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ON STATISTICAL CONVERGENCE OF VECTOR-VALUED
SEQUENCES ASSOCIATED WITH MULTIPLIER SEQUENCES

ITPO CTATUCTHUYHY 3BI2KHICTH BEKTOPHO3HAYHUX
IMOCJIIJOBHOCTEM, IO ITOB’A3AHI
3 KOEOINIEHTHUMU ITOCJIIJOBHOCTAMU

In this paper we introduce the vector-valued sequence spaces woo (F, Q, p, u), w1 (F, Q, p, u), wo (F, Q,p, u),
S¢, and Sgu using a sequence of modulus functions and the multiplier sequence u = (uy,) of nonzero complex
numbers. We give some relations related to these sequence spaces. It is also shown that if a sequence is strongly
ug-Cesaro summable with respect to the modulus function then it is u4-statistically convergent.

BBe/1eHO MPOCTOPH BEKTOPHO3HAYHMX MOCJIIOBHOCTEN Woo (F), Q, p,u), wi(F, Q,p,u), wo(F,Q,p,u),
S¢ Ta Sgu 3 BUKOPHCTAHHIM MOCJIZIOBHOCTI MOy Ib-(DYHKILiH i KoeditieHTHOI nocstiioBHocTi ©w = (ug)
HEHYJIbOBUX KOMILJIEKCHHX urces1. HaBeieHo /iesKi CIiBBiJHOIICHH A, III0 CTOCYIOTBC IIUX MPOCTOPIB MOCJIi-
nosHocTed. TakoxX MoKasaHo, M0 AKIIO MOC/IiIOBHICTh CHJILHO g-Ye3apo-cyMOBHA MO BiIHOLIEHHIO 110
MOy JIb-PYHKIIi1, TO BOHA Ug-CTATHCTHYHO 30iKHa.

1. Introduction. Let w be the set of all sequences of real or complex numbers and /.,
¢, and cq be, respectively, the Banach spaces of bounded, convergent, and null sequences
x = (x) with the usual norm ||z|| = sup |xg|, where kK € N = {1,2, ...} is the set of
positive integers.

Studies on vector-valued sequence spaces were carried out by Rath and Srivastava [1],
Das and Choudhary [2], Leonard [3], Srivastava and Srivastava [4], Tripathy and Sen [5],
Tripathy and Mahanta [6], and many others.

Throughout the article, for all £ € N Ej, are seminormed spaces seminormed by gy,
and X is a seminormed space seminormed by ¢. If what follows, w(Ey), ¢(Ey), oo (Ek),
and ¢, (E}) denote the spaces of all, convergent, bounded, and p-absolutely summable
E-valued sequences, respectively. In the case where E; = C (the field of complex
numbers) for all k& € N, one has the corresponding scalar-valued sequence spaces. The
zero elements of ), are denoted by ). The zero sequence is denoted by 0 = (6},).

Let u = (ug) be a sequence of nonzero scalar. Then for a sequence space F, the
multiplier sequence space F(u) associated with the multiplier sequence  is defined as

E(u) ={(zx) € w: (upzy) € E}.

Studies on the multiplier sequence spaces were carried out by Colak [7], Colak et
al. [8], Srivastava and Srivastava [4], Tripathy and Mahanta [6], and many others.

The notion of a modulus was introduced by Nakano [9]. We recall that a modulus f
is a function from [0,00) to [0,00) such that:

i) f(z) =0ifandonlyif z =0,

i) fz+y) < flz)+ f(y) forz,y >0,

iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous everwhere on [0, 00). A modulus may be un-
bounded or bounded. Ruckle [10], Maddox [11] used a modulus f to construct some
sequence spaces.

