UDC 517.9
E. S. Panakhov, R. Yilmazer (Firat Univ., Elaziğ, Turkey)

ON INVERSE PROBLEM FOR SINGULAR STURM-LIOUVILLE OPERATOR FROM TWO SPECTRA ПРО ОБЕРНЕНУ ЗАДАЧУ ДЛЯ СИНГУЛЯРНОГО ОПЕРАТОРА ШТУРМА - ЛІУВІЛЛЯ ВІД ДВОХ СПЕКТРІВ

In the paper, an inverse problem with two given spectra for second order differential operator with singularity of type $\frac{2}{r}+\frac{\ell(\ell+1)}{r^{2}}$ (here, l is a positive integer or zero) at zero point is studied. It is well known that two spectra $\left\{\lambda_{n}\right\}$ and $\left\{\mu_{n}\right\}$ uniquely determine the potential function $q(r)$ in a singular Sturm-Liouville equation defined on interval $(0, \pi]$.

One of the aims of the paper is to prove the generalized degeneracy of the kernel $K(r, s)$. In particular, we obtain a new proof of Hochstadt's theorem concerning the structure of the difference $\tilde{q}(r)-q(r)$.

Вивчається обернена задача з використанням двох заданих спектрів для диференціального оператора другого порядку з сингулярністю типу $\frac{2}{r}+\frac{\ell(\ell+1)}{r^{2}}(l-$ додатне ціле число або нуль) у нульовій точці. Відомо, що два спектри $\left\{\lambda_{n}\right\}$ та $\left\{\mu_{n}\right\}$ встановлюють єдиним чином функцію потенціалу $q(r)$ у сингулярному рівнянні Штурма - Ліувілля, визначеному на інтервалі $(0, \pi]$.

Однією з цілей роботи є доведення узагальненої виродженості ядра $K(r, s)$. Зокрема, одержано нове доведення теореми Гохштадта щодо структури різниці $\tilde{q}(r)-q(r)$.

Introduction. We will consider the equation

$$
\begin{equation*}
\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}-\frac{\ell(\ell+1)}{r^{2}} R+\left(E+\frac{2}{r}\right) R=0, \quad 0<r<\infty \tag{1}
\end{equation*}
$$

In quantum mechanics, the study of the energy levels of a hydrogen atom leads to this equation [1]. The substitution $R=y / r$ reduces equation (1) to the form

$$
\begin{equation*}
\frac{d^{2} y}{d r^{2}}+\left\{E+\frac{2}{r}-\frac{\ell(\ell+1)}{r^{2}}\right\} y=0 \tag{2}
\end{equation*}
$$

Just as in the case of Bessel's equation, one can show that, in a finite interval $[0, b]$, the spectrum is discrete.

As known [2, 3], for a solution of (2) which is bounded at zero, one has the following asymptotic formula for $\lambda \rightarrow \infty(E=\lambda)$:

$$
\begin{equation*}
\varphi(r, \lambda)=\frac{e^{\frac{\pi}{2 \sqrt{\lambda}}}}{\left|\Gamma\left(\ell+1+\frac{i}{\sqrt{\lambda}}\right)\right|} \frac{1}{\sqrt{\lambda}} \cos \left[\sqrt{\lambda} r+\frac{1}{\sqrt{\lambda}} \ln \sqrt{\lambda} r-(\ell+1) \frac{\pi}{2}+\alpha\right]+o(1) \tag{3}
\end{equation*}
$$

where $\alpha=\arg \Gamma\left(\ell+1+\frac{i}{\sqrt{\lambda}}\right)$.
We consider two singular Sturm-Liouville problems

$$
\begin{gather*}
-y^{\prime \prime}+\left[\frac{\ell(\ell+1)}{r^{2}}-\frac{2}{r}+q(r)\right] y=\lambda y, \quad 0<r \leq \pi \tag{4}\\
y(0)=0 \tag{5}\\
y^{\prime}(\pi)+H y(\pi)=0 \tag{6}
\end{gather*}
$$

$$
\begin{gather*}
-y^{\prime \prime}+\left[\frac{\ell(\ell+1)}{r^{2}}-\frac{2}{r}+\tilde{q}(r)\right] y=\lambda y, \quad 0<r \leq \pi \tag{7}\\
y(0)=0 \\
y^{\prime}(\pi)+\tilde{H} y(\pi)=0 \tag{8}
\end{gather*}
$$

in which the functions $q(r)$ and $\tilde{q}(r)$ are assumed to be real-valued and square integrable. H and \tilde{H} are finite real numbers.

