(pre(t) — AutHD |,p) x
x(gi (2%, 6, ulD (27,)) — gi (2%, 1, p(t)))]/

Gk (x*, t,ulst) (z*, t)) gk (z*,t,p(1)) . (26)

It follows from the assumptions of Theorem 4 and statement of Lemma 1, that the
right-hand side of (24) belongs to the class C**/2 (Q) and it is uniformly bounded.

Therefore, there exists classical solution of problem of definition of z,(CSH)(a:, t) from
conditions (24), (25) and it can be represented in the form [1, p. 468]

t
%””@¢%=//Gu%u&ﬂx
0D

< [N (1) gk (67 u) + £ () (9 (€7 w) = g1 (6,7, u)) | dear. @)

For Green’s function of problem (24), (25) G, (z,t; €, T), estimations (14) are true.
Acting as in the proof of Lemma 1, we obtain

DL (@, 0)| < N [P0 +

ZI(:) (I’t)H {2ra=i)/2.
1=0,1,2, (z,t)€Q,
‘/\](:H)(t)‘ < Np HZ’ESH) (x*,t)‘ n ’D§Z£S+1) (x*,t)H 22, telo,T],
or
2T < Npae(®)pe/2,

2
where ae(“”.) = Zz:o .HDiz(s.)HO + H/\(S?Ho'
Applying the last inequality, we obtain

et < gstlge®) g = N t/2, (28)
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Let now T3, 0 < T3 < T, be such a number that N13T3°‘ /2 < 1. Then it follows
that the sequence {ae(s)} is majorized by decreased geometric progression. Acting as
indicated above, we obtain that inequality (28) is true for all ¢ € [0, 7). It means that
&(®) — 0 as s — oo not slower than geometric progression.

So, we obtain that the functions {f,gs)(t), uff)(:m t), k = 1,m } found from (19)-
(21) uniformly tend to the solution of problem (1)—(4) as s — oo with rate of conver-
gence, which is not slower than rate of convergence of the geometric progression.

As in Theorem 4, the following convergence theorems on the method of successive
approximations used in Problems II are proved.

Theorem 5. Let: 1) conditions 1°), 2°), 5°), 89) be fulfilled; 2) Problem 11 have
a unique solution belonging to the set Ko. Then the functions {f,gs)(a:’, t), u,(:)(x, t),
E=1m } Sfound from the system

u,(:éﬂ) — Au,(csﬂ) = f,gs) (', t) gk (:C,t,u(s)) , (z,t) € Q x (0,T], (29)

u,(fﬂ) (7,0) = pp(z), x€Q;

(30)
up ™ (@, 1) = (), (2,1) € 0Q x [0, 7],
;£S+1)($/7t) _ [th (2',t) — Au(5+1)|x:c] /g (x,t,u(s+1)) |lzn=cs G1)

(«/,t) € D' x [0,T],

uniformly tend to the solution of Problem 11 with rate of geometric progression.

4. Existence of solution. The existence of solution of Problems I, II is proved by the
method of successive approximations used in Section 3.

Theorem 6. Let conditions 1°),2°),4%),7°%) be fulfilled. Then Problem 1 has at least
one solution in the sense of Definition 1.

Theorem 7. Let conditions 1°), 2°), 5°), 8°) be fulfilled. Then Problem 11 has at
least one solution in the sense of Definition 2.

Theorems 6, 7 are proved with close method. Let prove below Theorem 7.

Proof. Note that if we choose f\”) (2/,t) € Co/2 (D' x[0,T7), ul(2,1) €
€ C%Hel+/2(Q x [0,T]), k = T,m, then, under the conditions of Theorem 7,
u®) (z,t) € C*rel+e/2(Q x [0,T]) forall s = 1,2,... [1, p. 364]. Then, under the
conditions of Theorem 7, it follows from (29) that f(*) (/,t) € C*/2 (D' x [0,77),
k = 1,m. Using the functions py(x,t), k = 1, m, defined in (9) and representations of
solution through Green’s function [1, p. 468], let us find the expressions for solution of
problem of definition ugfﬂ) (z,t) from conditions (29), (30):

t

u,(fﬂ)(a:,t):,%(x,t)Jr//Gk (2,8:¢,7) FY (&, 7) dedr,
0 Q

where Fk(f) (x,t) = f,gs) (@, 1) g (2,1, ul®)) — prt + Apy.