2. Main results. In this section, we prove some results involving the sequence spaces

wO(F7Q7pa ’U/), wl(F7Qapau)7 and wOO(F7Qapau)'
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Definition 1. Ler p = (px) be a sequence of strictly positive real numbers, let F' =
= (fr) be a sequence of modulus functions, and let u = (uy) be any fixed sequence of
nonzero complex numbers uy. We define the following sequence spaces:

wO(Fanpv u) = {xk € Ek : %Z [fk (Qk(ukl'k))]pk — 07 as n — OO} ,
k=1
Wy (F,Qp,u) = { k€ Bk % > Ui o (upr — )] — 0,

k=1
asn—oo and (€ Ey

Weo (F, Q,p,u) = {xk € Ey: SUP%Z [fe (g (upzr))]P* < OO} .

" k=1

In the case where f;, = f and ¢ = ¢ for all k € N, we shall write wo(f, ¢,p, u),
w1 (f, ¢, p,u), and woo (f, ¢, p, u) instead of wo(F, Q, p,u), wi(F,Q,p,u), and we (F,
Q, p, u), respectively.

Throughout the paper, Z will denote any one of the notation 0, 1, or co.

If z € wi(f,q,p,u), we say that x is strongly u,-Cesaro summable with respect to
the modulus function f and we will write z, — £(w1(f, ¢, p, v)); € will be called u,-limit
of x with respect to the modulus f.

The proofs of the following theorems are obtained by using the known standard tech-
niques, therefore we give them without proofs.

Theorem 1. Let the sequence (py) be bounded. Then the spaces wz(F,Q, p,u) are
linear spaces.

Theorem 2. Let f be a modulus function and the sequence (py,) be bounded, then

wo(faq7p7 U,) - wl(f7q7p7 U) C w:)o(faqap7u)

and the inclusions are strict.
Theorem 3. w(F, Q, p,u) is a paranormed (need not total paranorm) space with

g9 (x —sup< Z Fr (qr (uray))] k) ) ey
" k=1

where M = max(1,sup pg).

Theorem 4. Let F' = (f) and G = (g,) be any two sequences of modulus functions.
For any bounded sequences p = (py,) and t = (ty,) of strictly positive real numbers and
for any two sequences of seminorms q = (qx) and v = (ry), we have:

) wz(f,Q,u) Cwz(fog,Q,u),

i) wz(F,Q,p,u) Nwz(F,R,p,u) Cwz(F,Q+ R,p,u),

111) wZ(Fv Qapv u) N wZ(Ga vav u) - wZ(F + Gv Qapv U)7

iv) if q is stronger than r, then wz(F, Q,p,u) C wz(F, R, p,u),

V) if q is equivalent to v, then wz (F,Q, p,u) = wz(F, R,p, u),

vi) wz(F,Q,p,u) Nwz(F,R,p,u) # &.

Proof. 1) We shall only prove i) for Z = 0, and the other cases can be proved by using
similar arguments. Let £ > 0. We choose §, 0 < 0 < 1, such that f(t) < efor0 <t <
and all k¥ € N. Write v, = g (¢x(uxx)) and consider
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Dol =Dl + D[],

k=1

where the first summation is over y; < § and second summation is over y; > 4. Since f
is continuous, we have

> 1w < ne. 2)

1

By the definition of f, we have the following relation for y; > ¢ :
Yk
Flye) <2f(1)75

Hence,
CS ] < 267 0) S e )
2 k=1

It follows from (2) and (3) that wo(f, Q,u) C wo(f 0 g,Q,u).
The following result is a consequence of Theorem 4 (i).
Proposition 1. Ler fbe a modulus function. Then wz(Q,u) C wz(f,Q,u).
Theorem 5. Let Ey be a complete seminormed space for each k € N. Then the
sequence space wo(F, Q, p,u) is complete and seminormed by (1).
Proof. Let (z't) be a Cauchy sequence in wo(F, Q, p, u), where z* = (%)% . Then

g(x* —27) =0, as i,j — oo. (@))

Hence, for each fixed k, we have

[fk (Qk(uk(xi—xi)))}pkﬁo as i,j — oo.