We denote the spectrum of the first problem by $\left\{\lambda_{n}\right\}_{0}^{\infty}$ and the spectrum of the second by $\left\{\tilde{\lambda}_{n}\right\}_{0}^{\infty}$.

Next, we denote by $\varphi(r, \lambda)$ the solution of (4) and we denote by $\tilde{\varphi}(r, \lambda)$ the solution of (7) satisfying the initial condition (5).

It is well known that there exists a function $K(r, s)$ such that

$$
\begin{equation*}
\tilde{\varphi}(r, \lambda)=\varphi(r, \lambda)+\int_{0}^{r} K(r, s) \varphi(s, \lambda) d s \tag{9}
\end{equation*}
$$

The function $K(r, s)$ satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} K}{\partial r^{2}}-\left[\frac{2}{r}-\frac{\ell(\ell+1)}{r^{2}}+\tilde{q}(r)\right] K=\frac{\partial^{2} K}{\partial s^{2}}-\left[\frac{2}{s}-\frac{\ell(\ell+1)}{s^{2}}+q(s)\right] K \tag{10}
\end{equation*}
$$

and the conditions

$$
\begin{gather*}
K(r, r)=\frac{1}{2} \int_{0}^{r}[\tilde{q}(t)-q(t)] d t \tag{11}\\
K(r, 0)=0 \tag{12}
\end{gather*}
$$

After the transformations

$$
z=\frac{1}{4}(r+s)^{2}, \quad w=\frac{1}{4}(r-s)^{2}, \quad K(r, s)=(z-w)^{-\nu+\frac{1}{2}} u(z, w)
$$

we obtain the following problem $\left(-\nu+\frac{1}{2}=\beta\right)$:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial z \partial w}-\frac{\beta}{z-w} \frac{\partial u}{\partial z}+\frac{\beta}{z-w} \frac{\partial u}{\partial w}=\frac{(\tilde{q}-q) u}{4 \sqrt{z w}}-\frac{u}{\sqrt{z}(z-w)} \\
& \frac{\partial u}{\partial z}+\frac{\beta}{z} u=\frac{1}{4}[\tilde{q}(\sqrt{z})-q(\sqrt{z})] z^{\nu-1}, \quad u(z, z-\delta)=0
\end{aligned}
$$

This problem can be solved by using the Riemann method [4-6].
We put

$$
\begin{gathered}
c_{n}=\int_{0}^{\pi} \varphi^{2}\left(r, \lambda_{n}\right) d r, \quad \tilde{c}_{n}=\int_{0}^{\pi} \tilde{\varphi}^{2}\left(r, \tilde{\lambda}_{n}\right) d r \\
\rho(\lambda)=\sum_{\lambda_{n}<\lambda} \frac{1}{c_{n}}, \quad \tilde{\rho}(\lambda)=\sum_{\tilde{\lambda}_{n}<\lambda} \frac{1}{\tilde{c}_{n}} .
\end{gathered}
$$

The function $\rho(\lambda)(\tilde{\rho}(\lambda))$ is called the spectral function of problem (4)-(6) ((7), (8)). Problem (4)-(6) will be regarded as an unperturbed problem, while (7), (8) will be considered to be a perturbation of (4)-(6).