By analogy with Lemma 1, we prove the following lemma:

Lemma 2. Let the conditions of Theorem 7 be fulfilled. Then the sequences
{fks) (m’,t)}, {Déu,(f)(x,t)}, I = 0,1,2, k = 1,m, are uniformly bounded (on
sup norm) if (z,t) € Q x [0,T].

The equipotential continuity of the sequences {Di.u,(f) (z, t)} A1=0,1,2,k=1,m,

follows from the inequality
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s+1 1 s+1 _
’D;ug’* )(z,t) — DLul (z i)’ ’Dl (4D (2. 4) — DLu{* )(z,t)’Jr

+ ‘Diu,(:ﬂ) (z,t) — D! u,(:H) (z t_)‘ |Dxpk x,t) — DL pp (Z,1) )| +

+|DLpy (2,1) — Dipy (2.5)] + / / DLy (2, 4:€.7) — DLGy (7, 1:6,7)|

t
<|FO €| agar+ [ [ |PLG (a6 7) - DL (a6 m)
0 Q
t

x [F (g,r)‘d5d7+//yD;Gk (z.:¢,7)]| |FY (6, 7)| dear
t Q

taking into account the uniform boundedness of { fi (s) (2’ )}, the continuity and bound-
edness of input data, estimations (14), and the following [1, p. 469] relations:

IDLG (2,:6,7) — DLG (2, 1:€,7)]| <
< Nua o3[ |t — 7|22 exp (~Nyg o — €/ (£~ 7))
|D§UG (z,t;¢,7) — DLG (f,f;f,r)| <

< Nig |t = 2 (1= )= e (< Npe o — € / (- 7))

The equipotential continuity of the sequence { f,gs) (o, t)}, k = 1, m, follows from
the inequality

\f; 1 f,fxi)\
< -1 0]+ [0 1060

< qu(x’,o - qkt@',t)] + | Au @)

Tp=cC

~|Aut @)

ITnp=C=C

}/‘gk x,t, u )‘171_(/

+‘gk(x,t, uN) o =e — gr(@,t,u)]5, = (|th 1)+

+

In=cC

+Au (a1

>/‘gk($at7u(5))|mnfcgk(‘r 2 u( ))|acn:c
+ H%t(i‘/’t) = it (f/f) ’-f-

+’Au§:)(i,t) =A@

Tp=cC Tp=cC

[ ottt

Tn=cC

+‘gk(fc,t,u(s))| X

Fn=c g/c(i'7 57 U(S)) ’:fn:C
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)

<l @B+ A @D, ) [as(@ tu), _ gn(@ )

Tp=cC
taking into account the uniform boundedness and equipotential continuity of the sequence
{Di,u,(f) (z, t)} , 1 =0,1,2, the continuity and boundedness of input datas.

The uniform boundedness and equipotential continuity of the sequence {ugjt) (z, t)}
follows from (29).

By Arcela’s theorem [2, p. 84], from the sequences {u,(ft)} , {Dé,ués)} , {f,gs)} ,
I =0,1,2,k = 1,m, it is possible to choose sequences convergent to some functions
{up,}, {DLup}, 1 = 0,1,2, {fi}, respectively, and uj, (z,t) € C*'(Q x [0,T7),
fi@@ t)yeC (D’ X [O,T]).

Then, passing to the limit as s — oo in correlations (29) —(31), we obtain relations

up, — Aup, = fi (@) gr (x,t,u"),  (2,t) € Q x (0,77,
UZ(Z‘,O):QO]C(Z‘), QZ‘EQ uZ(x7t):wk(x7t)v (xat)ean[07T]a
f/f (l‘l,t) = [th (x,7t) - Aumxn:C] /gk (ZE,t,U*) |3¢n=ca (l‘l,t) € D' x [OaT] .

This implies that

u:t - AUZ = gk (aj’ t U*) [th (xlv t) - Ault LL:C] /gk (1”7 t, U*)

Tp=c*

By using the last equality with =, = ¢ and taking into account conditions ¢ (z’, ¢,
0) = ¢ (2',0), we obtain uj, (2',¢,t) = qi (', 1) .
Thus, the existence of solution of Problem II is proved in terms of Definition 2.
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