By continuity of f, for all £ € N, we have

) . Pk ) . Pk
lim [fk (Qk (uk (502 - xi)))} = [fk ( lim gy, (kafi - kai)ﬂ = 0.
2,]—00 . 1,]—00 .
Since fj, is a modulus for all k£ € N,
lim g (ukxfc — ukxfg) =0.
i,j—00
Let yj = upaj, forall k € N. Then (y;)., is a Cauchy sequence in F, for each
k € N. Since E}, are complete, there exists y; € Fj such that y — yx as i — oo for all
k € N. Since F, are linear, we can express yx as yr = urTg, where k € N.
Since g is continuous, taking j — oo in ( 4), we have g(z* — x) < ¢ for all i > nq.
Hence,

g(x' —2) € wo(F,Q,p,u) forall i> ny.

Since (2 — ), (x't) € wo(F, Q,p,u), and the space wo(F, Q, p, u) is linear, we have
r=2'— (2 — ) € wo(F,Q,p,u). Hence wo(F, Q, p,u) is complete.

t
Theorem 6. Let 0 < py < ty and let <—k> be bounded. Then wyz(F,Q,t,u) C
Pk
C wZ(FaQ7p7u)‘
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Proof. By taking wy = [fx (qr(uray))]™ for all k and using the same technique as
in Theorem 5 of Maddox [12], one can easily prove the theorem.

t
Theorem 7. Let f be a modulus function. Ifflirn Q = 0> 0, thenwi(Q,p,u) =
[ — OO

=wi(f,q,pu).

Proof. Omitted.

3. ugq-Statistical convergence. The notion of statistical convergence was introduced
by Fast [13] and Schoenberg [14] independently. Over the years and under different
names, statistical convergence has been discussed in the theory of Fourier analysis, er-
godic theory, number theory. Later on, it was further investigated from sequence space
point of view and linked with summability theory by Fridy [15], Connor [16], Salat [17],
Mursaleen [18], Isik [19], Savas [20], Malkowsky and Savas [21], Kolk [22], Maddox
[23], Tripathy and Sen [24], and many others. In recent years, generalizations of sta-
tistical convergence have appeared in the study of strong integral summability and the
structure of ideals of bounded continuous functions on locally compact spaces. Statistical
convergence and its generalizations are also connected with subsets of the Stone — Cech
compactification of the natural numbers. Moreover, statistical convergence is closely re-
lated to the concept of convergence in probability. The notion depends on the density of
subsets of the set N of natural numbers.

A subset E of N is said to have density positive integers is defined by 0 (E) if

n— oo

0 (F) = lim %ZXE(IC)
k=1

exists, where x g is the characteristic function of E. It is clear that any finite subset of N
have zero natural density and 6 (E°) =1 — 6 (E).

In this section, we introduce u,-statistically convergent sequences and give some in-
clusion relations between u,-statistically convergent sequences and w; (f, ¢, p, u)-sum-
mable sequences.

Definition 2. A sequence x = (1) is said to be ug-statistically convergent to ¢ if, for
every e > 0,

6({k€N:q(ukxk—£) 28}) = 0.

In this case, we write xj, — £ (S3) . The set of all ug-statistically convergent sequences is
denoted by S.

By S, we denote the set of all statistically convergent sequences. If ¢ (x) = |z| and
up = 1forall k € N, then S? is the same as S. In the case ¢ = 0, we shall write S§,,
instead of SY.

Theorem 8. Let fbe a modulus function. Then:

D) if ey, — L(wi1(Q,u)), then x, — £ (ST),

i) ifz € loo (ug) and x, — £(S2) , then xy, — £ (w1 (Q, u)),

iil) SINle (ug) = wi(Q,uw) Nl (ug) ,
where Uog (ug) = {z € W(X) : supy, q(urzs) < 0o} .

Proof. Omitted.

In the following theorems, we shall assume that the sequence p = (py) is bounded
and 0 < h = infy pr, < pr < supgpr = H < 0.