It is a known [7] fact that the knowledge of two spectra for a given singular Sturm Liouville equation makes it possible to recover its spectral function, i.e., to find numbers $\left\{c_{n}\right\}$. More exactly, suppose that, in addition to the spectrum of problem (4)-(6), we also know the spectrum $\left\{\mu_{n}\right\}$ of the problem

$$
\begin{gather*}
-y^{\prime \prime}+\left[\frac{\ell(\ell+1)}{r^{2}}-\frac{2}{r}+q(r)\right] y=\lambda y \tag{13}\\
y(0)=0, y^{\prime}(\pi)+H_{1} y(\pi)=0, \quad H_{1} \neq H
\end{gather*}
$$

Knowing $\left\{\lambda_{n}\right\}$ and $\left\{\mu_{n}\right\}$, we can calculate the numbers $\left\{c_{n}\right\}$. Similarly, for (7), if besides $\left\{\tilde{\lambda}_{n}\right\}$ we also know the spectrum $\left\{\tilde{\mu}_{n}\right\}$ determined by the boundary conditions

$$
\begin{equation*}
y(0)=0, \quad y^{\prime}(\pi)+\tilde{H}_{1} y(\pi)=0, \quad \tilde{H}_{1} \neq \tilde{H} \tag{14}
\end{equation*}
$$

it then follows that we can determine the numbers $\left\{\tilde{c}_{n}\right\}$.
It is also shown that

$$
\begin{gathered}
\sqrt{\lambda_{n}}=\left[n+\frac{\ell}{2}\right]+\frac{1}{\pi} \frac{\ln (n+\ell / 2)}{n+\ell / 2}+O\left(\frac{1}{n^{2}}\right), \\
\left\|\varphi_{n}\right\|^{2}=\int_{0}^{\pi} \varphi_{n}^{2}(r) d r=\frac{\pi}{2}+\frac{\pi^{2}}{2} \frac{1}{n+\ell / 2}+O\left(\frac{\ln n}{n^{2}}\right) .
\end{gathered}
$$

Theorem 1. Consider the operator

$$
\begin{equation*}
L y=-y^{\prime \prime}+\left[\frac{\ell(\ell+1)}{r^{2}}-\frac{2}{r}+q(r)\right] y \tag{15}
\end{equation*}
$$

subject to boundary conditions

$$
\begin{gather*}
y(0)=0 \tag{16}\\
y^{\prime}(\pi)+H y(\pi)=0 \tag{17}
\end{gather*}
$$

where q is square integrable on $(0, \pi]$. Let $\left\{\lambda_{n}\right\}$ be the spectrum of L subject to (16) and (17).

If (17) is replaced by a new boundary condition

$$
\begin{equation*}
y^{\prime}(\pi)+H_{1} y(\pi)=0 \tag{18}
\end{equation*}
$$

a new operator and a new spectrum, say $\left\{\mu_{n}\right\}$, result.
Consider now a second operator

$$
\begin{equation*}
\tilde{L} y=-y^{\prime \prime}+\left[\frac{\ell(\ell+1)}{r^{2}}-\frac{2}{r}+\tilde{q}(r)\right] y \tag{19}
\end{equation*}
$$

where \tilde{q} is square integrable on $(0, \pi]$. Suppose that \tilde{L} has the spectrum $\left\{\tilde{\lambda}_{n}\right\}$ with $\tilde{\lambda}_{n}=\lambda_{n}$ for all n under the boundary conditions (16) and

$$
\begin{equation*}
y^{\prime}(\pi)+\tilde{H} y(\pi)=0 \tag{20}
\end{equation*}
$$

\tilde{L} with the boundary conditions (16) and

$$
\begin{equation*}
y^{\prime}(\pi)+\tilde{H}_{1} y(\pi)=0 \tag{21}
\end{equation*}
$$

is assumed to have the spectrum $\left\{\tilde{\mu}_{n}\right\}$. We assume that $H, H_{1} \neq H, \tilde{H}$ and $\tilde{H}_{1} \neq \tilde{H}$ are real numbers which are not infinite.

We shall denote by Λ_{0} the finite index set for which $\tilde{\mu}_{n} \neq \mu_{n}$ and by Λ the infinite index set for which $\tilde{\mu}_{n}=\mu_{n}$. Under the above assumptions, it follows that the kernel $K(r, s)$ is degenerate in the extended sense:

$$
\begin{equation*}
K(r, s)=\sum_{\Lambda_{0}} c_{n} \tilde{\phi}_{n}(r) \varphi_{n}(s) \tag{22}
\end{equation*}
$$

where $\varphi_{n}, \tilde{\phi}_{n}$ are suitable solutions of (4) and (7).
Proof. It follows from (9) that

$$
\begin{equation*}
\tilde{\varphi}^{\prime}(r, \lambda)=\varphi^{\prime}(r, \lambda)+K(r, r) \varphi(r, \lambda)+\int_{0}^{r} \frac{\partial K}{\partial r} \varphi(s, \lambda) d s \tag{23}
\end{equation*}
$$

and

$$
\begin{gathered}
\tilde{\varphi}^{\prime}(r, \lambda)+\tilde{H} \tilde{\varphi}(r, \lambda)= \\
=\varphi^{\prime}(r, \lambda)+\tilde{H} \varphi(r, \lambda)+K(r, r) \varphi(r, \lambda)+\int_{0}^{r}\left(\frac{\partial K}{\partial r}+\tilde{H} K\right) \varphi(s, \lambda) d s
\end{gathered}
$$

Substituting $r=\pi, \lambda=\lambda_{n}$ into the last equation and using boundary conditions (17), (20), we obtain

$$
\begin{align*}
& (\tilde{H}-H) \varphi\left(\pi, \lambda_{n}\right)+K(\pi, \pi) \varphi\left(\pi, \lambda_{n}\right)+ \\
& +\int_{0}^{\pi}\left(\frac{\partial K}{\partial r}+\tilde{H} K\right)_{r=\pi} \varphi\left(s, \lambda_{n}\right) d s=0 \tag{24}
\end{align*}
$$

As $n \rightarrow \infty$ and $\varphi\left(\pi, \lambda_{n}\right) \rightarrow o(1)$, the integral on the right-hand side tends to zero. Therefore, from (24) we get

$$
\begin{gather*}
K(\pi, \pi)=H-\tilde{H} \tag{25}\\
\int_{0}^{\pi}\left(\frac{\partial K}{\partial r}+\tilde{H} K\right)_{r=\pi} \varphi\left(s, \lambda_{n}\right) d s=0, \quad n=0,1, \ldots \tag{26}
\end{gather*}
$$

Since the system of functions $\varphi\left(s, \lambda_{n}\right)$ is complete, it follows from the last equation that

$$
\begin{equation*}
\left(\frac{\partial K}{\partial r}+\tilde{H} K\right)_{r=\pi}=0, \quad 0<s \leq \pi \tag{27}
\end{equation*}
$$

We now use the condition imposed on the second-mentioned spectrum. Using (9) again, we obtain

$$
\begin{gather*}
\tilde{\varphi}^{\prime}(r, \lambda)+\tilde{H}_{1} \tilde{\varphi}(r, \lambda)=\varphi^{\prime}(r, \lambda)+\tilde{H}_{1} \varphi(r, \lambda)+K(r, r) \varphi(r, \lambda)+ \\
+\int_{0}^{r}\left(\frac{\partial K}{\partial r}+\tilde{H}_{1} K\right) \varphi(s, \lambda) d s \tag{28}
\end{gather*}
$$

Putting $r=\pi$ and $\lambda=\mu_{n}(n \in \Lambda)$ and using (18), (21), we obtain

$$
\begin{gathered}
\int_{0}^{\pi}\left(\frac{\partial K}{\partial r}+\tilde{H}_{1} K\right)_{r=\pi} \varphi\left(s, \mu_{n}\right) d s+\left(\tilde{H}_{1}-H_{1}\right) \varphi\left(\pi, \mu_{n}\right)+ \\
+K(\pi, \pi) \varphi\left(\pi, \mu_{n}\right)=0
\end{gathered}
$$

In the last equation, as $n \rightarrow \infty$, the left-hand side tends to zero and $\varphi\left(\pi, \mu_{n}\right) \rightarrow o(1)$. Therefore,

$$
\begin{gather*}
K(\pi, \pi)=H_{1}-\tilde{H}_{1} \tag{29}\\
\int_{0}^{\pi}\left(\frac{\partial K}{\partial r}+\tilde{H}_{1} K\right)_{r=\pi} \varphi\left(s, \mu_{n}\right) d s=0, \quad n \in \Lambda \tag{30}
\end{gather*}
$$