Theorem 9. Let fbe a modulus function. Then w1 (f,q,p,u) C SI.
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Proof. Letx € wi(f,q,p,u) and let ¢ > 0 be given. Let Zl and Zz denote the
sums over k < n with ¢ (uxxy, — ¢) > € and g (uxxy, — ¢) < €, respectively. Then

LS 1F (g (g — ) >

>
=
~—
o
=
T
N——

> %‘{kgn:q(ukajk—ﬁ) ze}lmin ([f(e)]

Hence, z € SY.

Theorem 10. Let fbe bounded. Then S C w1 (f,q,p,u).

Proof. Suppose that f is bounded. Let € > 0 and let 21 and Zz be the sums
introduced in previous theorem. Since f is bounded, there exists an integer K such that
f(x) < K forall z > 0. Then

S [ratua -] <

k=1

<

S|

(Z [f (q (upwr — é))]pk +)° [f (q (upar — g))r’“> <

< %ZmaX(Kh,KH) + lz [f(s)}pk <
1

2
< max(Kh7KH)%‘{k§n i q (upxp —4) 25}’ +
+max (f(e)", f(e)f).

Hence, « € wi(f, q,p, u).

Theorem 11. S¢ = w1 (f, q,p,w) if and only if f is bounded.

Proof. Let f be bounded. By Theorems 9 and 10, we have S = wy (f, q,p, u).

Conversely, suppose that f is unbounded. Then there exists a sequence (¢ ) of positive
numbers with f(t;) = k% fork = 1,2, .... If we choose

ty, i=k% k=1,2,...,
U T; =
0, otherwise,

then we have

l) {k: <n: ‘ukxk‘ 25}‘ < @
n n
forall nand so z € S, but z ¢ wi(f,q,p,u) for X =C, ¢ (x) = |z| and py, = 1 for all
k € N. This contradicts to S = wy(f, g, p, u).

4. Special cases. Firstly, we note that we (F, @, p, u) and w (F, Q, p) overlap but
neither one contains the other. For example, p, = 1, fr(z) = =, and g;(z) = ||

for all k& € N. If we choose + = (1) and u = (k), then * € ws(F,Q,p), but
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1
x ¢ weo(F,Q,p,u), conversely, if we choose z = (k) and u = (E) , then z ¢

¢ Wweo(F, Q,p), but & € wo (F, Q,p,u). Similarly:

i) wo(F,Q,p,u) and wo(F, Q, p),

i) wi(F,Q,p,u)and wy(F,Q,p),

iii) S and 59,

iv) Sg, and S
overlap but neither one contains the other.

The definition of v-invariance of a sequence spaces E was given by Colak [7] and the
v-invariantness of the sequence spaces ¢, ¢, ¢y, and £, was examined.

Definition 3. Let X be any sequence space and u = (uy,) be any sequence of nonzero
complex numbers. We say that the sequence space X is uq-invariant if X1 = X9.

By E[u], we denote one of the sequence spaces w (F,Q,p,u), wi(F,Q,p,u),
wo(F,Q,p,u), S, S¢, and also, by E, we denote one of the sequence spaces
weo(F, Q, p), w1 (F,Q,p), wo(F,Q,p), S, S§. What conditions should satisfy u = (u)
in order that Eu] = E?

If one considers the sequnce spaces:

1) wz(f,q,p,u) instead of wz (F, Q,p,u),

2) wz(f,Q,p,u) instead of wy (F, Q, p,u),
3) wz(F,q,p,u)instead of wy(F, Q, p,u),
4) wz(F,Q,p) instead of wyz (F, Q,p,u),
5) wz(F,Q,u) instead of wz (F, Q, p,u),
6) wz (F,Q) instead of wz(F, Q, p,u),

7) wyz (F,p,u) instead of wz (F, Q, p, u),
8) wz (Q,p,u) instead of wz (F, Q, p, u),
9) wz (p,u) instead of wz (F, Q, p,u),

10) S? and S{ instead of SZ and Sg,,,

11) S, and Sy, instead of S¢ and Sg,,
one will get that most of the results proved in the previous sections will be true for these
spaces too.
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