Comparing (25) and (29), we obtain $H-\tilde{H}=H_{1}-\tilde{H}_{1}$. For $n \in \Lambda_{0}$, we obtain from (28) (for $r=\pi$ and $\lambda=\mu_{n}$)

$$
\begin{equation*}
\int_{0}^{\pi}\left(\frac{\partial K}{\partial r}+\tilde{H}_{1} K\right)_{r=\pi} \varphi\left(s, \mu_{n}\right) d s=\tilde{\varphi}^{\prime}\left(\pi, \mu_{n}\right)+\tilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{n}\right) \tag{31}
\end{equation*}
$$

It follows from (30) and (31) that

$$
\begin{equation*}
\left(\frac{\partial K}{\partial r}+\tilde{H}_{1} K\right)_{r=\pi}=\sum_{\Lambda_{0}} \frac{\tilde{\varphi}^{\prime}\left(\pi, \mu_{n}\right)+\tilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{n}\right)}{\left\|\varphi\left(s, \mu_{n}\right)\right\|^{2}} \varphi\left(s, \mu_{n}\right), \quad 0<s \leq \pi \tag{32}
\end{equation*}
$$

We derive from (27) and (32) the following equations:

$$
\begin{gather*}
K(\pi, s)=\frac{1}{\tilde{H}_{1}-\tilde{H}} \sum_{\Lambda_{0}} \frac{\tilde{\varphi}^{\prime}\left(\pi, \mu_{n}\right)+\tilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{n}\right)}{\left\|\varphi\left(s, \mu_{n}\right)\right\|^{2}} \varphi\left(s, \mu_{n}\right) \tag{33}\\
\left.\frac{\partial K(r, s)}{\partial r}\right|_{r=\pi}=-\frac{\tilde{H}}{\tilde{H}_{1}-\tilde{H}} \sum_{\Lambda_{0}} \frac{\tilde{\varphi}^{\prime}\left(\pi, \mu_{n}\right)+\tilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{n}\right)}{\left\|\varphi\left(s, \mu_{n}\right)\right\|^{2}} \varphi\left(s, \mu_{n}\right), \tag{34}\\
0<s \leq \pi
\end{gather*}
$$

The function $K(r, s)$ satisfies (10). Therefore, it follows from the initial conditions (33) and (34) that, in the triangle I (see Figure), we have

$$
\begin{align*}
K(r, s) & =\frac{1}{\tilde{H}_{1}-\tilde{H}} \sum_{\Lambda_{0}} \frac{\tilde{\varphi}^{\prime}\left(\pi, \mu_{n}\right)+\tilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{n}\right)}{\left\|\varphi\left(s, \mu_{n}\right)\right\|^{2}} \times \\
& \times\left[\tilde{c}\left(r, \mu_{n}\right)-\tilde{H} \tilde{s}\left(r, \mu_{n}\right)\right] \varphi\left(s, \mu_{n}\right) \tag{35}
\end{align*}
$$

where $\tilde{c}(r, \lambda)$ and $\tilde{s}(r, \lambda)$ are solutions of (7) satisfying the initial conditions

$$
\tilde{c}(\pi, \lambda)=\tilde{s}^{\prime}(\pi, \lambda)=1, \quad \tilde{c}^{\prime}(\pi, \lambda)=\tilde{s}(\pi, \lambda)=0
$$

The function $K(r, s)$ and the sum (35) satisfy (12); therefore, they coincide in the triangle II; consequently, they coincide in the triangle III as solutions of (10) satisfy the same initial conditions on the line $r=\pi / 2$, etc., i.e., $K(r, s)$ is expressed by (35) throughout the triangle $0<s \leq r \leq \pi$ (see [8-10]).

Hence, we obtain Hochstadt's result in a somewhat more general formulation.
Theorem 2. If the spectra $\left\{\lambda_{n}\right\}$ and $\left\{\tilde{\lambda}_{n}\right\}$ coincide and $\left\{\mu_{n}\right\}$ and $\left\{\tilde{\mu}_{n}\right\}$ differ in a finite number of their terms, i.e., $\tilde{\mu}_{n}=\mu_{n}$ for $n \in \Lambda$, then

$$
\tilde{q}(r)-q(r)=\sum_{\Lambda_{0}} \tilde{c}_{n} \frac{d}{d r}\left(\tilde{\phi}_{n}, \varphi_{n}\right)
$$

where $\varphi_{n}, \tilde{\phi}_{n}$ are suitable solutions of (4) and (7).
Proof. We obtain from (11) the equation

$$
\tilde{q}(r)-q(r)=2 \frac{d K(r, r)}{d r}
$$

Differentiating (35) and putting $s=r$, we obtain

$$
\begin{aligned}
\tilde{q}(r)- & q(r)=\frac{2}{\tilde{H}_{1}-\tilde{H}} \sum_{\Lambda_{0}} \frac{\tilde{\varphi}^{\prime}\left(\pi, \mu_{n}\right)+\tilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{n}\right)}{\left\|\varphi\left(s, \mu_{n}\right)\right\|^{2}} \times \\
& \times \frac{d}{d r}\left\{\left[\tilde{c}\left(r, \mu_{n}\right)-\tilde{H} \tilde{s}\left(r, \mu_{n}\right)\right] \varphi\left(\pi, \mu_{n}\right)\right\} .
\end{aligned}
$$

Consequently,

$$
\tilde{q}(r)-q(r)=\sum_{\Lambda_{0}} \tilde{c}_{n} \frac{d}{d r}\left(\tilde{\phi}_{n} \varphi_{n}\right)
$$

where $\tilde{c}\left(r, \mu_{n}\right)-\tilde{H} \tilde{s}\left(r, \mu_{n}\right)=\tilde{\phi}_{n}, \varphi\left(r, \mu_{n}\right)=\varphi_{n}\left(r, \mu_{n}\right)$, and

$$
\hat{c}_{n}=\frac{2\left[\tilde{\varphi}^{\prime}\left(\pi, \mu_{n}\right)+\tilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{n}\right)\right]}{\left(\tilde{H}_{1}-\tilde{H}\right)\left\|\varphi\left(s, \mu_{n}\right)\right\|^{2}} .
$$

This completes the proof of Theorem 2. We note that similar problems are investigated in [11-14].

1. Blohincev D. I. Foundations of quantum mechanics. - Moscow: Gostekhteorizdat, 1949. (Engl. transl.: Dordrecht: Reidel, 1964).
2. Fok V. A. Beginnings of quantum mechanics (in Russian). - Leningrad: Izdat. Leningrad. Univ., 1932.
3. Levitan B. M., Sargsyan I. S. Introduction to spectral theory. - Moscow: Nauka, 1970.
4. Courant R., Hilbert D. Methods of mathematical physics. - New York, 1953.
5. Coz M., Rochus P. Translation kernels for velocity dependent interaction // J. Math. Phys. - 1977. - 18, № 11. - P. 2232-2240.
6. Volk V. Y. On inverse formulas for a differential equation with a singularity at // Uspekhi Mat. Nauk. 1953. - 8 (56). - S. 141-151.
7. Amirov R. Kh., Gülyaz S. Proc. Eigth Int. Colloq. Different. Equat. (Plovdiv, Bulgaria, 18-23 August 1998). - P. 17-24.
8. Hald O. H. Discontinuous inverse eigenvalue problems // Communs Pure and Appl. Math. - 1984. - 37. - P. 539-577.
9. Levitan B. M. On the determination of the Sturm-Liouville operator from one and two spectra // Izv. AN USSR. Ser. Mat. - 1978. - 42, № 1. - P. 185-199.
10. Panakhov E. S. The definition of differential operator with peculiarity in zero on two spectrum // J. Spectral Theory Operators. - 1987. - 8. - P. 177-188.
11. Carlson R. Inverse spectral theory for some singular Sturm-Liouville problems // J. Different. Equat. 1993. - 106. - P. 121 - 140.
12. Hochstadt H. The inverse Sturm - Liouville problem // Communs Pure and Appl. Math. - 1973. - 26. P. 715-729.
13. Krall A. M. Boundary values for an eigenvalue problem with a singular potential // J. Different. Equat. 1982. - 45. - P. 128-138.
14. Rundell W., Sacks P. E. Reconstruction of a radially symmetric potential from two spectral sequences // J. Math. Anal. and Appl. - 2001. - 264. - P. 354-381.
